## Theoretical part multivariate analyses

Carl Herrmann (Université Heidelberg) Delphine Potier (CNRS Marseille)

In this lecture, we plan to

- Review the fundamental concepts of multivariate statistics (variance, covariance,...)
- Discuss the required conditions (distribution, missing data,...)
- Present some statistical approaches in MVA and their implementations

At the end, you should be able to

- Distinguish the categories of approaches
- Understand the vocabulary (factors, signatures, loadings,...)
- Have a better idea how to select appropriate tools for your setting.


## General introduction to multivariate analyses



- Multiple data points ( = observables) described by multiple measurements ( = variables)
- Multiple views (or modalities)
- Assumption: not all variables are independent

- which variables are related?
- can we obtain a simpler description with less dimensions?
- can we learn this description from multiple data types simultaneously?


Data integration

- Multiple data points ( = observables) described by multiple measurements ( = variables)
- Multiple views (or madalities)
- Assumption: not all variables are independent
- which variables are related?
- can we obtain a simpler description with less dimensions?
- can we learn this description from multiple data types simultaneously?



## Univariate

- Does the expression of the gene BCL6 define distinct groups of patients?


## Multivariate

- Does the expression of all genes define distinct groups of patients?



DNA methylation (WGB-seq)
Gene
expression
(RNAseq)

## Epigenetic state <br> (histone ChIP-seq)

Chromatin
accessibility
(ATAC-seq)
Sos
Genomic information (WGS)



## Available datasets

## Large data matrices

~ 1000s samples
~ 10s samples

target sequencing ~10 regions / genes
whole genome / transcriptome ~10.000s features
(genes / regions)

## Many data types ("views")



- Different dimensionalities and features

- Different types / distributions of data

- Missing data: not all samples have measurements in all features and all views


## Variance in the data



How can we determine the optimal viewing angle?

## Variance explained by the model

## data <br> models


explains $80 \%$ of the data variance
explains $20 \%$ of the data variance
eli $1 I_{i r}^{0}$
$\theta_{\text {ranace }}$

- Variance

$$
\operatorname{Var}(x)=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

- Covariance

$$
\operatorname{cov}(x, y)=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$



- Correlation

$$
\operatorname{cor}(x, y)=\frac{1}{N} \sum_{i=1}^{N} \frac{\left(x_{i}-\bar{x}\right)}{\sigma_{x}} \frac{\left(y_{i}-\bar{y}\right)}{\sigma_{y}}
$$

- Variance

$$
\operatorname{Var}(x)=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}=\operatorname{diag}\left(\frac{1}{N} X_{c}^{\prime} \cdot X_{c}\right)
$$

- Covariance

$$
\operatorname{cov}(x, y)=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\frac{1}{N} X_{c}^{\prime} \cdot X_{c}
$$



- Correlation

$$
\operatorname{cor}(x, y)=\frac{1}{N} \sum_{i=1}^{N} \frac{\left(x_{i}-\bar{x}\right)}{\sigma_{x}} \frac{\left(y_{i}-\bar{y}\right)}{\sigma_{y}}=\frac{1}{N} X_{c s}^{\prime} \cdot X_{c s}
$$

- Variance/covariance matrix
- variance on the diagonal
- covariance off-diagonal
- symmetric matrix
- Correlation matrix
- describes all pairwise correlation values
- symmetric matrix
- 1's in the diagonal


## Multivariate analyses for multi-omics



- (Consensus) clustering approaches
- Clusters of Clusters (CoCA)
- integrative clustering (iCluster)

[Olshen et al., 2013]
- Linear approaches approaches
- Principal component analysis (PCA)
- Non-negative matrix factorization (NMF)
- Factor Analysis

Matrix factorization approaches

- Canonical correlation analysis
- Neural network based approaches
- Autoencoders
- Variational autoencoders

[Quintero et al., 2021]



## Matrix factorization

- approximate large data matrix using the product of 2 smaller matrices
- columns of $\mathbf{W}=$ molecular signatures

- Clustering approaches
- Principal component analysis (PCA)
- Exploratory factor analysis (EFA)
- Non-negative matrix factorization (NMF)


## Clustering



- Clustering is the simplest unsupervised dimensional reduction method n data points $\rightarrow \mathrm{k} \ll \mathrm{n}$ clusters
- Many clustering methods:
- k-means
- k-medoids (PAM)
- self-organizing maps (SOM)
- Sensitive to initialization of procedure, especially if the clusters not well separated!

