First edition 2023 in Fréjus

Theoretical part multivariate analyses

Carl Herrmann (Université Heidelberg) Delphine Potier (CNRS Marseille)

ÉCOLE THÉMATIQUE **BIOINFORMATIQUE INTÉGRATIVE IFB**

In this lecture, we plan to

- Review the fundamental concepts
 Distinguish the categories of approaches
 (variance, covariance,...)
 Understand the vocabulary
- Discuss the required conditions (distribution, missing data,...)
- Present some statistical approaches in MVA and their implementations

At the end, you should be able to

- Understand the vocabulary (factors, signatures, loadings,...)
- Have a better idea how to select appropriate tools for your setting.

General introduction to multivariate analyses

- Multiple data points (= **observables**) described by multiple measurements = variables)
- Multiple **views** (or modalities)
- Assumption: not all variables are independent
 - which variables are related?
 - can we obtain a simpler description with less dimensions?
 - can we learn this description from multiple data types simultaneously?

Data reduction

Data integration

- Multiple data points (= observables) described by multiple measurements (= variables)
- Multiple views (or madalities)
- Assumption: not all variables are independent
 - which variables are related?
 - can we obtain a simpler description with less dimensions?
 - can we learn this description from multiple data types simultaneously?

Beware how the matrix is oriented!!

Univariate

Does the expression of the gene BCL6 define distinct groups of patients?

Patient rank by BCL6 expression

Multivariate

Does the expression of all genes define distinct groups of patients?

Latent dimension 1

"Whole more than sum of the parts"

DNA methylation (WGB-seq)

> Genomic information (WGS)

Available datasets

~ 1000s samples

target sequencing ~10 regions / genes

whole genome / transcriptome ~10.000s features (genes / regions)

Many data types ("views")

Different dimensionalities and features

Missing data: not all samples have measurements in all features and all

Variance in the data

10% information

How can we determine the optimal viewing angle?

45% information

30% information

25% information

Variance explained by the model

data

models

explains 80% of the data variance

explains 20% of the data variance

Basic central concepts

Correlation

$$(x_i - \bar{x})(y_i - \bar{y})$$

$$(x_i - \bar{x})(y_i - \bar{y})$$

$$\int_{i=1}^{V} \frac{(x_i - \bar{x})(y_i - \bar{y})}{\sigma_x \sigma_y}$$

Basic central concepts

Correlation

$$(x_i - \bar{x})^2 = \text{diag}(\frac{1}{N}X'_c \cdot X_c)$$

$$(x_i - \bar{x})(y_i - \bar{y}) = \frac{1}{N} X'_c \cdot X_c$$

$$\int_{-1}^{N} \frac{(x_i - \bar{x})(y_i - \bar{y})}{\sigma_x} = \frac{1}{N} X_{cs}' \cdot X_{cs}$$

Variance-covariance and Correlation matrix

- Variance/covariance matrix
 - variance on the diagonal
 - covariance off-diagonal
 - symmetric matrix
- Correlation matrix
 - describes all pairwise correlation values
 - symmetric matrix
 - 1's in the diagonal

Multivariate analyses for multi-omics

Various approaches for data reduction and integration

- (Consensus) clustering approaches
 - Clusters of Clusters (CoCA)
 - integrative clustering (iCluster)
- Linear approaches approaches
 - Principal component analysis (PCA)
 - Non-negative matrix factorization (NMF)
 - Factor Analysis Matrix factorization approaches
 - Canonical correlation analysis
- Neural network based approaches
 - Autoencoders
 - Variational autoencoders

[Olshen et al., 2013]

approximate large data matrix using the product of 2 smaller matrices **columns of W = molecular signatures**

- Clustering approaches
- Principal component analysis (PCA)
- Exploratory factor analysis (EFA)
- Non-negative matrix factorization (NMF)

Clustering

Clustering

- Clustering is the simplest unsupervised dimensional reduction method n data points $\rightarrow k << n$ clusters
- Many clustering methods:
 - k-means
 - k-medoids (PAM)
 - self-organizing maps (SOM)
- Sensitive to initialization of procedure, especially if the clusters not well separated!

