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Goals
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In this lecture, we plan to 

▪ Review the fundamental concepts 
of multivariate statistics 
(variance, covariance,...) 

▪ Discuss the required conditions 
(distribution, missing data,...) 

▪ Present some statistical 
approaches in MVA and their 
implementations

At the end, you should be able to 

▪ Distinguish the categories of 
approaches 

▪ Understand the vocabulary 
(factors, signatures, loadings,...) 

▪ Have a better idea how to select 
appropriate tools for your 
setting.
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General introduction to 
multivariate analyses



What is multivariate analysis?
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▪ Multiple data points ( = observables) 
described by multiple measurements 
( = variables) 

▪ Multiple views (or modalities) 

▪ Assumption: not all variables are 
independent 
▪ which variables are related? 

▪ can we obtain a simpler description with 
less dimensions? 

▪ can we learn this description from 
multiple data types simultaneously?

data points  
(patients, cells, samples,...)

variables 
(genes,  

regions,  
microbiome,  

proteins,...)

Data reduction

Data integration

views



What is multivariate analysis?

5

data points  
(patients, cells, samples,...)

variables 
(genes,  

regions,  
microbiome,  

proteins,...)

variables

data points

Beware how the matrix is oriented!!

▪ Multiple data points ( = observables) 
described by multiple measurements 
( = variables) 

▪ Multiple views (or madalities) 

▪ Assumption: not all variables are 
independent 
▪ which variables are related? 

▪ can we obtain a simpler description with 
less dimensions? 

▪ can we learn this description from 
multiple data types simultaneously?



Multivariate vs. Univariate
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▪ Does the expression of the gene BCL6 
define distinct groups of patients?

BCL6 
expression

▪ Does the expression of all genes 
define distinct groups of patients?

Patient rank 
by BCL6 expression Latent dimension 1

La
te

nt
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im
en

sio
n 

2

Univariate Multivariate



“Whole more than sum of the parts”
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Phenotype

Gene 
expression  
(RNAseq)

Chromatin  
accessibility 
(ATAC-seq)

Epigenetic state 
(histone ChIP-seq)

DNA methylation 
(WGB-seq)

Genomic 
information 
(WGS)

Clinical 
variables



Available datasets
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Challenges
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▪ Different dimensionalities and features 
 
 
 

▪ Different types / distributions of data 
 
 
 

▪ Missing data: not all samples have measurements in all features and all 
views

10 102 103 104 105 106

mutations
DNA methylation (CpGs)gene expression

genomic regions 
(ChIP-seq./ ATAC-seq)



Variance in the data

10% information

10% information

80% information 45% information

30% information

25% information

How can we determine the op0mal viewing angle?
10



Variance explained by the model
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data models

explains 80% of the  
data variance

explains 20% of the  
data variance



Basic central concepts
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▪ Variance 
 

▪ Covariance 
 
 

▪ Correlation

cov(x, y) =
1
N

N

∑
i=1

(xi − x̄)(yi − ȳ) =
1
N

X′ c ⋅ Xc

cor(x, y) =
1
N

N

∑
i=1

(xi − x̄)
σx

(yi − ȳ)
σy

=
1
N

X′ cs ⋅ Xcs

x y

X

Var(x) =
1
N

N

∑
i=1

(xi − x̄)2 = diag(
1
N

X′ c ⋅ Xc)
N



Basic central concepts
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▪ Variance 
 

▪ Covariance 
 
 

▪ Correlation

cov(x, y) =
1
N

N

∑
i=1

(xi − x̄)(yi − ȳ) =
1
N

X′ c ⋅ Xc

cor(x, y) =
1
N

N

∑
i=1

(xi − x̄)
σx

(yi − ȳ)
σy

=
1
N

X′ cs ⋅ Xcs

Var(x) =
1
N

N

∑
i=1

(xi − x̄)2 = diag(
1
N

X′ c ⋅ Xc)

x y

X



Variance-covariance and Correlation matrix
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▪ Variance/covariance matrix  

▪ variance on the diagonal 

▪ covariance off-diagonal 

▪ symmetric matrix 

▪ Correlation matrix 

▪ describes all pairwise correlation 
values 

▪ symmetric matrix 

▪ 1's in the diagonal
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Multivariate analyses 
for multi-omics