- Idea of consensus clustering:
if I cluster random subsamples of data points, how often will 2 points be found in the same cluster?
$D=\left\{e_{1}, \ldots, e_{N}\right\}$ expression profiles for N patients $D^{(h)}$ subset of the patients (e.g. 80\%)
$M^{(h)}$ result of clustering $D^{(h)}$
$M^{(h)}(i, j)=1$ if $(i, j)$ belong to the same cluster
$I^{(h)}(i, j)=1$ if $(\mathrm{i}, \mathrm{j})$ both included in $D^{(h)}$

$$
m(i, j)=\frac{\sum_{h} M^{(h)}(i, j)}{\sum_{h} I^{(h)}(i, j)} \quad d(i, j)=1-m(i, j)
$$


blue columns = sampled patients
$\rightarrow$ Use the matrix $d$ to perform (hierarchical) clustering

```
> results[[2]][["consensusMatrix"]][1:5,1:5]
    [,1] [,2] [,3] [,4]
[1,] 1.0000000 1.0000000 0.9655172 1.0000000 1.0000000
[2,] 1.0000000 1.0000000 0.8857143 1.0000000 1.0000000
[3,] 0.9655172 0.8857143 1.0000000 0.9166667 0.8823529
[4,] 1.0000000 1.0000000 0.9166667 1.0000000 1.0000000
[5,] 1.0000000 1.0000000 0.8823529 1.0000000 1.0000000
> results[[3]][["consensusMatrix"]][1:5,1:5]
    [,1] [,2] [,3] [,4] [,5]
[1,] 1.0000000 0.3548387 0.8620690 0.2413793 1.0000000
[2,] 0.3548387 1.0000000 0.1142857 1.0000000 0.4000000
[3,] 0.8620690 0.1142857 1.0000000 0.1388889 0.7941176
[4,] 0.2413793 1.0000000 0.1388889 1.0000000 0.3513514
[5,] 1.0000000 0.4000000 0.7941176 0.3513514 1.0000000
```

similarity matrix
for $k=2$
similarity matrix for $k=3$

## Consensus Clustering


badly assigned samples


badly assigned samples

Clustering over multiple data?

${ }^{\circ}$ IFB
elififine

Clustering over multiple data?


- Cluster each omics data separately
- each clustering can use a different clustering algorithm (k-means, PAM,...)
- each omics datatype can lead to distinct number of clusters
- Represent each sample by an indicator vector showing to which cluster it belongs in each omic
$s_{3}=(1,3,2,3,1)$
- Cluster the samples based on this indicator vector using consensus clustering

- TCGA: integrative clustering of low-grade glioma (brain tumor)
- Available data ( $n=293$ ):
- mRNA expression (R)
- micro-RNA expression (mi)
- Copy-number variation (C)
- DNA-methylation (M)
- Result: 3 robust subtypes which disagree with histological subtypes!


B Gliomas Classified According to Molecular Subtype

[Brat et al., NJEM, 2015]


- Goal: identify $k$ clusters of samples in the dataset (i.e. $Z$ ) such that the inter-cluster distance is maximized
- $Z$ is the indicator function
- $z_{i j}=1$ : sample j belongs to cluster i
- $z_{i j}=0$ : sample $j$ does not belong to cluster i

$$
\begin{gathered}
X=W Z+\epsilon \\
\operatorname{Cov}(\epsilon)=\Psi=\operatorname{diag}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{p}\right)
\end{gathered}
$$

- $\boldsymbol{X}$ is observed
- W and $\Psi$ are unknown parameters (these are numbers!)
- $Z$ is the unknown latent variable (this is a random variable!)
- Bayesian formulation: binary $Z \rightarrow$ continuous $Z^{*}$
- Prior distribution: $Z^{*} \sim \mathcal{N}(0, I)$
- Goal: maximize posterior probability $E\left[Z^{*} \mid X\right]$

$$
X=W Z+\epsilon \quad \operatorname{Cov}(\epsilon)=\Psi=\operatorname{diag}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{p}\right)
$$

- Find optimal solution using Expectation-Maximization


Infered posterior probability E[Z*|X] (for $k=2$ )


Cluster indicator for $k=2$ clusters

elifilir


- Different types of data (binary, count data, continuous data,...) can be taken into account using different conditional probabilities
- $X_{i}$ is binary: logistic regression

$$
\log \frac{P\left(x_{i j t}=1 \mid \mathbf{z}_{i}\right)}{1-P\left(x_{i j t}=1 \mid \mathbf{z}_{i}\right)}=\alpha_{j t}+\boldsymbol{\beta}_{j t} \mathbf{z}_{i}
$$