. . .

Consensus clustering

Idea of consensus clustering: if I cluster random subsamples of data points, how often will 2 points be found in the same cluster? patients

 $D = \{e_1, \dots, e_N\}$ expression profiles for N patients $D^{(h)}$ subset of the patients (e.g. 80%) $M^{(h)}$ result of clustering $D^{(h)}$ $M^{(h)}(i, j) = 1$ if (i,j) belong to the same cluster $I^{(h)}(i, j) = 1$ if (i,j) both included in $D^{(h)}$

$$m(i,j) = \frac{\sum_{h} M^{(h)}(i,j)}{\sum_{h} I^{(h)}(i,j)} \qquad d(i,j) = 1$$

blue columns = sampled patients

-m(i,j)

\rightarrow Use the matrix d to perform (hierarchical) clustering

> results[[2]][["consensusMatrix"]][1:5,1:5] [,2] [,3] [,1] [1,] 1.0000000 1.0000000 0.9655172 1.0000000 1.0000000 [2,] 1.0000000 1.0000000 0.8857143 1.0000000 1.0000000 [3,] 0.9655172 0.8857143 1.0000000 0.9166667 0.8823529 [4,] 1.0000000 1.0000000 0.9166667 1.0000000 1.0000000 [5,] 1.0000000 1.0000000 0.8823529 1.0000000 1.0000000 > results[[3]][["consensusMatrix"]][1:5,1:5] [,2] [,3] [,1][1,] 1.0000000 0.3548387 0.8620690 0.2413793 1.0000000 [2,] 0.3548387 1.0000000 0.1142857 1.0000000 0.4000000[3,] 0.8620690 0.1142857 1.0000000 0.1388889 0.7941176 [4,] 0.2413793 1.0000000 0.1388889 1.0000000 0.3513514 [5,] 1.0000000 0.4000000 0.7941176 0.3513514 1.0000000


```
[,4]
          [,5]
[,4]
          [,5]
```

similarity matrix for k = 2

similarity matrix for k = 3

Consensus Clustering

Optimal K when AUC no longer increases

[Monti et al., 2003]

Clustering over multiple data?

Data type A

Clustering over multiple data?

Data type A

Data type B

Cluster of Cluster Analysis (CoCA)

- Cluster each omics data separately
 - each clustering can use a different clustering algorithm (k-means, PAM,...)
 - each omics datatype can lead to distinct number of clusters
- Represent each sample by an indicator vector showing to which cluster it belongs in each omic

$$S_3 = (1, 3, 2, 3, 1)$$

Cluster the samples based on this indicator vector using consensus clustering

$$\rightarrow la$$

te integration

Application: low-grade glioma

- TCGA: integrative clustering of low-grade glioma (brain tumor)
- Available data (n=293):
 - mRNA expression (R)
 - micro-RNA expression (mi)
 - Copy-number variation (C)
 - DNA-methylation (M)
- Result: 3 robust subtypes which disagree with histological subtypes!

MemberNonmember

[Brat et al., NJEM, 2015]

Application: low-grade glioma

[Brat et al., NJEM, 2015]

iCluster

- Goal: identify k clusters of samples in the dataset (i.e. Z) such that the inter-cluster distance is maximized
- Z is the indicator function
 - *z_{ij}* = 1 : sample j belongs to cluster i
 - z_{ij} = 0 : sample j does not belong to cluster i

[Shen et al., Bioinformatics 2010]

$X = WZ + \epsilon$

X is **observed**

- W and Ψ are unknown parameters (these are numbers!) Z is the unknown latent variable (this is a random variable!)
- Bayesian formulation: binary $Z \rightarrow \text{continuous } Z^*$
- Prior distribution : $Z^* \sim \mathcal{N}(0,I)$
- Goal: maximize posterior probability $E[Z^* | X]$