Various approaches for data reduction and integration
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▪ (Consensus) clustering approaches 

▪ Clusters of Clusters (CoCA) 

▪ integrative clustering (iCluster) 

▪ Linear approaches approaches 

▪ Principal component analysis (PCA) 

▪ Non-negative matrix factorization (NMF) 

▪ Factor Analysis 

▪ Canonical correlation analysis 

▪ Neural network based approaches 

▪ Autoencoders 

▪ Variational autoencoders

Matrix factorization approaches

[Zhang et al., 2019]

[Olshen et al., 2013]

[Quintero et al., 2021]



Matrix factorization
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▪ approximate large data matrix using the product of 2 smaller matrices 

▪ columns of W = molecular signatures

Gene 
expression  
(RNAseq) ~ x

W

H

samples

fe
at

ur
es X = WH + ϵ

Meaning?

k

Choice of k?



Methods reviewed in this presentation
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▪ Clustering approaches 

▪ Principal component analysis (PCA) 

▪ Exploratory factor analysis (EFA) 

▪ Non-negative matrix factorization (NMF) 
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Clustering



Clustering
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▪ Clustering is the simplest unsupervised 
dimensional reduction method 
n data points → k << n clusters 

▪ Many clustering methods:  

▪ k-means 

▪ k-medoids (PAM) 

▪ self-organizing maps (SOM) 

▪ ... 

▪ Sensitive to initialization of procedure, 
especially if the clusters not well 
separated!

k-means with k=3

k-means with k=3



Consensus clustering
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▪ Idea of consensus clustering: 
if I cluster random subsamples of data points, how often will 2 points be 
found in the same cluster?

D = {e1, …, eN} expression profiles for N patients
D(h) subset of the patients (e.g. 80%)
M(h) result of clustering D(h)

M(h)(i, j) = 1 if (i,j) belong to the same cluster

I(h)(i, j) = 1 if (i,j) both included in D(h)

m(i, j) =
∑h M(h)(i, j)

∑h I(h)(i, j) d(i, j) = 1 − m(i, j)

patients

blue columns = sampled patients

→ Use the matrix d to perform (hierarchical) clustering



Consensus clustering
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similarity matrix

for k = 2

similarity matrix

for k = 3



Consensus Clustering
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badly assigned samples badly assigned samples

Ideal shape would

be a step function

Differential AUC

[Monti et al., 2003]Optimal K when AUC no longer increases



Clustering over multiple data?
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Data type A



Clustering over multiple data?
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Data type A Data type B



Cluster of Cluster Analysis (CoCA)
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▪ Cluster each omics data separately 

▪ each clustering can use a different clustering 
algorithm (k-means, PAM,…) 

▪ each omics datatype can lead to distinct 
number of clusters 

▪ Represent each sample by an indicator vector 
showing to which cluster it belongs in each 
omic 
s3 = ( 1 , 3,  2 , 3 , 1 ) 

▪ Cluster the samples based on this indicator 
vector using consensus clustering

Gene expression  
(RNAseq)

Chromatin accessibility 
(ATAC-seq)

Epigenetic state 
(histone ChIP-seq)

DNA methylation 
(WGB-seq)

Genomic information 
(WGS)

→ late integration



Application: low-grade glioma

27

▪ TCGA: integrative clustering of low-grade 
glioma (brain tumor) 

▪ Available data (n=293):  

• mRNA expression (R) 

• micro-RNA expression (mi) 

• Copy-number variation (C) 

• DNA-methylation (M) 

• Result: 3 robust subtypes which disagree 
with histological subtypes! 

[Brat et al., NJEM, 2015]



Application: low-grade glioma
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[Brat et al., NJEM, 2015]



iCluster
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… 0 1 1 0 0 1 0 1 ….

… 1 0 0 0 0 1 1 1 ….

