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Single RNAseq workflow: bioinformatics point of view

• What technique should we use to generate 

the data ?

– Plate based / droplets

– Full length / 3’ counting with UMI

➢ UNDERSTAND THE BIAS

• Experimental design  

– Sequencing strategy

• UMI design

• Spike-ins

• Sequencing strategy?

• Number of cells

– Samples: Practical considerations

• Types /number of samples

• Cell preparation -> confounding

• Budget

Dal Molin, 2019
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Technical point of view

1. UMI design

2. Use of Spike-ins

3. Discuss about sequencing design

– Number of cells

– Sequencing depth
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UMI design

Dal Molin, 2019

• Unique Molecular Identifier (Islam et al, 2014)

• UMI-based protocols allow for PCR bias correction

• Improved accuracy of  gene expression measures (E.g.: Chen, Genome 

Bio 2018)

• Design limits: be careful of saturation 

• N=4-10bp barcodes -> 4^N possible UMIs

• N=5 -> 1024 UMIs available

• N=10 -> 1,048,576 UMIs available

Svensson V, et al 2017
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Spike-ins

• Spike-ins are molecules that are added in known concentration to  the 

library

• Used to assess protocol accuracy and reproducibility

• ERCC

– 92 bacterial RNA species, different lengths, GC contents

–22 abundance levels, 2 mixes for fold-change accuracy assessment

• SIRV

–69 artificial transcripts

–Mimic human genes

–Main difference: Used for isoforms detection 
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Spike-ins use in scRNA-seq

• Estimate protocol capture efficiency

– How many of the spiked molecules did we detect?

• Comparison of protocols performance

– Level of detection in low expressed genes

– See  Svensson V. et al, 2017

• Estimate technological noise

– Help for detection of highly variable genes

• Issue 1: spike-ins behave differently than endogenous 

genes

– May introduce more bias

• Issue 2: Spike-ins can’t be used in droplet assays

– Even incorporation in all droplets

– Reads will be used to sequence only spike-ins 
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Experimental Design

• We have a question

• We have selected a protocol

• How many samples?

• How many cells?

• How many reads/cell?

• How do we combine all this to 

minimize batch effect?
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Estimating the required number of cells / sequencing depth

• Number of cells required

–Do we have a lot of cells to begin with?

–Are we looking for rare cells (probability estimation)?

• WARNING: doublet rate increases with higher cell 

numbers in droplet assays.

• Sequencing depth

–What are the limits of my sequencer? (Novaseq or 

NextSeq)

–Minimal number of reads for droplets: 50,000 

reads/cells

–Do the cells have lots of RNA ? 

–Think about sequencing saturation

–Think about dropouts generation

Zheng 2017
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Example 1: PBMC 
small cells, some don’t have a lot of RNA

Target: 5,000 cells

1 sample

NextSeq High 75

(~400millions reads / run)
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Example 2: Nasal epithelium brushing 
cells with lots of RNA

Target: 5,000 cells

2 samples, 

NextSeq High 75 

~400millions reads / run
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Number of cells: example of the 1.3millions cells dataset

Bhaduri A, BiorXiv 2017
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Technical design: summary

• Discuss about sequencing depth with the biologist

• If the sequencing is too shallow, the statistical analysis may not be robust

–Worst case scenario: you can’t even find the biologist favorite gene

• More cells is not always better

• Sequencing depth should be the same for all samples
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Sample preparation

• What technique should we use to 

generate the data ?

– Plate based / droplets

– Full length / 3’ counting with UMI

➢ UNDERSTAND THE BIAS

• Experimental design  

– Sequencing strategy

• UMI design

• Spike-ins

• How to sequence

– Samples: Practical considerations

• Types /number of samples

• Cell preparation -> confounding

• Budget
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What about experimental confounding factors ?

• scRNA-seq are often performed 1 sample at a time

–Dissociation is difficult, sample are collected 1 by 1,…

–Technological aspects vary too (seq depth, number of cells captured)

• Several studies report evidence for strong batch effects

Hicks , 2017
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Ambient RNA / Dissociation induced genes

Van den Brick, Nat Method 2017

soupX tutorial

Young, 2020
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Perfect study design

• Balanced design will be hard to achieve for practical reasons

• Multiplexing :

–Natural SNPs (demuxlet)

–Expression of Xist/ChrY

–Cell-hashing

Baran-Gale 2018

Stoeckius, 2018
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Example 1: Mouse Cell Atlases

Marin Truchi, IPMC
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Mouse Cell Atlas Summary

• > 400,000 cells

• >50 mouse tissues and cultures

• > 800 cell types identified

based on 60,000 good QC cells
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Tabula Muris Summary

• Over 100,000 cells

• 20 organs

• Double design:

–Shallow profiling using droplets

–FACS + full length profiling
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MCA Lung data (6940 cells) Han et Al, Cell (2018)

Dropouts
96 % 
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MCA Lung data (6940 cells)

Gene expression and cell type markers available on : 

http://bis.zju.edu.cn/MCA/gallery.html?tissue=Lung

http://bis.zju.edu.cn/MCA/gallery.html?tissue=Lung
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TM Lung 10X data (5449 cells)