 $Cov(\epsilon) = \Psi = diag(\psi_1, \psi_2, ..., \psi_p)$

$X = WZ + \epsilon$

Find optimal solution using **Expectation-Maximization**

$$Cov(\epsilon) = \Psi = diag(\psi_1, \psi_2, ..., \psi_p)$$

(Maximization Step)

iCluster

- account using different conditional probabilities
 - *X_i* is binary: **logistic** regression
 - X_i is count data: **Poisson** regression

• *X_i* is continuous: **linear** regression

Different types of data (binary, count data, continuous data,...) can be taken into

$$\log \frac{P(x_{ijt} = 1 | \mathbf{z}_i)}{1 - P(x_{ijt} = 1 | \mathbf{z}_i)} = \alpha_{jt} + \beta_{jt} \mathbf{z}_i$$

$$i = \text{sample, j} = \text{feature, t}$$

$$\log (\lambda(x_{ijt} | \mathbf{z}_i)) = \alpha_{jt} + \beta_{jt} \mathbf{z}_i$$

$$x_{ijt} = \alpha_{jt} + \beta_{jt} \mathbf{z}_i + \varepsilon_{ijt}$$

[Mo et al., PNAS 20]

= view)

iCluster+

- Application: TCGA glioblastoma datasets
 - gene mutations
 (120 genes x 84 patients)
 - copy-number alterations
 (5512 regions x 84 patients)
 - gene expression
 (1740 top variable genes x 84 patients)

Copy number alteration

Gene expression

[Mo et al., PNAS 2013]

Limitations of Clustering

We needs methods allowing a "fuzzy"assignment of samples clusters → signatures

Principal Component Analysis (PCA)

Principal component analysis

- Dataset have a very **high dimensionality** (e.g. number of genes)
- Need to reduce this large number of dimensions to a smaller number of relevant variables
- Relevant variables = variables which carry most of the information (or variance) of a dataset
- These new variables are orthogonal
- Goal: identify **directions** in the data corresponding to **biological effects**

Example of DNA methylation of blood samples in patient cohort (Jana Dalhoff) data matrix : 400.000 CpG positions / 250 patients

- if two variables are strongly correlated, they are partly redundant: knowing the variation of one, you have information about how the second variables changes
- if two variables have little correlation, each variable carries information not contained in the other
- The more diagonal a correlation matrix is, the more information is revealed by the variables

Correlation and covariance

$$cov(x, y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y}) =$$

$$cor(x, y) = \frac{1}{N} \sum_{i=1}^{N} \frac{(x_i - \bar{x})}{\sigma_x} \frac{(y_i - \bar{y})}{\sigma_y}$$

Z-transformation

 $=\frac{1}{N}X_{cs}'\cdot X_{cs}$

1. Consider the correlation matrix A

 Determine its n eigenvalues and n eigenvectors and build the n x n matrix V from all the n eigenvectors as columns

	age	height	chol	waist	weight
age	1.00000000	-0.09479919	0.23990232	0.15255761	-0.06269027
height	-0.09479919	1.00000000	-0.05853973	0.05661532	0.25298143
chol	0.23990232	-0.05853973	1.00000000	0.11245805	0.05932074
waist	0.15255761	0.05661532	0.11245805	1.00000000	0.84955930
weight	-0.06269027	0.25298143	0.05932074	0.84955930	1.00000000

\$values [1] 1.9201374 1.3081302 0.9011191 0.7635241 0.1070892								
\$vect	tors							
	[,1]	[,2]	[,3]	[,4]	[,5]			
[1,]	-0.0782536	0.66340112	-0.1957637	0.70124582	-0.15396822			
[2,]	-0.2139712	-0.41884235	-0.8557896	0.16410053	0.13957979			
[3,]	-0.1338086	0.59835882	-0.3893703	-0.68726253	0.01108988			
[4,]	-0.6768556	0.08069999	0.2542954	0.06898591	0.68258976			
[5,]	-0.6870622	-0.14115337	0.1141285	-0.06508820	-0.70054229			