▪ Goal: identify k clusters of samples in the dataset (i.e. Z) such 
that the inter-cluster distance is maximized 

▪ Z is the indicator function  

▪ zij = 1 : sample j belongs to cluster i 

▪ zij = 0 : sample j does not belong to cluster i

X W

Z

~
X = WZ + ϵ

k-1

k-1

x

n samples

p 
features

Cov(ϵ) = Ψ = diag(ψ1, ψ2, …, ψp)

[Shen et al., Bioinformatics 2010]



iCluster
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▪ X is observed 

▪ W and  are unknown parameters (these are numbers!) 

▪ Z is the unknown latent variable (this is a random variable!) 

▪ Bayesian formulation: 

▪ Prior distribution :  

▪ Goal: maximize posterior probability

Ψ

X = WZ + ϵ

binary Z → continuous Z*

Z* ∼ 𝒩(0,I)

Cov(ϵ) = Ψ = diag(ψ1, ψ2, …, ψp)

E[Z* |X]



iCluster
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▪ Find optimal solution using Expectation-Maximization

X = WZ + ϵ Cov(ϵ) = Ψ = diag(ψ1, ψ2, …, ψp)

Initial random values for (W(0), Ψ(0))

Estimate Z(t)

using (W(t−1), Ψ(t−1), X)

(Expectation Step)

Estimate (W(t+1), Ψ(t+1))
using (Z(t), X)

(Maximization Step)



iCluster
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Infered posterior probability E[Z*|X] (for k = 2)

Cluster indicator for k = 2 clusters



iCluster+
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▪ Different types of data (binary, count data, continuous data,…) can be taken into 
account using different conditional probabilities  

▪ Xi is binary: logistic regression 

▪ Xi is count data: Poisson regression 

▪ Xi is continuous: linear regression

X1 
(binary)

X2 
(counts)

Z shared Z matrix!

[Mo et al., PNAS 2013]

i = sample, j = feature, t = view)

Logistic regression

Poisson regression



iCluster+
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▪ Application: TCGA glioblastoma datasets 

▪ gene mutations  
(120 genes x 84 patients) 

▪ copy-number alterations  
(5512 regions x 84 patients) 

▪ gene expression  
(1740 top variable genes x 84 patients)

Patients
Gene mutation

Copy number alteration

Gene expression

[Mo et al., PNAS 2013]



Limitations of Clustering
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?

Ideal

Real 
World

We needs methods allowing a “fuzzy”assignment of samples 
clusters → signatures
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Principal Component 
Analysis (PCA)



Graphical abstract
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Observed variables 
(e.g. genes)

y1

y2

y3

y4

y5

Principal components 
("metagenes")

PC1

PC2
y1

y2

PC1
PC2



Principal component analysis
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▪ Dataset have a very high dimensionality 
(e.g. number of genes) 

▪ Need to reduce this large number of 
dimensions to a smaller number of 
relevant variables 

▪ Relevant variables = variables which carry 
most of the information (or variance) of a 
dataset 

▪ These new variables are orthogonal 

▪ Goal: identify directions in the data 
corresponding to biological effects

Example of DNA methylation of blood samples 
in patient cohort (Jana Dalhoff) 
data matrix : 400.000 CpG positions / 250 
patients
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Correlation structure
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▪ if two variables are strongly correlated, they 
are partly redundant: knowing the variation 
of one, you have information about how the 
second variables changes 

▪ if two variables have little correlation, each 
variable carries information not contained in 
the other 

▪ The more diagonal a correlation matrix is, 
the more information is revealed by the 
variables



Correlation and covariance
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cov(x, y) =
1
N

N

∑
i=1

(xi − x̄)(yi − ȳ) =
1
N

X′ c ⋅ Xc

cor(x, y) =
1
N

N

∑
i=1

(xi − x̄)
σx

(yi − ȳ)
σy

=
1
N

X′ cs ⋅ Xcs
x y

X

Z-transformation



Computing PCA
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1. Consider the correlation matrix A 
 
 

2. Determine its n eigenvalues and n 
eigenvectors and build the n x n 
matrix V from all the n 
eigenvectors as columns 
 

3. Compute S = V′ ⋅ A ⋅ V

transposed V matrixdiagonal matrix!



