SincelITE 2022

Marine AGLAVE <u>Rémi MONTA</u>GNE

Mapping, quality control and quantification

Main steps of single cell data processing

From Luecken and Theis, Mol Systems Biology 2019

Mapping, quality control and quantification

Main steps of single cell data processing

From Luecken and Theis, Mol Systems Biology 2019

The starting library

We will use a droplet-based library as an example.

The starting library

We will use a droplet-based library as an example.

Read1: unique cell barcode (x nt) + UMI (y nt)

Read2: RNA 3' sequence

I7: sample index

Plan

• Demultiplexing: generating fastqs from bcl

• Quality Check

• Generating a gene x cell count matrix

- Illumina's sequencer output is base call files (bcl).
- Convert them to fastq ?

bcl2fastq

- Usual sample sheet
- You must know :
 - i7 (i5) index sequence
 - R1 and R2 lengths
 (depends on technology, version...)
- 10X: 1 index = 4 sequences \Rightarrow 4 lines

	A	В	С	D	E	F	
1	[Header]						
2	IEMFileVersion	5					
3	Investigator Name	MD					
4	Experiment Name	sincellte					
5	Date	31/12/18					
6	Workflow	GenerateFASTQ					
7	Application	NovaSeq FASTQ Only					
8	Instrument Type	NovaSeq					
9	Assay	Chromium SingleCell 10x					
10	Index Adapters	Chromium SingleCell 10x Indexes (4x96 Indexes)					
11	Description	PE26-98_SingleCell-10X					
12	Chemistry	Default					
13	[Reads]						
14	26						
15	98						
16	[Settings]						
17	[Data]						
18	Lane	Sample_ID	Sample_Name	index	Sample_Project	Description	
19	1	SI-3A-A1_1	sample1	AAACGGCG	Chromium_20211119	Homo_sapiens	
20	1	SI-3A-A1_2	sample1	CCTACCAT	Chromium_20211119	Homo_sapiens	
21	1	SI-3A-A1_3	sample1	GGCGTTTC	Chromium_20211119	Homo_sapiens	
22	1	SI-3A-A1_4	sample1	TTGTAAGA	Chromium_20211119	Homo_sapiens	_
22	1					T	

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/using/bcl2fastq-direct

Cellranger mkfastq

- A wrapper around bcl2fastq with additional features:
 - Automatic translation of index names to sequences
 - Splitting work into multiple jobs (HPC)
- Simpler samplesheet : csv file, 3 columns
- Additional barcodes QC-metrics

A1		•	δ Σ	=	Lane			
	Α	В	С		D	E	F	
1	Lane	Sample	Index					
2	1	test_sample	SI-P03-C9					
З								
4								
5								
6								
7								
8								
9								

https://support.10xgenomics.com/single-cell-gene-expression/soft ware/pipelines/latest/using/mkfastq#simple_csv

Check reads quality : fastqc

• Performs various basic QC on reads

- For 10X scRNA datasets :
 - R1 (BC + UMI) : QC is mandatory. Watch out for Ns and highly repeated sequences
 - R2 : do as usual

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Check close samples : NGS CheckMate

- When expected closeness : family, matched samples (e.g. : healthy-tumor)
- Check samples proximity using a set of known SNPs.
- Many data types : WES, WGS, RNA-Seq, ChIP-Seq, Many input formats : fastq, bam, VCF
- Helps controlling mislabelled samples

https://github.com/parklab/NGSCheckMate

Check cross-species contaminations: FastQ Screen

- Quick mapping (bowtie2) of a subset of reads across multiple genomes and common contaminants: human, mouse, rat, E. coli, adapters, vectors...
- Identifies 1hit-1library, multi hits-1library, 1hit-multi libraries and multi hits-multi libraries

Multiple species: Xenome

- For xenografts or contaminated samples •
- 5 fastq files :
 - Graft
 - Host —
 - Both —
 - Neither —
 - Ambiguous
- For single cell, apply to R2 only and sync R1: e.g. • seqkit:
 - segkit seg lists the selected read names.
 - seqkit grep filters R1 by keeping only reads in this list. —
 - segkit pair pairs filtered R1 with R2.