[,5] [1,] 1.92 0.000 0.000 0.000 0.000 0.00 1.308 0.000 0.000 0.000 [3,] 0.00 0.000 0.901 0.000 0.000 [4,] 0.00 0.000 0.000 0.764 0.000 [5,] 0.00 0.000 0.000 0.000 0.107

V is the rotation matrix transforming the initial variables into new variables called principal components

PCA biplot

- each dot is a sample / patient
- new coordinate system is (PC1,PC2)
- Red arrows indicate the contribution of each "old" coordinate to the PCs

Principal components

- "loadings")
- height for PC1), but opposite to others (PC5)

 $PC_i = \alpha_i \cdot age + \beta_i \cdot chol + \gamma_i \cdot height + \delta_i \cdot waist + \epsilon_i \cdot weight$

contribution of each variable to the principal components (coefficients are called

some variables contribute in the same direction to some PCs (e.g. waist and

- PC plots can highlight a new group structure
- Example: PC3 seems very associated to gender
- indicates that a combination of height and cholesterol does separate men /women

Number of PCs?

Each PC explains some part of the total variance of the dataset
This amount is proportional to the corresponding eigenvalue
PCs are ordered by decreasing eigenvalue (hence variance)

Considering PC1 & PC2 explains 63% of the total vairance

Choosing the number of PCs

- several criteria to select the optimal subset of PCs, without loosing too much information
- **Proportion of variance:** keep PCs such that the cumulative variance is above threshold
 - **Average eigenvalue criteria:** keep PCs which have eigenvalue larger than
 - mean eigenvalue (Kaiser rule) or
 - 70% of mean eigenvalue (Jottclife rule)

 $\sum_{j=1}^{r} \frac{1}{\sum_{\lambda_{i}}} \ge \operatorname{var}_{min}$

Application to gene expression

- Gene expression dataset of **breast cancer patients**
- 2 groups: ER+ and ER- patients
- Dimension: k = 105 patients / n = 8534 genes (here: n >> k)
- pre-processing:
 - scale the gene expression across patients
 - **center** the gene expression across patients
- How many principal components do we get? \rightarrow k (this has to do with the rank of the data matrix)

PC1 separates ER+ from ER- patients

Exploratory Factor Analysis (EFA)

Exploratory Factor Analysis

Specific contribution (unique + error)

- **Observed variables are** assumed to be the manifestation of underlying latent factors
 - These factors are **orthogonal** (non-correlated)
- Each variable has also a specific contribution (u) and a measurement error (e)

Exploratory Factor Analysis

$$Var(y_i) = a_{i1}^2 Var(F_1) + a_{i2}^2$$

communality h^2

specificity u^2

- Factors are defined up to a rotation
- The rotation can be
 - orthogonal: rotated factors remain uncorrelated
 - oblique: rotated factors become correlated

Example of EFA

original data: cognitive test results on n=145 persons

															visual	scores on visual perception test, test 1	
>	fadata														cubes	scores on cubes test, test 2	
	visual	cubes	paper	lozenge	general	paragrap	sentence	wordc	wordm	add	code	counting	straight w	wor	paper	scores on paper form board test, test 3	
1	23	19	13	4	46	10	17	22	10	69	65	82	156	1	lozenge	scores on lozenges test, test 4	
2	33	22	12	17	43	8	17	30	10	65	60	98	195	1	general	scores on general information test, test 5	
3	34	24	14	22	36	11	19	27	' 19	50	49	86	228	1	paragrap	scores on paragraph comprehension test, test 6	
4	29	23	12	9	38	9	19	25		114	59	103	144	1	sentence	scores on sentence completion test, test 7	
5	16	25	11	10	51	8 10	25	28	24	112	54 04	122	160	1	wordc	scores on word classification test, test 8	
0	36	25	10	20	42	10	25	20 42	0 10 9 41	94 120	04 96	113	201	1	wordm	scores on word meaning test, test 9	
8	28	25	10	9	35	10	18	29	11	96	83	95	174	1	add	scores on add test, test 10	
9	30	25	15	11	32	11	21	35	8	103	67	114	197	1	code	scores on code test, test 11	
10	20	25	13	6	39	9	21	27	′ 16	89	49	101	178	1	counting	scores on counting groups of dots test, test 12	
11	. 27	26	13	6	27	10	16	25	13	88	35	107	137	1	straight	scores on straight and curved capitals test, test 13	
17	32	21	16	8	27	1	7	29	11	103	62	136	154	1	wordr	scores on word recognition test, test 14	
_															numberr	scores on number recognition test, test 15	
															figurer	scores on figure recognition test, test 16	
															object	scores on object-number test, test 17	
															numberf	scores on number-figure test, test 18	
													figurew scores on figure-word test, test 19				