- $X_{i}$ is count data: Poisson regression
- $X_{i}$ is continuous: linear regression

$$
\log \left(\lambda\left(x_{i j t} \mid \mathbf{z}_{i}\right)\right)=\alpha_{j t}+\boldsymbol{\beta}_{j t} \mathbf{z}_{i}
$$

$$
x_{i j t}=\alpha_{j t}+\boldsymbol{\beta}_{j t} z_{i}+\varepsilon_{i j t}
$$



[Mo et al., PNAS 2013]

- Application: TCGA glioblastoma datasets
- gene mutations
(120 genes $\times 84$ patients)
- copy-number alterations ( 5512 regions $\times 84$ patients)
- gene expression
(1740 top variable genes $\times 84$ patients)


We needs methods allowing a "fuzzy"assignment of samples
clusters $\rightarrow$ signatures

## Principal Component Analysis (PCA)




- Dataset have a very high dimensionality (e.g. number of genes)
- Need to reduce this large number of dimensions to a smaller number of relevant variables
- Relevant variables = variables which carry most of the information (or variance) of a dataset
- These new variables are orthogonal
- Goal: identify directions in the data corresponding to biological effects


Example of DNA methylation of blood samples in patient cohort (Jana Dalhoff) data matrix : 400.000 CpG positions / 250 patients

- if two variables are strongly correlated, they are partly redundant: knowing the variation of one, you have information about how the second variables changes
- if two variables have little correlation, each variable carries information not contained in the other

- The more diagonal a correlation matrix is, the more information is revealed by the variables

$$
\begin{gathered}
\operatorname{cov}(x, y)=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\frac{1}{N} X_{c}^{\prime} \cdot X_{c} \\
\operatorname{cor}(x, y)=\frac{1}{N} \sum_{i=1}^{N} \frac{\left(x_{i}-\bar{x}\right)}{\sigma_{x}} \frac{\left(y_{i}-\bar{y}\right)}{\sigma_{y}}=\frac{1}{N} X_{c s}^{\prime} \cdot X_{c s} \\
\text { z-transformation }
\end{gathered}
$$

## 1. Consider the correlation matrix $A$

|  | age | height | chol | waist | weight |
| :--- | ---: | ---: | ---: | ---: | ---: |
| age | 1.00000000 | -0.09479919 | 0.23990232 | 0.15255761 | -0.06269027 |
| height | -0.09479919 | 1.00000000 | -0.05853973 | 0.05661532 | 0.25298143 |
| chol | 0.23990232 | -0.05853973 | 1.00000000 | 0.11245805 | 0.05932074 |
| waist | 0.15255761 | 0.05661532 | 0.11245805 | 1.00000000 | 0.84955930 |
| weight | -0.06269027 | 0.25298143 | 0.05932074 | 0.84955930 | 1.00000000 |

## 2. Determine its $n$ eigenvalues and $n$ eigenvectors and build the $\mathrm{n} \times \mathrm{n}$ matrix $V$ from all the $n$ eigenvectors as columns



|  | $[, 1]$ | $[, 2]$ | $[, 3]$ | $[, 4]$ | $[, 5]$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $[1]$, | 1.92 | 0.000 | 0.000 | 0.000 | 0.000 |
| $[2]$, | 0.00 | 1.308 | 0.000 | 0.000 | 0.000 |
| $[3]$, | 0.00 | 0.000 | 0.901 | 0.000 | 0.000 |
| $[4,$, | 0.00 | 0.000 | 0.000 | 0.764 | 0.000 |
| $[5]$, | 0.00 | 0.000 | 0.000 | 0.000 | 0.107 |



- $V$ is the rotation matrix transforming the initial variables into new variables called principal components


- each dot is a sample / patient
- new coordinate system is (PC1,PC2)
- Red arrows indicate the contribution of each "old" coordinate to the PCs


$$
P C_{i}=\alpha_{i} \cdot \text { age }+\beta_{i} \cdot \text { chol }+\gamma_{i} \cdot \text { height }+\delta_{i} \cdot \text { waist }+\epsilon_{i} \cdot \text { weight }
$$



- contribution of each variable to the principal components (coefficients are called "loadings")
- some variables contribute in the same direction to some PCs (e.g. waist and height for PC1), but opposite to others (PC5)
elifirair
- PC plots can highlight a new group structure
- Example: PC3 seems very associated to gender
- indicates that a combination of height and cholesterol does separate men /women

groups
- female
- male
- Each PC explains some part of the total variance of the dataset
- This amount is proportional to the corresponding eigenvalue
- PCs are ordered by decreasing eigenvalue (hence variance)