https://github.com/data61/gossamer/blob/master/docs/xenome.md

Multiple species: Xenome

• Xenome version is bugged: patch gossamer https://github.com/data61/gossamer

- Xengsort (Zentgraf and Rahmann, S. Mol Biol 2021).
- XenofilteR (Kluin et al, BMC Bioinfo 2018)
- Bamcmp (Khandelwal *et al.*, MCR 2017).
- XenoSplit: (https://github.com/goknurginer/XenoSplit Unpublished 2019).

https://github.com/data61/gossamer/blob/master/docs/xenome.md

Trimming

- If QC is not good:
 - Low base quality
 - Remaining adapter sequence
 - Homopolymer tailing
 - Low complexity
- Many tools to trim reads:
 - Trimmomatic (Bolger A.M. *et al.*, Bioinformatics (2014).
 - TrimGalore (Krueger F., https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/, unpublished 2012).
 - Cutadapt (Martin M., EMBnet.journal 2011)
 - Fastp (Chen et al., Bioinformatics 2018).
- For single cell, like with xenome, apply to R2 file, then sync the R1 file.

institut Curie

Principle

- Various tools have been developed:
 - **Cellranger**: 10X solution for 10X libraries only
 - STARsolo: an open source alternative to cellranger
 - kallisto+bustools: a pseudomapper and tool suite needing very little resources
 - (Alevin: a pseudomapper integrated with the salmon software)

Cellranger

- A set of pipelines for single cell analysis
- Many languages + task scheduler Martian
- Aligner: STAR
- single cell gene expression: cellranger count

https://support.10xgenomics.com/single-cell-gene-expression/so ftware/downloads/latest

• Pre-built references: human (hg19, GRCh38), mouse (mm10) or both (xenografts) https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/using/tutorial_mr

- For custom reference: *cellranger mkgtf* and *cellranger mkref*. Needs:
 - a genome FASTA
 - STAR compatible GTF file (Ensembl)
- Possible filtering according to biotype (IncRNA, protein coding...)

Cellranger

- 1 Splicing-aware genome alignment by STAR
- 2 Using gtf file, bucket the reads into:
 - exonic : at least 50% mapping on an exon
 - intronic : non exonic read intersecting an intron
 - intergenic otherwise
- 3 Mapping quality adjustment: for reads that align on 1 single exon + non-exonic loci, the read is considered confidently mapped to the exon. MAPQ forced to 255.

- 1 Splicing-aware genome alignment by STAR (work only at the genome level)
- 2 Using gtf file, bucket the reads into:

Mapping, quality control and quantification

- exonic : when it intersects an exon for at at least 50% of its own length
- intronic : when the read is not exonic and intersects an intron
- intergenic otherwise
- 3 Mapping quality adjustment: for reads that align to 1 single exon + non-exonic loci, the read is considered confidently mapped to the exon. MAPQ forced to 255.

Cellranger

4 Transcriptome alignment of exonic and intronic reads (gtf file). Reads that are exonic, sens and compatible with a known transcript are selected.

Cellranger

4 Transcriptome alignment (gtf) of exonic and intronic reads. Reads that are sens and compatible with a known transcript are selected.

Selection of every sens read can be forced (assays on nuclei, many unspliced reads)

- Attribute each selected read to 1 cell
- White lists with all possible 10x barcodes
- Correction: barcodes with Hamming distance = 1 from a whitelist BC, ie one mismatch, are corrected (if the mismatch has a low BASEQ).
- Filtering: keep only BC in the whitelist.

Building the count matrix

Cellranger

$\left[\begin{array}{c} \blacksquare \implies \end{array}\right] \stackrel{\scriptstyle {\scriptstyle \mbox{\scriptsize \mbox{\\mbox{\mbox{\mbox{\scriptsize \mbox{\scriptsize \mbox{\scriptsize \mbox{\scriptsize \mbox{\mbox{\\mbox{\\mbox{\\mbox{\mbox{\scriptsize \mbox{\\mb}\\mbox{\\mbox{\mbox{\\mbox{\\mbox{\\mb}\mbox{\\mbox{\\mbox\$

- Correct amplification artefacts
- Filtering : remove incorrect UMIs:
 - homopolymers (e.g. AAAAAAAAAA)
 - Contains 1 or several N
 - contains any base with BASEQ < 10
- Correction: if 2 UMIs have the same cell BC, the same gene alignment and a Hamming distance of 1, the lower-count UMI changed to the higher count UMI.