New coordinate system
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▪ V is the rotation matrix transforming the initial variables into new 
variables called principal components

height

weight

waist

height

weight

waist

PC1

PC2

PC3

height

weight

waist

PC1

PC3

PC2



PCA biplot
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▪ each dot is a sample / patient 

▪ new coordinate system is 
(PC1,PC2) 

▪ Red arrows indicate the 
contribution of each “old" 
coordinate to the PCs



Principal components

44

▪ contribution of each variable to the principal components (coefficients are called 
"loadings") 

▪ some variables contribute in the same direction to some PCs (e.g. waist and 
height for PC1), but opposite to others (PC5)

PCi = αi ⋅ age + βi ⋅ chol + γi ⋅ height + δi ⋅ waist + ϵi ⋅ weight



Identifying interesting PCs
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▪ PC plots can highlight a new group 
structure 

▪ Example: PC3 seems very 
associated to gender 

▪ indicates that a combination of 
height and cholesterol does 
separate men /women



Number of PCs?
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▪ Each PC explains some part of the total variance of the dataset 

▪ This amount is proportional to the corresponding eigenvalue  

▪ PCs are ordered by decreasing eigenvalue (hence variance)

Considering PC1 & PC2 explains  
63% of the total vairance

Eigenvalues
Proportion of variance



Choosing the number of PCs
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▪ several criteria to select the optimal subset 
of PCs, without loosing too much 
information 

▪ Proportion of variance: 
keep PCs such that the cumulative variance 
is above threshold 

▪ Average eigenvalue criteria: 
keep PCs which have eigenvalue larger than  

▪ mean eigenvalue (Kaiser rule) or  

▪ 70% of mean eigenvalue (Jottclife rule)

k

∑
i=1

λi

∑ λi
≥ varmin

λi ≥ λ̄



Application to gene expression
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▪ Gene expression dataset of breast cancer patients 

▪ 2 groups: ER+ and ER- patients 

▪ Dimension: k = 105 patients / n = 8534 genes  
(here: n >> k) 

▪ pre-processing:  

▪ scale the gene expression across patients 

▪ center the gene expression across patients 

▪ How many principal components do we get? 
→ k (this has to do with the rank of the data 
matrix)

variance explained

105 principal components



Application to gene expression
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▪ PC1 separates ER+ from ER- patients
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Exploratory Factor 
Analysis (EFA)



Exploratory Factor Analysis
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Latent Factors Observed variables

y1

y2

y3

y4

y5

Specific contribution  
(unique + error)

u1+e1

u2+e2

u3+e3

u4+e4

u5+e5

▪ Observed variables are 
assumed to be the 
manifestation of underlying 
latent factors 

▪ These factors are orthogonal 
(non-correlated) 

▪ Each variable has also a 
specific contribution (u) and a 
measurement error (e)

F1

F2



Exploratory Factor Analysis
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Observed variablesLatent Factors
Specific contribution  

(unique + error)

y1

y2

y3

y4

y5

F1

F2

u1+e1

u2+e2

u3+e3

u4+e4

u5+e5

yi = ai1 F1 + ai2 F2 + ui + ei

factor loadings

unique 
contribution

Measurement 
error

Var(yi) = a2
i1 Var(F1) + a2

i2 Var(F2) + Var(ui) + Var(ei)

communality h2 specificity u2



Factor rotation
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▪ Factors are defined up to a 
rotation 

▪ The rotation can be 

▪ orthogonal: rotated factors 
remain uncorrelated 

▪ oblique: rotated factors become 
correlated

plain = orthogonal 
dahed = oblique



Example of EFA
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original data: cognitive test results on n=145 persons correlation structure

after rotationFactor analysis (k=4)

scores of original observations



Summary: Exploratory Factor Analysis
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▪ Sampling adequacy  
enough observations per variable 
→ Kaiser-Meyer-Olkin (KMO) test  

▪ No multicolinearity (singular 
correlation matrix!) 

▪ Covariance matrix should not be the 
identity matrix! 
→ Bartlett test 

▪ More observations than variables

▪ Factors are determined up to a 
rotation 

▪ Rotation can be  

▪ orthogonal (rotated factors still 
uncorrelated) or  

▪ oblique (rotated factors are 
correlated) 

▪ Proper number of factors remains to 
be determined  
→ heuristic (Kaiser rule, knee-plot,...)