Dropouts
93 % 
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TM Lung 10X data (5449 cells)

n = 205

n = 41

n = 5

n = 225

n = 425

n = 151

n = 456

n = 22

n = 24

n = 145

n = 832

n = 2534

n = 246

n = 89

n = 49

➢ 15 cell types (8 immune)
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TM Lung 10X data (5449 cells)
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TM Lung SMART-Seq data (1620 cells)

Dropouts
89 % 
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TM Lung SMART-Seq data (1620 cells)

➢ 16 cell types (7 immune)
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TM Lung SMART-Seq data (1620 cells)

➢ 6 mice 
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Mouse Atlases Sequencing depth comparison

Tabula Muris, 2018
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Example 2: Skin biopsies

• Our collaborator is thinking about setting up a small clinical trial to study a 

skin disease

• She is asking for advice regarding sample collection and preparation for 

scRNASeq

• Clinical sample :

– Samples collected and processed 1 by 1 if using fresh tissue

– Some cell types are known to be degraded when frozen

• Using GEO, we reanalized 2 studies with healthy skin tissue

–Fresh samples: GSE132802

–Frozen samples: GSE147424
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Difference in data quality is clear

Nicolas Nottet, Syneos Health

Fresh Frozen
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Cell Type identification

• All cell types are present in both datasets (but proportions vary)

• Differential analysis fresh vs frozen did not show a lot of DE genes

• Frozen tissue can be a solution here. A higher sequencing depth could be recommended
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Single Cell RNAseq data analysis workflow

Wu, Nat RevNeph 2020



35

Normalization

• Process of identifying and removing systematic variation not due to real 

differences between RNA treatments i.e. differential gene expression.

• Cell-specific effects

• Gene-specific effects

Vallejos CA, 2017
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scRNA-seq: 3 levels of normalization

• Gene-specific effects 

–within cell: GC content, gene length

• Cell specific effects

–Aim: make count distributions comparable

• Sample/Technology-specific effects -> Data Integration

–Batch effects (BAD)

–Between samples variability (GOOD)
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Bulk RNAseq normalization

• RPKM/FPKM/TPM/CPM (Reads/Fragments per kilobase of transcript per million reads of 

library)

– Normalize for sequencing depth and transcript length at the same time

-> ok if you have full length data

• Global scaling

– Eg. Upper Quartile

– If we have too many zeros, the SF will be off

• Size factors calculation

– Estimation of library sampling depth

– DESeq2, edgeR TMM

– Suppose that 50% of genes are not DE

– If we have too many zeros, the SF will be off

• These methods don’t work well for single-cell data

– TPM/CPM can be bias by a small number of genes carrying most of the signal

– Quantile based methods are limited: large number of zeros -> scale factor = 0
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scRNA-seq: 3 levels of normalization

• Gene-specific effects 

–within cell: GC content, gene length

–Not really accounted for in droplet assays

• Cell specific effects

–Aim: make count distribution comparable

1. Global scaling

2. scRNA-seq specific method (E.g: scater/scran package)

3. Others

• Sample/Technology-specific effects -> Data Integration

–Batch effects (BAD)

–Between samples variability (GOOD)
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Global Scaling

• Hypotheses:

–Cell populations are homogenous

–The RNA level is similar in all cells

• Choice of the scaling factors

–Median UMI counts

–10,000 default in Seurat / Cell Ranger

• In practice

–Hypotheses are not always verified, but lots of people use this method anyway
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Estimation of size factors using deconvolution

• Alternative method to compute the size factors

• Pool cells to reduce the number of zeros

• Estimate the size factors for the pool

• Repeat many time and use deconvolution to estimate each cell size factor

• Implemented in scater/scran packages

Lun, 2016

Vallejos C, 2017
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More advanced methods are available

• Normalization included in the statistical model

–SCDE, Monocle, MAST,…

• Normalization based on spike-ins or invariant genes

–BASICs, scNorm

• Variance stabilization

– Correct for strong mean-variance relationship

– Included in Seurat, Pagoda2, SCANPY

• Fancy modeling

– Modeling of single cell count data using Neg Binomial

– ZINB-Wave, single-cell variational infernece (scVI) etc

Wu 2020
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Normalization for other biological factors

• Known or unknown variation

–Cell cycle, number of genes detected, % mitochondrial genes…

• Regression methods provided to account for know factors

– Seurat

• Latent variable models to estimate and remove unknown bias

–scLVM
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scRNA-seq: 3 levels of normalization

• Gene-specific effects 

–within cell: GC content, gene length

• Cell specific effects

–Aim: make count distribution comparable

1. Global scaling

2. scRNA-seq specific method from scater/scran package

3. Others

• Sample/Technology-specific effects -> Data Integration

–Batch effects (BAD)

–Between samples variability (GOOD)
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Why do we need data integration methods?

• In practice: single cell techniques are biased

–Variations between samples can be huge

• donor effect +/- sampling effect 

–Samples may be processed using different technologies

• Combining datasets and applying cell-level normalization might not be 

enough to remove this bias

• More details in next session

Misharin, BiorXiv 2018
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Conclusion

Todorov, 2018
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Thank you