Cellranger

- Correct amplification artefacts
- Filtering : remove incorrect UMIs:
 - homopolymers (e.g. AAAAAAAAAA)
 - Contains 1 or several N
 - contains any base with BASEQ < 10
- Correction: if 2 UMIs have the same cell BC, the same gene alignment and a Hamming distance of 1, the lower-count UMI changed to the higher count UMI.
- Aggregation: 1 BC+UMIs = 1 unique RNA molecule (filter excess)
- Finally, construct matrix with selected reads: genes x barcodes

Cellranger

$$\left[\begin{array}{c} \blacksquare \\ \blacksquare \end{array}\right] \stackrel{\scriptstyle \bullet \bullet \bullet}{\Longrightarrow} \stackrel{\scriptstyle \bullet \bullet \bullet}{\Longrightarrow} \stackrel{\scriptstyle \bullet \bullet \bullet}{\bigtriangledown} \stackrel{\scriptstyle \bullet \bullet}{\bigtriangledown} \stackrel{\scriptstyle \bullet \bullet}{\bigtriangledown} \stackrel{\scriptstyle \bullet \bullet}{\Longrightarrow} \stackrel{\scriptstyle \bullet}{\Longrightarrow} \stackrel{\scriptstyle \bullet}{\Longrightarrow} \stackrel{\scriptstyle \bullet \bullet}{\Longrightarrow} \stackrel{\scriptstyle \bullet \bullet}{\Longrightarrow} \stackrel{\scriptstyle \bullet \bullet}{\Longrightarrow} \stackrel{\scriptstyle \bullet}{ \bullet} \stackrel{\scriptstyle \bullet}{\Longrightarrow} \stackrel{\scriptstyle \bullet}{\Longrightarrow} \stackrel{\scriptstyle \bullet}{ \bullet} \stackrel{\scriptstyle \bullet}{\Longrightarrow} \stackrel{\scriptstyle \bullet}{ \bullet} \stackrel{\scriptstyle$$

- Most droplets contain no cell:
 - $^-~$ ~ 10 000 cells
 - ~ 100 000 droplets
- Call the actual cells

• But they contain circulating RNA from dead cells, i.e. a meaningless ambient 'soup'.

Building the count matrix

Cellranger

- 1st version of cell calling algorithm was specific to cellranger: a simple threshold:
 - 1. Rank droplets by decreasing count: kneeplot.
 - 2. Take nb UMIs in one of the most populated droplets (99th percentil): m.
 - 3. Select droplets where nb UMIs $\geq m/10$

Building the count matrix

- Problems for complex libraries: e.g. tumors with high RNA content tumor cells + low RNA content tumor infiltrating lymphocytes
- Cellrangerv3 added a 2nd step (re-implementation of open source EmptyDroplets):
 - deduce background from low content droplets
 - select droplets with very different composition
- During next steps, a last filtering will generally be needed.

Cellranger

Outputs

File Name	Description
web_summary.html	Run summary metrics and charts in HTML format
metrics_summary.csv	Run summary metrics in CSV format
possorted_genome_bam.bam	BAM file containing both unaligned reads and reads aligned to the genome and transcriptome annotated with barcode information
possorted_genome_bam.bam.bai	Index for possorted_genome_bam.bam
filtered_feature_bc_matrix	Filtered feature-barcode matrices containing only cellular barcodes in MEX format. (In Targeted Gene Expression samples, the non-targeted genes are not present.)
filtered_feature_bc_matrix_h5.h5	Filtered feature-barcode matrices containing only cellular barcodes in HDF5 format. (In Targeted Gene Expression samples, the non-targeted genes are not present.)
raw_feature_bc_matrices	Unfiltered feature-barcode matrices containing all barcodes in MEX format
raw_feature_bc_matrix_h5.h5	Unfiltered feature-barcode matrices containing all barcodes in HDF5 format
analysis	Secondary analysis data including dimensionality reduction, cell clustering, and differential expression
molecule_info.h5	Molecule-level information used by cellranger aggr to aggregate samples into larger datasets
cloupe.cloupe	Loupe Browser visualization and analysis file