visual	scores on visual perception test, test 1		
cubes	scores on cubes test, test 2		
paper	scores on paper form board test, test 3		
lozenge	scores on lozenges test, test 4		
general	scores on general information test, test 5		
paragrap	scores on paragraph comprehension test, test 6		
sentence	scores on sentence completion test, test 7		
wordc	scores on word classification test, test 8	Г	
wordm	scores on word meaning test, test 9	L	
add	scores on add test, test 10		
code	scores on code test, test 11		
counting	scores on counting groups of dots test, test 12		
straight	scores on straight and curved capitals test, test 13		
wordr	scores on word recognition test, test 14		
numberr	scores on number recognition test, test 15		
figurer	scores on figure recognition test, test 16		
object	scores on object-number test, test 17		
numberf	scores on number-figure test, test 18		
figurew	scores on figure-word test, test 19		

Factor analysis (k=4)

	Factor1	Factor2	Factor3	Factor4
visual	0.536	0.176	0.392	-0.249
cubes	0.330		0.302	-0.228
paper	0.440	0.110	0.247	-0.147
lozenge	0.505		0.358	-0.253
general	0.762	-0.238	-0.113	
paragrap	0.759	-0.338		
sentence	0.762	-0.322	-0.166	
wordc	0.701			
wordm	0.762	-0.381		
add	0.455	0.475	-0.451	
code	0.545	0.367		0.103
counting	0.434	0.593	-0.238	-0.162
straight	0.592	0.393		-0.289
wordr	0.394		0.149	0.362
numberr	0.352	0.139	0.219	0.315
figurer	0.435	0.183	0.425	0.192
object	0.445	0.241		0.522
numberf	0.454	0.383	0.221	0.157
figurew	0.389	0.115	0.133	0.202

visua cubes paper lozen gener paragi sente wordc wordm add code count strai wordr number figur object number figure

after rotation

	Factor1	Factor2	Factor3	Factor4
ıl		0.747		
5		0.571		
		0.485		
ige		0.683		
al	0.760			
Irap	0.806			-0.103
ence	0.862			
2	0.555	0.147		0.141
ı	0.856			-0.117
		-0.245	0.117	0.806
			0.290	0.420
ing	-0.150	0.165		0.773
ght		0.489	-0.124	0.484
			0.567	
err			0.544	
er		0.376	0.501	-0.164
t		-0.244	0.766	0.114
erf	-0.168	0.271	0.446	0.166
'ew			0.381	

correlation structure

scores of original observations

	Factor1	Factor2	Factor3	Fa
[1,]	-0.439011	-1.78968	-0.74163	-1.
[2,]	-0.640320	0.33018	0.17654	-0.
[3,]	-0.057138	0.81855	-1.35900	-1.4
[4,]	-0.554279	-1.07389	-0.70366	0.
[5,]	0.681781	-1.70449	0.18772	0.
[6,]	0.219437	0.32968	1.04977	0.
[7,]	2.611266	3.18222	2.64516	2.
[8,]	-0.479476	-0.53915	0.28261	-0.
[9,]	-0.232114	-0.22414	-0.95923	0.
[10,]	-0.069679	-1.38991	-0.83592	-0.

