Experimental Design
Normalization

Agnes Paquet
SincellTE 2022 - 01/10/2022

agnes.paquet@syneoshealth.com




Single RNAseq workflow: bioinformatics point of view

the data ?

- Plate based / droplets

- Full length / 3’ counting with UMI
> UNDERSTAND THE BIAS

. Experimental design

- Sequencing strategy
UMI design
Spike-ins
Sequencing strategy?
Number of cells

- Samples: Practical considerations
Types /number of samples
Cell preparation -> confounding
Budget
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Technical point of view

1. UMI design

2. Use of Spike-ins

3. Discuss about sequencing design
— Number of cells
- Sequencing depth




UMI design

Dal Molin, 2019
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# transcript copies

Unique Molecular Identifier (Islam et al, 2014)
UMI-based protocols allow for PCR bias correction
Improved accuracy of gene expression measures (E.g.: Chen, Genome
Bio 2018)
Design limits: be careful of saturation
* N=4-10bp barcodes -> 4*N possible UMIs
 N=5->1024 UMIs available

e N=10->1,048,576 UMIs available



Spike-ins

- Spike-ins are molecules that are added in known concentration to the
library

- Used to assess protocol accuracy and reproducibility

-ERCC
- 92 bacterial RNA species, different lengths, GC contents
-22 abundance levels, 2 mixes for fold-change accuracy assessment

- SIRV
-69 artificial transcripts
-Mimic human genes
—Main difference: Used for isoforms detection




Spike-ins use in scRNA-seq

- Estimate protocol capture efficiency
—How many of the spiked molecules did we detect?
- Comparison of protocols performance

—Level of detection in low expressed genes
-See Svensson V. et al, 2017

- Estimate technological noise
—Help for detection of highly variable genes

- Issue 1: spike-ins behave differently than endogenous
genes
—May introduce more bias

- Issue 2: Spike-ins can’t be used in droplet assays
—Even incorporation in all droplets
- Reads will be used to sequence only spike-ins
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Experimental Design

Biological
- We have a question Question
- We have selected a protocol

V

[ Which technology J

- How many samples?

- How many cells?

Experimental Design

- How many reads/cell?

Sequencing
- How do we combine all this to strategy

minimize batch effect?

Sample Prep

Data Analysis




Estimating the required number of cells / sequencing depth

- Number of cells required
-Do we have a lot of cells to begin with?
~Are we looking for rare cells (probability estimation)?
- WARNING: doublet rate increases with higher cell
numbers in droplet assays.

- Sequencing depth
~-What are the limits of my sequencer? (Novaseq or

NextSeq) Zheng 2017
—~Minimal number of reads for droplets: 50,000 :. ' .
reads/cells d6f '
-Do the cells have lots of RNA ? ’j,,. ﬁ
~Think about sequencing saturation E;.

-Think about dropouts generation 200 SM0 7500 10000

Hecovered Cel Number




Example 1: PBMC

small cells, some don’t have a lot of RNA

Target: 5,000 cells
1 sample
NextSeq High 75

(~400millions reads / run)

Sequencing Saturation
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Example 2: Nasal epithelium brushing
cells with lots of RNA

Cell Ranger - czf_brossage_180430 -

Target: 5,000 cells

2 samples,

NextSeq High 75
~400millions reads / run

SUMMARY  ANALYSIS

Estimated Number of Cells

3,733

Mean Reads per Cell

60,821

Median Genes per Cell

3,302

Sequencing
Number of Reads 227,046,761
Valid Barcodes 97.9%
Reads Mapped Confidently to Transcriptome 55.2%
Reads Mapped Confidently to Exonic Regions 57.4%
Reads Mapped Confidently to Intronic Regions 17.6%
Reads Mapped Confidently to Intergenic Regions 4.2%
Reads Mapped Antisense to Gene 3.7%
Sequencing Saturation 49.1%
Q30 Bases in Barcode 96.1%
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Number of cells: example of the 1.3millions cells dataset

a Full Dataset 1/12 of Dataset 1/24 of Dataset |
(1219103 cells) . (101592 cells) (50796 cells)

*ijf I
o | % -«
. ot
i {4 i %‘\
1/48 of Dataset 1/96 of Dataset 1/192 of Dataset (
(25398 cells) (12699 cells) (6350 cells)

Bhaduri A, BiorXiv 2017
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Technical design: summary

- Discuss about sequencing depth with the biologist

- If the sequencing is too shallow, the statistical analysis may not be robust
~Worst case scenario: you can'’t even find the biologist favorite gene

- More cells is not always better
- Sequencing depth should be the same for all samples

Highly Expressed Genes All Other Genes 7

5M Reads

10M Reads

Byl 1%l 25M Reads

50M Reads
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Sample preparation

- What technique should we use to
generate the data ?
—  Plate based / droplets
- Fulllength / 3’ counting with UMI
> UNDERSTAND THE BIAS Which technology

Biological
Question

- Experimental design

— Sequencing strategy Experimental Design
UMI design
Spike-ins
How to sequence Sequencing

Sample Prep

strategy

- Samples: Practical considerations
Types /number of samples
Cell preparation -> confounding Data Analysis
Budget
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What about experimental confounding factors ?