10X Cell Ranger • count

Building the count matrix

Cellranger

Turnkey solution

- Many QC-metrics, results summarized in 1 html.
- Some secondary analysis
- More complex experiences: VDJ analysis, feature-barcoding
- Versions for ATAC-Seq, multiomics

- Proprietary
- Analyze only 10X product (cannot customize BC and UMI)
- A lot of resource and time
- Has its own scheduler: hard to include in another pipeline
- Compatibility not guaranteed with all HPC managers

30

Building the count matrix

STARsolo

$$\left[\begin{array}{c} \blacksquare \end{array} \Longrightarrow \end{array} \xrightarrow{\mathfrak{S}^{\mathsf{C}}} \Longrightarrow \overrightarrow{\mathcal{V}^{\mathsf{N}^{\mathsf{S}}}} \Longrightarrow \left[\vdots \vdots \right] \Longrightarrow \overset{\circ}{\Sigma}$$

- Turnkey solution
- Implemented in STAR aligner
- Drop-in replacement for cellranger
- Same steps as cellranger:
 - Splice-aware genome alignment
 - Cell barcodes and UMI correction, filtering and aggregation
 - Matrix creation
 - Cell calling

THE PREPRINT SERVER FOR BIOLOGY	
bioRxiv posts many COVID19-related papers. A reminder: the	y have not been formally peer-reviewed and
New Results	Follow this preprint
STARsolo: accurate, fast and versatile mappin single-nucleus RNA-seq data	g/quantification of single-cell and
STARsolo: accurate, fast and versatile mappin single-nucleus RNA-seq data Benjamin Kaminow, O Dinar Yunusov, Alexander D doi: https://doi.org/10.1101/2021.05.05.442755	g/quantification of single-cell and
STARsolo: accurate, fast and versatile mappin single-nucleus RNA-seq data Benjamin Kaminow, Dinar Yunusov, Alexander D doi: https://doi.org/10.1101/2021.05.05.442755 This article is a preprint and has not been certified by peer rev	g/quantification of single-cell and
STARsolo: accurate, fast and versatile mappin single-nucleus RNA-seq data Benjamin Kaminow, Dinar Yunusov, Alexander D doi: https://doi.org/10.1101/2021.05.05.442755 This article is a preprint and has not been certified by peer rev D 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	g/quantification of single-cell and

CSH) Spring Harbor Laboratory bioRxiv

https://github.com/alexdobin/STAR

STARsolo

• Designed to give results as similar to Cellranger's results as possible with the right set of parameters

Element-wise comparison of a genecell matrix with cellranger results

Per cell comparison with cellranger results

From Kaminow et al., BioRxiv 2020

STARsolo

- But highly configurable:
 - Alignment parameter
 - Read-to-gene assignment rule: e.g.: keep reads with several targets help keeping signal for paralogs
 - R1 structure (CB + UMI geometry)

Allows analysis of non 10X technologies

- Rules for CB and UMI filtering

Possibility to work at the transcripts level

33

Building the count matrix

STARsolo

Turnkey solution

STAR --genomeDir \${index} --readFilesIn \$r2 \$r1 --outFileNamePrefix STARsolo_\${prefix}_ \${unzip} \
--sjdbGTFfile \${gtf} \
--outSAMtype BAM SortedByCoordinate \
colorwe Droples Proplet colorWeitslict f(whitelict) colorPlan f(chlop) NeuMIctort f(wmiStort)

--soloType Droplet --soloCBwhiteList \${whiteList} --soloCBlen \${cbLen} --soloUMIstart \${umiStart} --soloUMIlen \${umiLen} \

- --soloCBmatchWLtype 1MM_multi_Nbase_pseudocounts --soloUMIfiltering MultiGeneUMI_CR --soloUMIdedup 1MM_CR \ --runThreadN \${task.cous}
 - Not proprietary
 - Highly configurable (allows analysis of non 10X technologies)
 - Needs less resource than cellranger
 - Easy to include in a pipeline
 - Compatible with HPC managers

- Many QC files but not summarized
- No secondary analysis
- Does not take in charge more complex experiences (feature barcoding), ATAC-Seq...