Summary: Exploratory Factor Analysis

Assumptions

- Sampling adequacy enough observations per variable \rightarrow Kaiser-Meyer-Olkin (KMO) test
- No **multicolinearity** (singular correlation matrix!)
- Covariance matrix should not be the identity matrix! \rightarrow Bartlett test
- More observations than variables

Questions/Challenges

- Factors are determined **up to a** rotation
- Rotation can be
 - **orthogonal** (rotated factors still uncorrelated) or
 - **oblique** (rotated factors are correlated)
- Proper number of factors remains to be determined
 - \rightarrow heuristic (Kaiser rule, knee-plot,...)

"Basically, researchers tend to:

- use PCA if they are on a **fishing** expedition trying to find patterns in their data and have no theory to base the analysis on, or
- use EFA if they have a well-grounded theory to base their analysis on. Generally, the second strategy is considered to be the stronger form of analysis."

Multi-Omics Factor Analysis (MOFA)

Metadata

> metadata								
sample Age Sexs	Diagnosis	Category Pe	nicillins	Cephalosporins	Carbapenems	Macrolides	Aminoglycosides	Quinolones
1: TKI_F1 89 Female	Sepsis, pulmonary	Sepsis	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE
2: TKI_F2 74 Female	Sepsis, pulmonary	Sepsis	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE
3: TKI_F3 61 Male	Sepsis, pulmonary	Sepsis	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE
4: TKI_F4 67 Female	Sepsis, pulmonary	Sepsis	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
5: TKI_F5 72 Male	Sepsis, pulmonary	Sepsis	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
6: TKI_F6 57 Female	Sepsis, pulmonary	Sepsis	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE
7: TKI_F7 68 Male	Sepsis, pulmonary	Sepsis	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
8: TKI_F8 62 Female	Sepsis, pulmonary	Sepsis	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE
9: TKI_F9 71 Male	Sepsis, pulmonary	Sepsis	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE
10: TKI_F10 74 Male	Sepsis, pulmonary	Sepsis	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE
11: TKI_F11 66 Female	Sepsis, abdominal	Sepsis	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE

$Y^m = W^m \cdot Z + \epsilon^m$

- Matrices W^m and Z are learned through bayesian inference
- Implementation favors sparsity
 - sparsity of the W matrices
 - sparsity of the Z matrix
 - Different models for Y^m , ϵ^m
 - Poisson model (count)
 - Bernouilli model (binary)
 - Gaussian model (continuous)

[Argelaguet, MSB 2018]

Multi-Omics Factor Analysis (MOFA): variance explained

Total variance explained in each view and each factor

$$R_{m,k}^{2} = 1 - \left(\sum_{n,d} y_{nd}^{m} - z_{nk} w_{kd}^{m} - \mu_{d}^{m}\right)^{2} / \left(\sum_{n,d} y_{nd}^{m} - z_{nk} w_{kd}^{m} - \mu_{d}^{m}\right)^{2}$$

Residual variance in view *m* Total variance in view *m* and factor k

Total variance explained in each view

$$R_m^2 = 1 - \left(\sum_{n,d} y_{nd}^m - \sum_k z_{nk} w_{kd}^m - \mu_d^m\right)^2 / \left(\sum_{n,d} y_{nd}^m - \mu_d^m\right)^2$$

MOFA: post-hoc interpretation of factors

Analysis 3 Correlation of factors with covariates (Z matrix)

Non-negative matrix factorization

- Most datasets in modern genomics are by essence nonnegative
- Read counts in RNA-seq
- Methylation *b*-values in DNA methylation arrays
- Integrated signal aver genomic regions

we can apply parts-base decomposition of the data

$X \sim WH$

 $X: N \times M$ matrix

N = number of features (genes, regions,...)

•M•=•••••••••••ber•observations•(patients, samples,...)

Learning the parts of objects by non-negative matrix factorization

Daniel D. Lee & & H. Sebastian Setung mplies

• a better interpretability of the signatures * Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA † Department of Blain and Eggine Sciences, Massachusetts Institute of ition Technology, Cambridge, Massachusetts 02139, USA

Is perception of the whole based on perception of its parts? There is psychological¹ and physiological^{2,3} evidence for parts-based

with $X \ge 0, W \ge 0, H \ge 0$

[Lee, Seung 1999]

X : original data matrix

columns of W : k signatures (genes, regions,...) columns of H : exposures to the k signatures

→ Genomic signatures + features of the signature

NMF vs. PCA

- PCA defines orthogonal directions explaining most variance
- NMF signatures (or *latent factors LF*) define the hypercone containing all data points
- the number of signatures is crucial!

