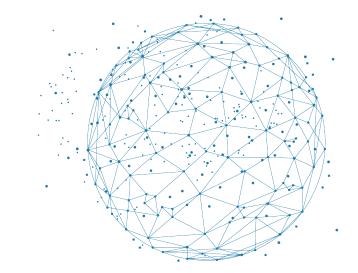

First edition 2023 in Fréjus

Theoretical part Semantic Web

Alban GAIGNARD - Olivier DAMERON

DOI version final


- Life science data require
 - Integration
 - Knowledge-based reasoning
- The Semantic Web provide a relevant framework
- Use RDF to represent knowledge graphs
- Use SPARQL to query knowledge graphs
- Use RDFS and OWL to formalize knowledge as ontologies

What you will learn (hopefully):

- A general understanding of metadata and (symbolic) knowledge...
- ... that relies on surprisingly simple principles

Life science data from an information science perspectives

Big data [Laney, 2001]

Datasets so large and complex that traditional data processing is inadequate

Life science: data deluge since the 90s [Aldhous, 1993]

- Computerized biomedical data (evidence-based medicine, translational medicine, precision medicine)
- Genomics and bioinformatics

Science. 1993 Oct 22;262(5133):502-3.

Managing the genome data deluge.

Aldhous P.

PMID: 8211171 [PubMed - indexed for MEDLINE]

Science. 1995 Aug 4;269(5224):630.

Europe opens institute to deal with gene data deluge.

Williams N.

PMID: 7624788 [PubMed - indexed for MEDLINE]

<u>Nat Rev Drug Discov.</u> 2002 Jun;1(6):479. **Dealing with the data deluge.** Lanfear J¹.

Author information

PMID: 12119750 [PubMed - indexed for MEDLINE]

Our estimation is that genomics is a ``four-headed beast" – it is either on par with or the most demanding domain[...] in terms of:

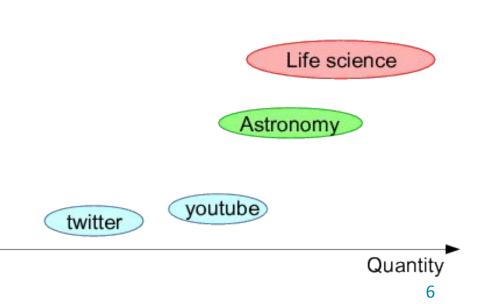
PERSPECTIVE

- data acquisition
- data storage
- data distribution
- data analysis

Big Data: Astronomical or Genomical?

Zachary D. Stephens¹, Skylar Y. Lee¹, Faraz Faghri², Roy H. Campbell², Chengxiang Zhai³, Miles J. Efron⁴, Ravishankar Iyer¹, Michael C. Schatz⁵*, Saurabh Sinha³*, Gene E. Robinson⁶*

PLOS Biology | DOI:10.1371/journal.pbio.1002195 July 7, 2015


Table 1. Four domains of Big Data in 2025. In each of the four domains, the projected annual storage and computing needs are presented across the data lifecycle.

Data Phase	Astronomy	Twitter	YouTube	Genomics
Acquisition	25 zetta-bytes/year	0.5–15 billion tweets/year	500–900 million hours/year	1 zetta-bases/year
Storage	1 EB/year	1-17 PB/year	1–2 EB/year	2-40 EB/year
Analysis	In situ data reduction	Topic and sentiment mining	Limited requirements	Heterogeneous data and analysis
	Real-time processing	Metadata analysis		Variant calling, ~2 trillion central processing unit (CPU) hours
	Massive volumes			All-pairs genome alignments, ~10,000 trillion CPU hours
Distribution	Dedicated lines from antennae to server (600 TB/s)	Small units of distribution	Major component of modern user's bandwidth (10 MB/s)	Many small (10 MB/s) and fewer massive (10 TB/s) data movement

- multiple scale (heterogeneity)
- (highly) interdependent at each scale
- interdependent between scales
- variability
- incompleteness
- evolutive
- distributed (and lack of interoperability)

Complexity

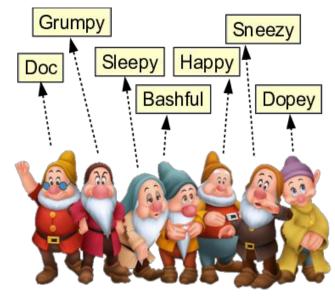
Challenge (computational): How to handle this complexity?