Building the count matrix

Kallisto/bustools

- Make use of the pseudo-aligner kallisto and the toolsuite bustools
- Very good time and memory performance.

https://pachterlab.github.io/kallisto/download

$$\left[\begin{array}{c} \blacksquare \\ \blacksquare \end{array}\right] \stackrel{*}{\Longrightarrow} \Longrightarrow \stackrel{*}{\bigtriangledown} \stackrel{*}{\Longrightarrow} \Longrightarrow \stackrel{*}{\bigtriangledown} \stackrel{*}{\Longrightarrow} \stackrel{*}{\Longrightarrow} \left[\vdots \vdots \right] \Longrightarrow \stackrel{\circ}{\bigtriangledown} \stackrel{\circ}{\bigtriangledown} \stackrel{*}{\bigtriangledown} \stackrel{*}{\Longrightarrow} \left[\vdots \vdots \right] \Longrightarrow \stackrel{\circ}{\bigtriangledown} \stackrel{\circ}{\bigtriangledown} \stackrel{*}{\bigtriangledown} \stackrel{*}{\Longrightarrow} \left[\vdots \vdots \right] \xrightarrow{*} \stackrel{*}{\bigtriangledown} \stackrel{*}{\bigtriangledown} \stackrel{*}{\Longrightarrow} \left[\vdots \vdots \right] \xrightarrow{*} \stackrel{*}{\bigtriangledown} \stackrel{*}{\bigtriangledown} \stackrel{*}{\bigtriangledown} \stackrel{*}{\Longrightarrow} \left[\vdots \vdots \right] \xrightarrow{*} \stackrel{*}{\bigtriangledown} \stackrel{*}{\bigtriangledown} \stackrel{*}{\Longrightarrow} \left[\vdots \vdots \right] \xrightarrow{*} \stackrel{*}{\Longrightarrow} \stackrel{*}{\bigtriangledown} \stackrel{*}{\Longrightarrow} \left[\vdots \vdots \right] \xrightarrow{*} \left[\vdots \vdots \right] \xrightarrow{*} \left[: i \right] \xrightarrow{*} \left[: :$$

- Kallisto is a pseudo aligner: fast, low memory
- Working with a reference transcriptome, not genome

$$\left[\begin{array}{c} \blacksquare \\ \blacksquare \end{array}\right] \stackrel{*}{\Longrightarrow} \Longrightarrow \stackrel{*}{\bigtriangledown} \stackrel{*}{\Longrightarrow} \Longrightarrow \stackrel{*}{\bigtriangledown} \stackrel{*}{\Longrightarrow} \stackrel{*}{\Longrightarrow} \left[\vdots \vdots \right] \Longrightarrow \stackrel{\circ}{\bigtriangledown} \stackrel{\circ}{\bigtriangledown} \stackrel{*}{\bigtriangledown} \stackrel{*}{\Longrightarrow} \left[\vdots \vdots \right] \Longrightarrow \stackrel{\circ}{\bigtriangledown} \stackrel{\circ}{\bigtriangledown} \stackrel{*}{\bigtriangledown} \stackrel{*}{\Longrightarrow} \left[\vdots \vdots \right] \xrightarrow{*} \stackrel{*}{\bigtriangledown} \stackrel{*}{\bigtriangledown} \stackrel{*}{\Longrightarrow} \left[\vdots \vdots \right] \xrightarrow{*} \stackrel{*}{\bigtriangledown} \stackrel{*}{\bigtriangledown} \stackrel{*}{\bigtriangledown} \stackrel{*}{\Longrightarrow} \left[\vdots \vdots \right] \xrightarrow{*} \stackrel{*}{\bigtriangledown} \stackrel{*}{\bigtriangledown} \stackrel{*}{\Longrightarrow} \left[\vdots \vdots \right] \xrightarrow{*} \stackrel{*}{\Longrightarrow} \stackrel{*}{\bigtriangledown} \stackrel{*}{\Longrightarrow} \left[\vdots \vdots \right] \xrightarrow{*} \left[\vdots \vdots \right] \xrightarrow{*} \left[: i \right] \xrightarrow{*} \left[: :$$