Considering PC1 \& PC2 explains $63 \%$ of the total vairance

- several criteria to select the optimal subset of PCs, without loosing too much information
- Proportion of variance: keep PCs such that the cumulative variance is above threshold

$$
\sum_{i=1}^{k} \frac{\lambda_{i}}{\sum \lambda_{i}} \geq \operatorname{var}_{\min }
$$

- Average eigenvalue criteria: keep PCs which have eigenvalue larger than
- mean eigenvalue (Kaiser rule) or
- $70 \%$ of mean eigenvalue (Jottclife rule)
- Gene expression dataset of breast cancer patients
- 2 groups: ER+ and ER- patients
- Dimension: $k=105$ patients / $n=8534$ genes (here: $\mathrm{n} \gg \mathrm{k}$ )
- pre-processing:
- scale the gene expression across patients
- center the gene expression across patients
- How many principal components do we get? $\rightarrow \mathbf{k}$ (this has to do with the rank of the data matrix)


105 principal components

## - PC1 separates ER+ from ER- patients




## Exploratory Factor Analysis (EFA)




- Observed variables are assumed to be the manifestation of underlying latent factors
- These factors are orthogonal (non-correlated)
- Each variable has also a specific contribution (u) and a measurement error (e)


## Exploratory Factor Analysis



$$
\operatorname{Var}\left(y_{i}\right)=\underbrace{a_{i 1}^{2} \operatorname{Var}\left(F_{1}\right)+a_{i 2}^{2} \operatorname{Var}\left(F_{2}\right)}_{\text {communality } h^{2}}+\underset{\text { specificity } u^{2}}{\operatorname{Var}\left(u_{i}\right)+\operatorname{Var}\left(e_{i}\right)}
$$

- Factors are defined up to a rotation
- The rotation can be
- orthogonal: rotated factors remain uncorrelated

- oblique: rotated factors become correlated
correlation structure

scores of original observations

Factor1 Factor2 Factor3 Factor4 [1,] -0.439011-1.78968-0.74163-1.16528 $[2]-,0.640320 \quad 0.33018 \quad 0.17654-0.65755$ $[3]-,0.057138 \quad 0.81855-1.35900-1.40696$ $[4]-0.554279-1.07389-,0.70366 \quad 0.26768$ $[5] \quad 0.681781-,1.70449 \quad 0.18772 \quad 0.53174$ $[6] \quad 0.219437 \quad 0.32968 \quad 1.04977 \quad$, $[7] \quad 2.6112663 .18222 \quad 2.64516 \quad$, [8,] -0.479476 -0.53915 $0.28261-0.31006$ $[9]-0.232114-0.22414-,0.959230 .47125$ $[10]-0.069679-1.38991-0.83592-$,

## Assumptions

## Questions/Challenges

- Sampling adequacy enough observations per variable $\rightarrow$ Kaiser-Meyer-Olkin (KMO) test
- No multicolinearity (singular correlation matrix!)
- Covariance matrix should not be the identity matrix!
$\rightarrow$ Bartlett test
- More observations than variables
- Factors are determined up to a rotation
- Rotation can be
- orthogonal (rotated factors still uncorrelated) or
- oblique (rotated factors are correlated)
- Proper number of factors remains to be determined $\rightarrow$ heuristic (Kaiser rule, knee-plot,...)
"Basically, researchers tend to:
- use PCA if they are on a fishing expedition trying to find patterns in their data and have no theory to base the analysis on, or

- use EFA if they have a well-grounded theory to base their analysis on. Generally, the second strategy is considered to be the stronger form of analysis."



## Multi-Omics Factor Analysis (MOFA)



$$
Y^{m}=W^{m} \cdot T+\epsilon^{m}
$$

- Matrices $W^{m}$ and $Z$ are learned through bayesian inference
- Implementation favors sparsity
- sparsity of the $W$ matrices
- sparsity of the $Z$ matrix
- Different models for $Y^{m}, \epsilon^{m}$
- Poisson model (count)
- Bernouilli model (binary)
- Gaussian model (continuous)

Total variance explained in each view and each factor

$$
R_{m, k}^{2}=1-\underbrace{\left(\sum_{n, d} y_{n d}^{m}-z_{n k} w_{k d}^{m}-\mu_{d}^{m}\right)^{2} /\left(\sum_{n, d} y_{n d}^{m}-\mu_{d}^{m}\right)^{2}}_{\begin{array}{l}
\text { Residual variance in view } m \\
\text { and factor } k
\end{array}}
$$

Total variance explained in each view

$$
R_{m}^{2}=1-\left(\sum_{n, d} y_{n d}^{m}-\sum_{k} z_{n k} w_{k d}^{m}-\mu_{d}^{m}\right)^{2} /\left(\sum_{n, d} y_{n d}^{m}-\mu_{d}^{m}\right)^{2}
$$



