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Summary of what we have seen so far
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Visualization tools

Cakir, NAR Gen and Bioinfo 2020

Table 1. Overview of the visualization tools and their capabilities
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« Single-cell data are large, and you will have many back-forth with your collaborators

« Anticipate how you will share your results = Avoid reploting distribution for each of the
collaborators favorite gene

« Sharing data and results using tools with GUI will be helpful
« E.qg..ISEE, UCSC cell browser




Cell Annotation workflow

- Perform a manual review of marker genes
from the DE results and compare to known
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Clarke 2021
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- Expertise of the biologist is often required i  reeewnnmmes
this step |

- Use automated annotation tools
- Many tools available.

- Reference: Internal data or public repository
data

- Known signatures / pathways
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Some existing tools

Clarke 2021
Table 2 | Summary of referenced annotation tools
Tool Type Language Resolution Approach Allows 'None’ Notes
singleCell Net** Reference based R Single cells Relative-expression gene pairs + Yes, but rarely does 10-100x slower than other methods; high
random forest so even when it accuracy
should™
scmap-cluster™ Reference based R Single cells Consistent correlations Yes Fastest method available; balances false-

positives and false-negatives; includes web
interface for use with a large pre-built
reference or custom reference set

scmap-cell”! Reference based R Single cells Approximate nearest neighbors Yes Assigns individual cells to nearest neighbor
cells in reference; allows mapping of cell
trajectories; fast and scalable
singleR* Reference based R Single cells Hierarchical clustering and Spearman No Includes a large marker reference; does not
correlations scale to data sets of 210,000 cells; includes
web interface with marker database
Scikit-learn'®* Reference based Python Multiple k-nearest neighbors, support vector (Optional) Expertise required for correct design and
possible machine, random forest, nearest mean appropriate training of classifier while
classifier and linear discriminant analysis avoiding overtraining
AUCell™® Marker based R Single cells Area under the curve to estimate marker Yes Because of low detection rates at the level of
gene set enrichment single cells, it requires many markers for
every cell type
SCINA™ Marker based R Single cells Expectation maximization, Gaussian (Optional) Simultaneously clusters and annotates cells;
mixture model robust to the inclusion of incorrect
marker genes
GSEA/GSVAT194 Marker based R/Java Clusters Enrichment test Yes Marker gene lists must be reformatted in
of cells GMT format. Markers must all be
differentially expressed in the same
direction in the cluster
Harmony'°* Integration (Box 2) R Single cells Iterative clustering and adjustment Yes Integrates only lower-dimensional projection
of the data; seamlessly integrated into
Seurat pipeline; may overcorrect data
Seurat-canonical correlation Integration (Box 2) R Single cells MNN anchors + canonical correlation Yes Accuracy depends on the accuracy of MNN
analysis'’® analysis anchors, which are automatically-identified
corresponding cells across data sets
mnnCorrect'’ Integration (Box 2) R Single cells MNN pairs + singular value decomposition Yes Accuracy depends on the accuracy of MNN
pairs (cells matched between data sets).
Referred to in Box 2
Linked inference of genomic Integration (Box 2) R Single cells Non-negative matrix factorization Yes Allows interpretation of data set-specific
experimental relationships and shared factors of variation. Referred to
(LIGER)'*® in Box 2

MMM, mutual nearest neighbor.




SingleR

Input: Output:
Reference Scores e
Unannotated transcriptomes of Annotated
scRNA-seq data pure cell types single cells 4|:|. duct

Step 1: Stepa3: Iterative fine-tuning—reducing the

Identifying variable reference set to only top cell types epsilon

genes among cell types < |

in the reference set mesenchymal

Step 2- endothelial

Correlating each
single-cell transcriptome
with each sample in the

reference set

alpha

beta

Reference sample

delta

Aran 2019

http://bioconductor.org/books/release/SingleRBook/




Public Reposity Data

- Cell Atlases: HCA, Tabula Muris, Immgen, FANTOMS,
Panglao DB etc

- Bulk repository: GEO, ArrayExpress

- Azimuth

- Web based tools, with preloaded human and mouse
reference sets

- Based on transfer learning (Seurat)
- Very easy to use and retrieve prediction results

. Caveats

- Very large datasets can be difficult to process (100,000s of
cells)

- Cell annotations not always easy to find
- Sample processing can have a huge impact on the data
- The reference may not match your data well

- Quality scores are often provided -> USE THEM

Cell annotations from
SCINA scRNA-seq (a)
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memory
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Cell annotations from
SCINA literature (b)
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What is your question ?