- SCRNA-seq are often performed 1 sample at a time
-Dissociation is difficult, sample are collected 1 by 1,...
~-Technological aspects vary too (seq depth, number of cells captured)

- Several studies report evidence for strong batch effects

a
a o The effect of technical batch on single cell gene
Study design: Three C1 replicates per individual expression for raw counts data
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Ambient RNA / Dissociation induced genes
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Perfect study design

¢ . . Baran-Gale 2018
Confounded design Balanced design

Plates ____!L___

Sequencer lanes Sequencer lanes

- Balanced design will be hard to achieve for practical reasons
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Example 1: Mouse Cell Atlases

ARTICLE

httpsySdoiong/10.1038/541586-018-0590-4

Single-cell transcriptomics of 20 mouse
organs creates a Tabula Muris

The Tabula Muris Conscrtinm®*

Cell

Marin Truchi, IPMC

Mapping the Mouse Cell Atlas by Microwell-Seq

Graphical Abstract

1 Wash
& out
>400,000 Single Cell |
mRNA-seq
Beads + Cells
e Mouse CellAtlas 7 [ REERNNN

DGE Dats

i seMcA L =

2 i
a P

Authors

Xiaoping Han, Renying Wang,
Yincong Zhou, ..., Guo-Cheng Yuan,
Ming Chen, Guoji Guo

Correspondence

xhan@zju.edu.cn (X.H.),
ggj@zju.edu.cn (G.G.)

In Brief

Development of Microwell-seq allows
construction of a mouse cell atlas at the
single-cell level with a high-throughput
and low-cost platform.
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Mouse Cell Atlas Summary

> 400,000 cells
- >50 mouse tissues and cultures
> 800 cell types identified

based on 60,000 good QC cells

tSNE 2

0
!!!!!
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Tabula Muris Summary

- Over 100,000 cells
- 20 organs

- Double design:
—Shallow profiling using droplets
~FACS + full length profiling
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Han et Al, Cell (2018)

MCA Lung data (6940 cells)
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MCA Lung data (6940 cells)
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http://bis.zju.edu.cn/MCA/gallery.html?tissue=Lung

ARTICLE

Single-cell transcriptomics of 20 mouse
organs creates a Tabula Muris

The Tabula Muris Consortinm®*

hittpsySdoiog 10.1038/:41586.018.0590.4
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TM Lung 10X data (5449 cells)
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TM Lung 10X data (5449 cells)

» 15 cell types (8 immune)
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TM Lung 10X data (5449 cells)

10X_P7_8
10X_P7_9
10X_P8_12
10X_P8_13

tSNE_2

25




TM Lung SMART-Seq data (1620 cells)
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TM Lung SMART-Seq data (1620 cells)
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TM Lung SMART-Seq data (1620 cells)
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Mouse Atlases Sequencing depth comparison

Number of genes detected per cell
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Example 2: Skin biopsies

- Our collaborator is thinking about setting up a small clinical trial to study a
skin disease

- She is asking for advice regarding sample collection and preparation for
SCRNASeq
- Clinical sample :

- Samples collected and processed 1 by 1 if using fresh tissue
- Some cell types are known to be degraded when frozen

- Using GEO, we reanalized 2 studies with healthy skin tissue
~Fresh samples: GSE132802
—Frozen samples: GSE147424
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Difference in data quality is clear

Nicolas Nottet, Syneos Health
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Cell Type identification

Fresh Frozen
10
10
@ Astrocyte ® Keratinocytes
® B_cell ® Macrophage
® BM ® MEP
® BM & Prog. ® Monocyte
@ Chondrocytes ® MSC
® CMP ® Myelocyte
0 5 09 ® DC ® Neuroepithelial_cell
S O_| ® Embryonic_stem_cells ® Neurons
& Fivien < ® Endothelial_cells @ Neutrophils
= @ Epithelial_cells ® NK_cell
2 @ Erythroblast © Osteoblasts
® Fibroblasts @ Platelets
® Gametocytes ® Pre-B_cell_CD34-
® GMP ® Pro-B_cell_CD34+
® Hepatocytes @ Pro-Myelocyte
® HSC_-G-CSF @ Smooth_muscle_cells
-10 ® HSC_CD34+ ® T_cells
-101 ® iPS_cells @ Tissue_stem_cells
AR
-10 5 5 10 15