Analysis 1
Association of factors with groups (Z matrix)


## Analysis 2

Weights in factors for each view (W matrix)


## Analysis 3

Correlation of factors with covariates (Z matrix)


## Non-negative matrix factorization



- Most datasets in modern genomics are by essence nonnegative

- Read counts in RNA-seq
- Methylation b-values in DNA

Histone modification
(ChIP-seq)

DNA methylation

- Integrated signal aver genomic regions
we can apply parts-base decomposition of the data

$$
X \sim W H \quad \text { with } X \geq 0, W \geq 0, H \geq 0
$$

$$
X: N \times M \text { matrix }
$$

$$
N=\text { number of features (genes, regions,...) }
$$

$$
M=\text { number observations (patients,samples,...) }
$$

NMF in essence similar to PCA, but non-negativity implies

- a better interpretability of the signatures
- a natural sparseness of the decomposition



X : original data matrix
columns of $\mathbf{W}$ : $\mathbf{k}$ signatures (genes, regions,...) columns of H : exposures to the k signatures
$\rightarrow$ Genomic signatures + features of the signature

- PCA defines orthogonal directions explaining most variance
- NMF signatures (or latent factors LF) define the hypercone containing all data points
- There is no natural ranking of the NMF-signatures (unlike PCs); choice of the number of signatures is crucial!

because of the non-


## negative

constraint, only point inside the cone can be reconstructed using the basis vectors


Figure 4.5: Base images of dataset $\mathbf{D}_{\text {face }}$ after applying the PCA

(a)

(c)

(d)

(f)

Part are more easily interpretable in NMF

## Implementation

ATAC/ChIP/RNA-sed


- Iteration over update equations ( $\sim 10.000 \mathrm{~s}$, inner iteration)
- Iterate of set of initial conditions (~ 10s, outer iteration)
- Iterate over different number of signatures to be extracted
- Accuracy of matrix decomposition: how well does WH represent $V$ ?
- Froebenius error should be small
- Amari distance should be small
- Stability of solutions: how variable are the solutions using different random initializations?
- Coefficient of variation should be small
- Groups of samples should be homogeneous: how well does each sample belong to its group?
- Silhouette coefficient should be large
- Clustering should well represent the original data
- Cophenetic coefficient should be large
elififiric

NMF factorization quality metrics


$$
k=5 \text { appears to be a good choice }
$$

## Exposure matrix H

- A sample can have "exposure" to multiple signatures
- Gradient of exposures (unlike hard clustering)
- sparseness: many coefficients are (almost) 0 in W and H matrix

Samples



- the W matrix gives the "definition" of the signatures in terms of features contributing
- applying k-means ( $k=2$ ) to each row of the W matrix

- the W matrix gives the "definition" of the signatures in terms of features contributing
- applying k-means ( $\mathrm{k}=2$ ) to each row of the W matrix
- single-signature features:
$\rightarrow$ gene 1 / 3
- multi-signature features:
$\rightarrow$ gene 2 / 4 / 5
- signatures 1 and 2 share no feature
- signatures 2 and 4 share 2 features


## Example of use case



Combined RNA-seq (gene expression) and chromatin acessibility (ATAC-seq) from purified blood populations
[ Corces et al. Nat. Gen (2016) ]


## Interpreting signatures



Stemness-signature
fades away, as differentiation progresses

## Associating signatures


eli) ${ }^{\left[1 r^{0}\right.}$

## Integrating multiple datasets using NMF




- integrative NMF identifies both homogeneous effects between datasets $(H)$ as well as heterogeneous ( $H^{i}$ )
- $\lambda$ is a homogeneity parameters
- large values will promote the homogeneous effects
- small values will promote the heterogeneous effects


## Keep in mind



- These methods are linear methods, which makes assumptions about linear co-variation of the variables (correlation is a linear measure!)
- Some consider the total variance (of a variable or a data set), some determine the shared/specific part (e.g. PCA vs. EFA)
- We have described unsupervised multivariate approaches;
can be initialized with can be enriched with prior knowledge (e.g. graph-NMF)
- Views / modalities
$\rightarrow$ different types of data
- Latent factor / signature / Principal component
$\rightarrow$ lower dimensional representation
- Variance / covariance
$\rightarrow$ data spread, joint variation
- Homogeneous
( = communality, shared)
$\rightarrow$ amount of shared variance
- Heterogeneous
(= uniqueness, specific)
$\rightarrow$ amount of specific variance