- The difficulty is to analyze data systematically
- Experts are very good at doing it on their domain (hint...)
 - on their domain
 - on their data
 - with their limited human capacity
 - ... help is (badly) needed!
- Expertise = ability to use knowledge for interpreting data
 - aggregating data
 - inferring connections
- How to use their expertise, instead of trying to re-discover it?
 - assumption: we may not always need to re-discover naively the whole biology at each experiment

- *Requirement 1:* identify resources with interoperable identifiers
- *Requirement 2:* describe resources
 - their characteristics
 - (e.g. start and end position of a gene)
 - their relations to other resources (e.g. the transcript associated to a gene, the transcription factors that regulate it...)
 - the categories they belong to
- Requirement 3: combine descriptions from different origins
- Requirement 4: query these descriptions
- Requirement 5: support semantically-rich querying and reasoning (because of the inner complexity) using domain knowledge

"Metadata, you see, is really a love note - it might be to yourself, but in fact it's a love note to the person after you, or the machine after you, where you've saved someone that amount of time to find something by telling them what this thing is."

Jason Scott - http://ascii.textfiles.com/archives/3181


Annotation = explicit representation of the result of some interpretation process

Annotation = explicit representation of the result of some interpretation process

- ideally by an expert (from big data to smart data)
- requires some background knowledge
- formalization spanning the whole semantic spectrum, ranging
 - from free text...
 - ...to controlled vocabularies...
 - ...to (shared) semantic frameworks

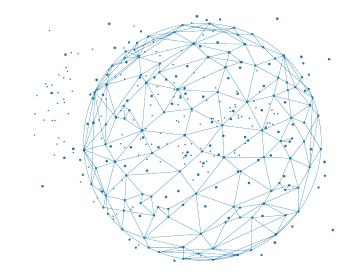
Annotate data =

- Describe explicitly...
 - ... the **relevant elements** in your data...
 - ... their characteristics...
 - ... and the **relations between them**
- So that users (you + the non-experts) or programs do not have to go once again through the (tedious, complicated) process of interpreting them
 - It is important
 - It seems easy...
 - Exercice: describe a set of images
 - ...but turns out more difficult than expected
- 2 aspects:
 - Interpreting and describing data is for domain experts
 - Formalizing and representing the annotations and their dependencies is for data engineers

Your dataset

- **#1** Annotate data = describe their interpretation -> metadata
- **#2** Describe data = explicit representation -> graph of (meta-)data
- Multiple datasets aggregated
- **#3** There are some dependencies btw some annotations -> knowledge graph *Abstraction(s)*
- **#4** The dependencies between categories support multiple layers of generalization -> ontologies
- Graph of data U knowledge graph U ontologies
- **#5** Reasoning = rules for traversing the graphs

Add annotations? But we have too much data already!


Benefits

- Can be used as proxy to complex data
- Simplifies by providing a compact abstraction
- Overcomes variability
- Enriches by making explicit the underlying meaning

Storing, sharing and reusing these annotations is the key to life science systematic data analysis

General introduction to semantic web

Knowledge Graphs

asteur	
--------	--

Paramètres Out

Ô

ITINÉRAIRE

Q

viron 71300000 résultats (0,59 secondes)

stitut Pasteur | Pour la recherche, pour la santé, pour demain

ire un pour la recherche - Institut **Pasteur**. Fermer. EN · FR · Accueil. Saisissez vos mots-clés. nstitut **Pasteur**. Retour L'Institut **Pasteur** · Notre histoire.

otre histoire · Centre médical Institut Pasteur · Institut Pasteur · Dons - pasteur

istoire de Louis Pasteur et de l'Institut Pasteur

tps://www.pasteur.fr/fr/institut-pasteur/notre-histoire

écouvrez l'histoire de l'Institut Pasteur depuis 1888 et les diverses actions de Louis Pasteur, son mbat pour la vaccination et la recherche médicale.

asteur - Wikipédia

tps://fr.wikipedia.org/wiki/Pasteur -

mot pasteur peut avoir plusieurs significations. Sommaire. 1 Fonction; 2 Saints chrétiens; 3 itronyme; 4 Toponyme; 5 Spectacles. 5.1 Films; 5.2 Pièce de ... uis Pasteur c'hristianisme) - Institut Pasteur

ouis Pasteur — Wikipédia

tps://fr.wikipedia.org/wiki/Louis_Pasteur -

uis Pasteur, né à Dole (Jura) le 27 décembre 1822 et mort à Marnes-la- Coquette (Hauts-de-Seine, à tte époque en Seine-et-Oise) le 28 septembre 1895 ...

enommé pour: Vaccin contre la rage Domaines: Chimie, microbiologie titonalité: Française Étudiants en thèse: Charles Friedel

atégorie:Louis Pasteur · Pasteur Vallery-Radot · Maison de Louis Pasteur à ...