Assumptions Questions/Challenges



Difference PCA / EFA
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"Basically, researchers tend to:  

▪ use PCA if they are on a fishing 
expedition trying to find patterns in 
their data and have no theory to base 
the analysis on, or  

▪ use EFA if they have a well-grounded 
theory to base their analysis on. 
Generally, the second strategy is 
considered to be the stronger form of 
analysis."

y1

y2

y3

y4

y5

F1

F2

y1

y2

y3

y4

y5

PC1

PC2



Multi-Omics Factor Analysis (MOFA)
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Omics data

Ym = Wm ⋅ Z + ϵm

▪ Matrices  and  are learned 
through bayesian inference 

▪ Implementation favors sparsity 

▪ sparsity of the W matrices 

▪ sparsity of the Z matrix 

▪ Different models for  

▪ Poisson model (count) 

▪ Bernouilli model (binary) 

▪ Gaussian model (continuous)

Wm Z

Ym, ϵm
Metadata

[Argelaguet, MSB 2018]



Multi-Omics Factor Analysis (MOFA): variance explained
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Total variance explained in each view

Total variance explained in each view and each factor

Total variance in view mResidual variance in view m 
and factor k



MOFA: post-hoc interpretation of factors
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Analysis 1 
Association of factors with groups  
(Z matrix)

Analysis 2 
Weights in factors for each view  
(W matrix)

Analysis 3 
Correlation of factors with covariates 
(Z matrix)
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Non-negative matrix 
factorization



Non-negative matrix factorization
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▪ Most datasets in modern 
genomics are by essence non-
negative 

▪ Read counts in RNA-seq 

▪ Methylation b-values in DNA 
methylation arrays 

▪ Integrated signal aver genomic 
regions

exon 1 exon 2

we can apply parts-base decomposi0on of the data

RNA-seq

Histone modification 
(ChIP-seq)

DNA methylation



Non-negative matrix factorization
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NMF in essence similar to PCA, 
but non-negatvity implies 
• a beWer interpretability of the signatures 
• a natural sparseness of the decompositon

© 1999 Macmillan Magazines Ltd
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larvae collected randomly in the field (2! 48.12" N, 41! 40.33" E) by SCUBA. Between 5 and
10 juveniles were recruited successfully in each of 15, 1 l polystyrene containers (n ¼ 15),
the bottom of which was covered with an acetate sheet that served as substratum for
sponge attachment. Containers were then randomly distributed in 3 groups, and sponges
in each group were reared for 14 weeks in 3 different concentrations of Si(OH)4:
0:741 ! 0:133, 30:235 ! 0:287 and 100:041 ! 0:760 "M (mean ! s:e:). All cultures were
prepared using 0.22 "m polycarbonate-filtered seawater, which was collected from the
sponge habitat, handled according to standard methods to prevent Si contamination29 and
enriched in dissolved silica, when treatments required, by using Na2SiF6. During the
experiment, all sponges were fed by weekly addition of 2 ml of a bacterial culture
(40–60 # 106 bacteria ml $ 1) to each container30. The seawater was replaced weekly, with
regeneration of initial food and Si(OH)4 levels. The concentration of Si(OH)4 in cultures
was determined on 3 replicates of 1 ml seawater samples per container by using a Bran-
Luebbe TRAACS 2000 nutrient autoanalyser. After week 5, the accidental contamination
of some culture containers by diatoms rendered subsequent estimates of Si uptake by
sponges unreliable, so we discarded them for the study.

For the study of the skeleton, sponges were treated according to standard methods30 and
examined in a Hitachi S-2300 scanning electron microscope (SEM).