1.  Resolving cellular heterogeneity
-~ DE analysis, clustering
- Deconvolution of bulk data

a) Deconvolving heterogeneous cell b) Trajectory analysis of cell state c) Di ing transcription
populations transitions Gene transcription “off”

2. Understand developmental
processes and cell fate decisions
Trajectory inference, RNA velocity

Component 2

3. ldentification of co-regulated gene
modules and network inference

- Gene network inference,
identification of co-regulated gene
modules

Liu S, F1000Research 2016, Haque A, Genome Medicine 2017
Zhu S, Oncotarget 2017, Griffiths JA, Molecular System Bio 2018




Overview of some advanced analysis
- Deconvolution
- Inference of cell-cell communication
- Gene network inference
- InferCNV
- Trajectory analysis
-GSVA

- RNA velocity




Deconvolution - In-silico immunophenotyping

SAMPLE Aim:

— Refine bulk sample analysis based on prior
knowledge about the cell types present in

\ our sample
7 scRNA-Seq

o T * Input:
- — Bulk expression data (arrays / NGS)
2999 [
y A A — Reference cell types and their markers
gl L — Apply ML to estimate the proportion of
el each cell type in the bulk sample
I 'I"' HUTH R III" OTURHU T BT ® What We Ca.n do Wlth thIS:-

— Adjust for differences in cell type proportion
in the differential analysis

— Estimate the increase/decrease of specific
cell types with pathology/response

predicted proportions

" “"HW i
N\M i 'mw”w'
« Many tools available

I*I [ II || ! — Cancer vs Immune cells infiltration
' |
|| ||| I i.ll“ ||l — Very sensitive to data normalization
o Ll hihLl.

I || Y
...|..|I.1l|||||
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Example

Dreno et al, 2021

Groups
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{ YRl \
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Two 3 mm D biopsies from
resolving papules identified at
Day7or8
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\ OfTrifarotene

® Non involved skin

e R e H e e A el

* Clinical trial data of new treatment for acne
* 4 conditions, 9 samples / condition

* Lesional skin, non-lesional skin

* Vehicle, Treatment
« Affymetrix arrays

Can we use single cell data to understand what immune cell
subtypes are affected by treatment ?
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Results

1. Analysis of acne / healthy skin
scRNAseq data from GEO

Myeloid/granulocytes
Lan, ans

wa}hn cells

Melangcytes
Ke@wj

3.Deconvolution step: here, we used average
expression of each cell type in our bulk samples

Log expression
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2. Definition of gene markers for each cell type
present in skin + mining of literature based on
markers observed in bulk DE genes

4.Refined analysis of macrophage subtypes show
that the treatment is downregulating SPP1+
macrophages
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Dreno et al, 2021
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Inference of Cell-Cell communications
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Fan, EMM 2020
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Gene Regulatory Network

- Gene regulatory networks (GRNs) are the on-off switches on a ‘—fi-eene v
cell operating at the gene level

- Two genes are connected if the expression of one gene
modulates expression of another one by either activation or
inhibition

- It can be inferred from correlations in gene expression data,
time-series gene expression data, and/or gene knock-out
experiments...

Feedback loop

genes

L
g transcrlptlog DmRNA translatlon'
Degradation

Metabolic Reactions

https:/iww.cs.purdue.edu/homes/ayg/TALKS/STC_CHICAGO10/Introductory material/requlatory _netw
orks.ppt
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http://www.cs.purdue.edu/homes/ayg/TALKS/STC_CHICAGO10/Introductory_material/regulatory_networks.ppt

SCENIC: single-cell regulatory network inference
and clustering

- SCENIC is a tool to simultaneously reconstruct gene regulatory networks and identify stable cell states from single-cell
RNA-seq data. The gene regulatory network is inferred based on co-expression and DNA motif analysis, and then the
network activity is analyzed in each cell to identify the recurrent cellular states.

Co-expression Motif discovery Cell scoring Clustering
a Tool: GENIE3 / GRNBoost b Tool: ReisTarget ¢ Tool: AUCell d Tool: t-SNE [ Hierarchical clustering /...
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Aibar et al. (2017) Nature Methods.
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Stepl. TF-based co-expression network

Cells

[ ]

Coexpression modules
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Aibar et al. (2017) Nature Methods.
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Step2. Gene regulatory network

Gene 1 :ki- -
SCENIC
Gene 2 A A E-:
Coexpression modules
=5 Gene 3 :l:ih:-:-
A ,. it | Gene 4 iﬁ:—: RcisTarget
Regulons | Gene 5 :E-]#-Z cis-regulatory sequence analysis
Gene 6 _L | ?- .
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Regulons (Gene regulatory network)

— Transcriptional regulation
wem Co-expression

Aibar et al. (2017) Nature Methods.
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Step3. Activity of the network in each cell

SCENIC
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Aibar et al. (2017) Nature Methods.
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SCENIC Results
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InferCNV

_ NMC = : ==

- InferCNV is a tool used to explore tumor 348 o - i3 E =
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Thank you
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