- Kallisto is a pseudo aligner: fast, low memory
- Working with a reference transcriptome, not genome
- Principle:
 - reference chunked into k-mers ==> de Bruijn Graph
 - Reads chunked into k-mers and assigned to the transcript(s) they overlap with
 - 1 read generally compatible with several transcripts: proportion of transcripts computed by Expectation Maximization from all reads

A very nice explanation of kallisto: <u>https://bioinfo.iric.ca/fr/comprendre-comment-kallisto-fonctionne</u> From

From Bray et al., Nat Biointechno 2016

$$\left[\begin{array}{c} \blacksquare \end{array} \Longrightarrow \right] \stackrel{\scriptstyle \bullet \bullet}{\Longrightarrow} \Longrightarrow \left. \bigtriangledown \right] \stackrel{\scriptstyle \bullet \bullet}{\Longrightarrow} \left. \bigtriangledown \right] \Longrightarrow \left. \bigtriangledown \right\rangle \stackrel{\scriptstyle \bullet \bullet}{\bigtriangledown} \left. \bigtriangledown \right\rangle \stackrel{\scriptstyle \bullet \bullet}{\Longrightarrow} \left[\vdots \vdots \right] \Longrightarrow \left. \bigtriangledown \right\rangle \stackrel{\scriptstyle \bullet \bullet}{\bigtriangledown} \left. \left[\vdots \vdots \right] \right] \longrightarrow \left. \bigtriangledown \right\rangle \stackrel{\scriptstyle \bullet \bullet}{\bigtriangledown} \left. \left[\vdots \vdots \right] \right] \xrightarrow{\scriptstyle \bullet \bullet} \left. \bigtriangledown \right\rangle \stackrel{\scriptstyle \bullet \bullet}{\Longrightarrow} \left[\vdots \vdots \right] \xrightarrow{\scriptstyle \bullet \bullet} \left. \bigtriangledown \right\rangle \stackrel{\scriptstyle \bullet \bullet}{\Longrightarrow} \left[\vdots \vdots \right] \xrightarrow{\scriptstyle \bullet \bullet} \left. \bigtriangledown \right\rangle \stackrel{\scriptstyle \bullet \bullet}{\Longrightarrow} \left[\vdots \vdots \right] \xrightarrow{\scriptstyle \bullet \bullet} \left[\vdots \right] \xrightarrow{\scriptstyle \bullet} \left[\vdots \right] \xrightarrow{\scriptstyle \bullet} \left[\vdots \right] \xrightarrow{\scriptstyle \bullet \bullet} \left[\vdots \right] \xrightarrow{\scriptstyle \bullet} \left[\vdots \right] \xrightarrow{\scriptstyle \bullet} \left[\vdots \right] \xrightarrow{\scriptstyle \bullet \bullet} \left[\vdots \right] \xrightarrow{\scriptstyle \bullet \bullet} \left[\vdots \right] \xrightarrow{\scriptstyle \bullet \bullet} \left[\bullet \bullet \circ \left[\bullet \bullet \circ \right] \left[\bullet \bullet \circ \left[\bullet \bullet \circ \right] \left[\bullet \bullet \circ \right] \left[\bullet \bullet \circ \left[\bullet \bullet \circ \right] \left[\bullet \bullet \circ \right] \left[\bullet \bullet \circ \left[\bullet \bullet \circ \right] \left[\bullet \bullet \circ \right] \left[\bullet \bullet \circ \left[\bullet \bullet \circ \right] \left[\bullet \bullet \circ \left[\bullet \bullet \circ \right] \left[\bullet \bullet \circ \left[\bullet \bullet \circ \right] \left[\bullet \bullet \circ \left[\bullet \bullet \circ \right] \left[\bullet \bullet \circ \left[\bullet \bullet \circ \right$$

• Many technologies already accepted, the CB + UMI geometry is configurable

Allows analysis of non 10X technologies

- Gives relative abundance, not absolute counts
- Output format in a specific, compressed format: bus instead of sam or bam files.