Received 21 April; accepted 16 August 1999.
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(Porifera). Schweiz. Paläont. Abh. 116, 1–147 (1994).
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6. Moret, L. Contribution à l’étude des spongiaires siliceux du Miocene de l’Algerie. Mém. Soc. Géol. Fr.
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Is perception of the whole based on perception of its parts? There
is psychological1 and physiological2,3 evidence for parts-based
representations in the brain, and certain computational theories
of object recognition rely on such representations4,5. But little is
known about how brains or computers might learn the parts of
objects. Here we demonstrate an algorithm for non-negative
matrix factorization that is able to learn parts of faces and
semantic features of text. This is in contrast to other methods,
such as principal components analysis and vector quantization,
that learn holistic, not parts-based, representations. Non-negative
matrix factorization is distinguished from the other methods by
its use of non-negativity constraints. These constraints lead to a
parts-based representation because they allow only additive, not
subtractive, combinations. When non-negative matrix factoriza-
tion is implemented as a neural network, parts-based representa-
tions emerge by virtue of two properties: the firing rates of
neurons are never negative and synaptic strengths do not
change sign.

We have applied non-negative matrix factorization (NMF),
together with principal components analysis (PCA) and vector
quantization (VQ), to a database of facial images. As shown in
Fig. 1, all three methods learn to represent a face as a linear
combination of basis images, but with qualitatively different results.
VQ discovers a basis consisting of prototypes, each of which is a
whole face. The basis images for PCA are ‘eigenfaces’, some of which
resemble distorted versions of whole faces6. The NMF basis is
radically different: its images are localized features that correspond
better with intuitive notions of the parts of faces.

How does NMF learn such a representation, so different from the
holistic representations of PCA and VQ? To answer this question, it
is helpful to describe the three methods in a matrix factorization
framework. The image database is regarded as an n # m matrix V,
each column of which contains n non-negative pixel values of one of
the m facial images. Then all three methods construct approximate
factorizations of the form V ! WH, or

Vim ! ðWHÞim ¼ "
r

a¼1

W iaHam ð1Þ

The r columns of W are called basis images. Each column of H is
called an encoding and is in one-to-one correspondence with a face
in V. An encoding consists of the coefficients by which a face is
represented with a linear combination of basis images. The dimen-
sions of the matrix factors W and H are n # r and r # m, respec-
tively. The rank r of the factorization is generally chosen so that
ðn þ mÞr % nm, and the product WH can be regarded as a com-
pressed form of the data in V.

The differences between PCA, VQ and NMF arise from different
constraints imposed on the matrix factors W and H. In VQ, each
column of H is constrained to be a unary vector, with one element
equal to unity and the other elements equal to zero. In other words,
every face (column of V) is approximated by a single basis image
(column of W) in the factorization V ! WH. Such a unary encod-
ing for a particular face is shown next to the VQ basis in Fig. 1. This
unary representation forces VQ to learn basis images that are
prototypical faces.

© 1999 Macmillan Magazines Ltd

letters to nature

NATURE | VOL 401 | 21 OCTOBER 1999 | www.nature.com 789

PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ !
n

i¼1
!

m

m¼1

½VimlogðWHÞim ! ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.

X ∼ WH with X ≥ 0,W ≥ 0,H ≥ 0

[Lee, Seung 1999]

X : N × M matrix
N = number of features (genes, regions,...)
M = number observations (patients,samples,...)



NMF
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X : original data matrix 
columns of W : k signatures (genes, regions,…) 
columns of H : exposures to the k signatures

RNA - seq 
ATAC - seq 

non-negative 
matrix Xij

samples (tissues, patients,…)

genes / 
regions

genes / 
regions

k signatures

k signatures

samples / tissues

→ Genomic signatures  +  features of the signature



NMF vs. PCA
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▪ PCA defines orthogonal directions explaining most variance 

▪ NMF signatures (or latent factors LF)  define the hypercone containing all 
data points 

▪ There is no natural ranking of the NMF-signatures (unlike PCs); choice of 
the number of signatures is crucial!

[Casalino, Buono, Mencar]

NMFPCA

because of the non-
negative 
constraint, only point inside 
the cone can be 
reconstructed using the 
basis vectors



NMF vs. PCA
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[Nikolaus]Part are more easily interpretable in NMF



Implementation
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▪ Iteration over update equations 
(~ 10.000s, inner iteration) 

▪ Iterate of set of initial conditions 
(~ 10s, outer iteration) 

▪ Iterate over different number of 
signatures to be extracted

X



How to choose k?
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▪ Accuracy of matrix decomposition: how well does WH represent V? 