PCA

There is no natural ranking of the NMF-signatures (unlike PCs); choice of

NMF

because of the nonnegative constraint, only point inside the cone can be reconstructed using the basis vectors

NMF vs. PCA

(b) (a)(c)

Part are more easily interpretable in NMF

- (d) (e) (f)
- Figure 4.5: Base images of dataset $\mathbf{D}_{\mathbf{face}}$ after applying the PCA

[Nikolaus]

Implementation

ATAC/ChIP/RNA-seq

Iteration over update equations (~ 10.000s, inner iteration)

- Iterate of set of **initial conditions** (~ 10s, outer iteration)
- Iterate over different number of signatures to be extracted

How to choose k?

- Accuracy of matrix decomposition: how well does WH represent V?
 - **Froebenius error** should be small
 - Amari distance should be small
- Stability of solutions: how variable are the solutions using different random initializations?
 - **Coefficient of variation** should be small
- Groups of samples should be homogeneous: how well does each sample belong to its group?
 - Silhouette coefficient should be large
- Clustering should well represent the original data **Cophenetic coefficient** should be large

How to choose k?

. . .

Exposure matrix H

- A sample can have "exposure" to multiple signatures Gradient of exposures (unlike hard clustering)
- sparseness: many coefficients are (almost) 0 in W and H matrix

Stability of signatures

Signature matrix W

- the W matrix gives the "definition" of the signatures in terms of features contributing
- applying k-means (k=2) to each row of the W matrix

gene 1		
gene 2		
gene 3		
gene 4		
gene 5		

Signature matrix W

- the W matrix gives the "definition" of the signatures in terms of features contributing
- applying k-means (k=2) to each row of the W matrix
 - single-signature features:
 - \rightarrow gene 1 / 3
 - multi-signature features: \rightarrow gene 2 / 4 / 5
 - signatures 1 and 2 share no feature
 - signatures 2 and 4 share 2 features

Example of use case

Combined RNA-seq (gene expression) and chromatin acessibility (ATAC-seq) from purified blood populations

[Corces et al. Nat. Gen (2016)]

73

Interpreting signatures

[Corces et al. Nat. Gen (2016)]

Stemness-signature fades away, as differentiation progresses

Associating signatures

. . .

Integrating multiple datasets using NMF

FRANCE

shared H matrix

 $\min_{W,H^i} \sum_{\cdot} ||X^i - W^i H||_F^2$

Joint-NMF

[Chalise, Fridley (2017)]

integrative NMF

general reconstruction error

$$\min_{W^i,H,H^i} \left(\sum_i \|X^i - W^i(H - X^i)\|_{i} \right)$$

- well as **heterogeneous** (*Hⁱ*)
- λ is a homogeneity parameters
 - large values will promote the **homogeneous** effects
 - small values will promote the **heterogeneous** effects

integrative NMF identifies both **homogeneous** effects between datasets (H) as

[Yang, Michailidis (2015)]

Keep in mind

Key concepts

- These methods are **linear methods**, which makes assumptions about linear co-variation of the variables (correlation is a linear measure!)
- Some consider the **total variance** (of a variable or a data set), some determine the **shared/specific** part (e.g. PCA vs. EFA)
- We have described **unsupervised** multivariate approaches; can be enriched with prior knowledge (e.g. graph-NMF)

prior information

can be initialized with

Vocabulary cheat sheet

- Views / modalities → different types of data
- Latent factor / signature / Principal component
 → lower dimensional representation
- Variance / covariance → data spread, joint variation

Homogeneous

- (= communality, shared)
- \rightarrow amount of shared variance

Heterogeneous (= uniqueness, specific) → amount of specific variance