2-bit encoding					
	< 32bp barcode	<32bp umi	ззыі eq. class id	32bit count	32bit flags
	01001101001 01001101001 01001101001 01001101001 01001101001 01001101001 1101000100	110111 110111 110111 010010 110111 110111 110111 110111 110111	000001101001 110010010010 000001101001 000001101001 1001001001001 000001101001 000001101001 000001101001 000001101001	000100111001 111011001100 000100111001 000100111001 1110100111101 000100111001 00100111001 00110010101 001110010101 001110010101	0000 0000 0000 0000 0000 0000 0000 0000

From Melsted et al., Bioinformatics 2019

• The matrix must then be filtered: e.g. EmptyDrops (Lun et al., Genome Biol 2019).

- For modular pipeline construction
- Not proprietary
- Allows analysis of non 10X technologies
- The fastest and less resource consuming (can run on a laptop)
- Easy to include in a pipeline
- Compatible with HPC managers

- Not a turnkey solution
- No secondary analysis
- Gap with cellranger
- No empty droplets filtering

performances

Which alternative to cellranger ?

Melsted P. et al., Nat. Biotech. (2021)

• Specificity: Brüning *et al.* and Kaminow *et al.* report more genes per cells and more false positive with pseudomappers (kallisto)

Kallisto has the best

Conclusion

Technical Overview mapper						
	Cell Ranger	STARsolo	Alevin	Kallisto		
Mapping scheme	Exact alignment	Exact alignment	Pseudo mapping	Pseudo mapping		
Internal Mapper	Star	Star	Salmon	Kallisto		
Reference	Genome	Genome	Transcriptome + Genome	Transcriptome		
Supported sequence technology	10X Chromium v1 – v3	10X Chromium v2;v3, Smart-seq, Drop-seq, inDrop	10x Chromium v2;v3, Drop-seq, Cel-seq, Cel-seq2, Quartz-seq2	10x Chromium v1 – v3, Cel-seq, Cel- seq2, Drop-seq, inDrops v1-v3, SCRB-Seq, SureCell		
Barcode correction	1-Hamming distance based	1-Hamming distance based	Edit distance calculation	1-Hamming distance based		
Whitelisting	Whitelist based	Whitelist based	Frequency based, no whitelist needed	Whitelist based		
Alternative Splicing detection	no	yes	no	no		
UMI correction	Two round correction by barcode, read count and annotation	Two round correction by barcode, read count and annotation	graph based correction	NA		
Index	Suffix array	Suffix array	Colored De-Bruijn Graph	Colored De-Bruijn Graph		
Handling of multimapped reads	discarded	discarded	Distributing read count between genes by EM- algorithm	discarded		
Output	Matrix + Bam-File and summary file as html-file with primary results as well as clustering and DEG analysis	Gene count matrix and primary results summary	Gene count matrix ready for analysis	External software required to create gene count matrix		

Summary						
	Cell Ranger	STARsolo	Alevin	Kallisto		
Mapping performance	Lowest runtime	Similar results with Cell Ranger that are accomplished in a shorter time	Whitelisting causes loss or gain of barcodes depending on the data	Fastest runtime with highest mapping rate, more cells are detected with a small gene content		
Barcode correction and filtering			Final barcode set included barcodes that are not present in the whitelist	Reports more cells with a low gene content		
Gene discovery				Detection of more genes than all other tools. Highest UMI count for genes not expressed in studied tissue		
MT-content	Highly affected by complete annotation including pseudogenes	See Cell Ranger	Smaller difference of MT-content between the mapping with filtered and unfiltered annotation	See Cell Ranger		
Clustering	Highest Overlap with SCINA classification	Very similar to Cell Ranger with minor differences	Cell types contain lower amount of cells with SCINA classification	Cell types contain the lowest amount of cells with SCINA classification		
DEG	No difference detected	No difference detected	No difference detected	No difference detected		

R. S. Brüning et al., bioRXiv (2021)

42

Mapping, quality control and quantification

Malte D Luecken & Fabian J Theis Molecular Systems Biology (2019)

SincelITE 2022

Marine AGLAVE <u>Rémi MONT</u>AGNE

Thank you for your attention!

Additional resources

A very handy training session about scRNAseq :

- Main page (2020 edition) : https://hbctraining.github.io/scRNA-seq_online/sch edule/
- Quantification matrix QC (2018 edition) : https://hbctraining.github.io/In-depth-NGS-Dat a-Analysis-Course/sessionIV/lessons/SC_qua lity_control_analysis.html

Thanks to Bastien Job