▪ Froebenius error should be small 

▪ Amari distance should be small 

▪ Stability of solutions: how variable are the solutions using different random 
initializations?  

▪ Coefficient of variation should be small 

▪ Groups of samples should be homogeneous: how well does each sample belong 
to its group? 

▪ Silhouette coefficient should be large 

▪ Clustering should well represent the original data 

▪ Cophenetic coefficient should be large



How to choose k?
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k = 5 appears to be a good choice

small is better

large is better



Exposure matrix H
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Samples

Signatures

▪ A sample can have “exposure” to multiple signatures 

▪ Gradient of exposures (unlike hard clustering) 

▪ sparseness: many coefficients are (almost) 0 in W and H matrix



Stability of signatures
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k=3
k=4

k=5
k=6

Samples



Signature matrix W
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gene 1

gene 2

gene 3

gene 4

gene 5

sig
. 1

sig
. 2

sig
. 3

sig
. 4

▪ the W matrix gives the “definition” of 
the signatures in terms of features 
contributing 

▪ applying k-means (k=2) to each row of 
the W matrix



Signature matrix W
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▪ the W matrix gives the “definition” of 
the signatures in terms of features 
contributing 

▪ applying k-means (k=2) to each row of 
the W matrix gene 1

gene 2

gene 3

gene 4

gene 5

‣ single-signature features: 
→ gene 1 / 3  

‣ mul]-signature features: 
→ gene 2 / 4 / 5 

‣ signatures 1 and 2 share no 
feature 

‣ signatures 2 and 4 share 2 
features

sig
. 1

sig
. 2

sig
. 3

sig
. 4



Example of use case
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Combined RNA-seq (gene expression) 
and chromatn acessibility (ATAC-seq) from 
purified blood populatons

[ Corces et al. Nat. Gen (2016) ]



Interpreting signatures
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Stemness-signature 
fades away, as differentiation 
progresses

[ Corces et al. Nat. Gen (2016) ]

RNA-seq



Associating signatures
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RNA-seq ATAC-seq

B-cell

T-cell

T-cell

B-cell

monocyte monocyte

[ Corces et al. Nat. Gen (2016) ]



Integrating multiple datasets using NMF
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RNA-
seq

ATAC-
seq

≃ ×

ge
ne

s
re

gi
on

s

shared H matrix

min
W,Hi ∑

i

∥Xi − WiH∥2
F

Joint-NMF [Chalise, Fridley (2017)]

RNA-
seq

ATAC-
seq

≃ ×
ge

ne
s

re
gi

on
s

common H matrix

view specific H matrix

view specific H matrix

+

+
integrative-NMF [Yang, Michailidis (2015)][Andres Quintero]



integrative NMF
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▪ integrative NMF identifies both homogeneous effects between datasets (H) as 
well as heterogeneous (Hi) 

▪ λ is a homogeneity parameters 

▪ large values will promote the homogeneous effects 

▪ small values will promote the heterogeneous effects

min
Wi,H,Hi (∑

i

∥Xi − Wi(H + Hi)∥2
F + λ∑

i

∥WiHi∥2
F)

[Yang, Michailidis (2015)]

heterogeneous partgeneral reconstruction error
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Keep in mind
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Key concepts

▪ These methods are linear methods, which makes 
assumptions about linear co-variation of the variables 
(correlation is a linear measure!) 

▪ Some consider the total variance (of a variable or a data 
set), some determine the shared/specific part  
(e.g. PCA vs. EFA) 

▪ We have described unsupervised multivariate approaches; 
can be enriched with  prior knowledge (e.g. graph-NMF) 

can be initialized with 
prior information
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Vocabulary cheat sheet

▪ Views / modalities 
→ different types of data 

▪ Latent factor / signature / 
Principal component 
→ lower dimensional 
representation 

▪ Variance / covariance 
→ data spread, joint variation

▪ Homogeneous  
( = communality, shared) 
→ amount of shared variance 

▪ Heterogeneous  
(= uniqueness, specific) 
→ amount of specific variance