- All cell types are present in both datasets (but proportions vary)
- Differential analysis fresh vs frozen did not show a lot of DE genes

- Frozen tissue can be a solution here. A higher sequencing depth could be recommended
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Single Cell RNAseq data analysis workflow

et
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Normalization

- Process of identifying and removing systematic variation not due to real
differences between RNA treatments i.e. differential gene expression.

a - True value b ---- Trua value
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SCcRNA-seq: 3 levels of normalization

- Gene-specific effects
~within cell: GC content, gene length

- Cell specific effects
—-Aim: make count distributions comparable

- Sample/Technology-specific effects -> Data Integration
—-Batch effects (BAD)
—-Between samples variability (GOOD)

36




Bulk RNAseq normalization

RPKM/FPKM/TPM/CPM (Reads/Fragments per kilobase of transcript per million reads of
library)

- Normalize for sequencing depth and transcript length at the same time

-> ok if you have full length data

Global scaling
- Eg. Upper Quartile
- If we have too many zeros, the SF will be off

Size factors calculation
- Estimation of library sampling depth
- DESeq2, edgeR TMM
- Suppose that 50% of genes are not DE
- If we have too many zeros, the SF will be off

These methods don’t work well for single-cell data
- TPMI/CPM can be bias by a small number of genes carrying most of the signal

- Quantile based methods are limited: large number of zeros -> scale factor = 0
37




ScRNA-seq: 3 levels of normalization

- Gene-specific effects
~within cell: GC content, gene length
—-Not really accounted for in droplet assays

- Cell specific effects
—Aim: make count distribution comparable
1. Global scaling
2.  SCRNA-seq specific method (E.g: scater/scran package)
3. Others

- Sample/Technology-specific effects -> Data Integration
—Batch effects (BAD)
—Between samples variability (GOOD)
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Global Scaling

- Hypotheses:
—Cell populations are homogenous
-The RNA level is similar in all cells

In practice

Mormalized  Estimated
expression scaling factor

- Choice of the scaling factors ’

X&; = X; /

_Median UMI counts -

~10,000 default in Seurat / Cell Ranger ead o

- ER

- In practice
~Hypotheses are not always verified, but lots of people use this method anyway
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Estimation of size factors using deconvolution

- Alternative method to compute the size factors
- Pool cells to reduce the number of zeros

- Estimate the size factors for the pool

- Repeat many time and use deconvolution to estimate each cell size factor
- Implemented in scater/scran packages

O O O O O-Ej— f———Single cell
Oo O 0 1570 10 0 tazarpmen
o ® 0
o O O @ @ - Cell pool A:
B O L= O 6, +8, + 8, +8,=6,
@ @ O 0 O O System of linear eguations:
4_‘ ¥ i guations:

O O O 11110000..|[ &
00001111..]| 8

Cell pool B: 101010210..]| 8 |=

55+Eh"ﬂ.’+5x=&ﬂ 01101100... Bq

Lun, 2016

o

Scaling factor
{estimatedtrua)

rrrrrrrrrr

Groyp: 12 1 2 1 2 1 2 1 2

Uppar

RPFM DES=2q TMM quartle

Vallejos C, 2017

soran
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More advanced methods are available

- Normalization included in the statistical model
~-SCDE, Monocle, MAST,...

- Normalization based on spike-ins or invariant genes
-BASICs, scNorm

d Adjusted
X 2.5

Variance stabilization Ry

— Correct for strong mean-variance relationship _
_ Included in Seurat, Pagoda2, SCANPY B
L0 F i -

log, [magnitude] log, [magnitude]

- Fancy modeling
-~ Modeling of single cell count data using Neg Binomial
- ZINB-Wave, single-cell variational infernece (scVl) etc

Wu 2020
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Normalization for other biological factors

- Known or unknown variation
—Cell cycle, number of genes detected, % mitochondrial genes...

- Regression methods provided to account for know factors
- Seurat

. Latent variable models to estimate and remove unknown bias
-scLVM
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ScRNA-seq: 3 levels of normalization

- Gene-specific effects
~within cell: GC content, gene length

- Cell specific effects
-Aim: make count distribution comparable
1.  Global scaling
2.  SCRNA-seq specific method from scater/scran package
3. Others

- Sample/Technology-specific effects -> Data Integration
—Batch effects (BAD)
—Between samples variability (GOOD)
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Why do we need data integration methods?

- In practice: single cell techniques are biased

—Variations between samples can be huge
- donor effect +/- sampling effect

-Samples may be processed using different technologies

- Combining datasets and applying cell-level normalization might not be
enough to remove this bias

B
- More details in next session
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Misharin, BiorXiv 2018
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Conclusion
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Todorov, 2018
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Thank you
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