Louis Pasteur

Scientifique

Louis Pasteur, né à Dole le 27 décembre 1822 et mort à Marnes-la-Coquette le 28 septembre 1895, est un scientifique français, chimiste et physicien de formation. Pionnier de la microbiologie, il connut, de son vivant même, une grande notoriété pour avoir mis au point un vaccin contre la rage. Wikipédia

Date et lieu de naissance : 27 décembre 1822, Dole

Date et lieu de décès : 28 septembre 1895, Marnes-la-Coquette

Enfants : Jean-Baptiste Pasteur, Marie-Louise Pasteur, Jeanne Pasteur, Cécile Pasteur, Camille Pasteur

Invention : Pasteurisation

Enseignement : École Normale Supérieure (1847), PLUS

Several facets of Artificial Intelligence

Named entity recognition (NLP)

→ « pasteur » refers to Louis Pasteur

Knowledge Representation

- \rightarrow Louis Pasteur is a scientist
- → a scientist is a kind of person

Reasoning

 \rightarrow « if an entity is a scientists then its also a person »

 \rightarrow « If a web resource is a person then display his/her portrait »

... and many other such as Computer Vision, Machine Learning ...

Commentaires

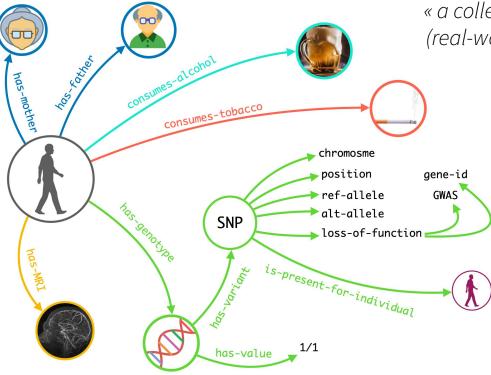
<

Siri - Software Engineer - Knowledge Graph

Summary Posted: May 29, 2019 Weekly Hours: 40

Role Number: 200039719

The Knowledge Graph team is looking for outstanding engineers to build the next-generation of knowledge graph and data infrastructure at Apple to power features including Siri and Spotlight. If you are interested in building a world-class


Knowledge representation and reasoning : still needed for question answering systems !

- Key Qualifications
 Extensive systems programming experience in either Python or Java. Solid system development skills in UNIX-type OS (e.g. Linux, Mac OS)
 - · Experience working with large data sets and pipelines, ideally using the Apache
 - · software stack (e.g. Spark, HBase)
 - · Excellent problem-solving and analytic skills
 - · You are self-motivated and able to quickly learn new domains
 - · You have good attention to detail
 - · Broad knowledge of computer science and systems
 - Excellent communication and collaborative skills; Able to work as part of a small, focused team and give your best effort

Description

The Siri Knowledge Graph team is building groundbreaking technology in the areas of question answering, knowledge base construction and machine learning. We aim to be a "know-it-all" question answering system, capable of answering guestions from hundreds of millions of users about nearly anything. The question answering system is backed by a knowledge graph that was automatically constructed from a vast number of data sources including natural language text, HTML tables, and many others. You will have exciting opportunities to working on rapidly building a more complete and accurate knowledge graph with impact across all of Apple. This knowledge graph also enables many other features across Apple besides the question answering feature at Siri. The problems we pursue include

Information Extraction from natural language text and semi-structured data such as HTML tables
 Data Integration (e.g., Entity Resolution and Knowledge Fusion)
 Knowledge graph reasoning and inference
 Named Entity Linking

« a collection of **interlinked descriptions of things** (real-word objects, abstract concepts, events, etc.) »

a **database**

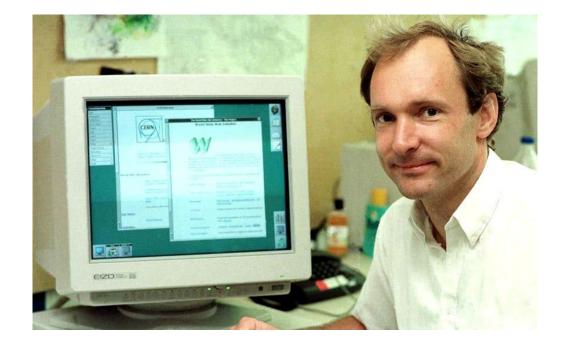
 \rightarrow information storage / extraction

a **graph**

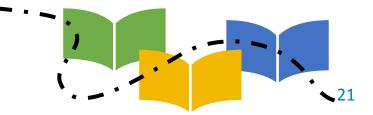
→ network analysis

a knowledge base

→ formal semantics(logical facts, logical inferences)



From **linked documents** (Web) ...


... to linked data (Semantic Web)

90's: web of documents

A **de-centralized** system of **hypertext documents** based on URL, HTTP, and HTML **standards** (World Wide Web consortium, W3C).

Surface web < 10%

Academic databases

Wikipedia

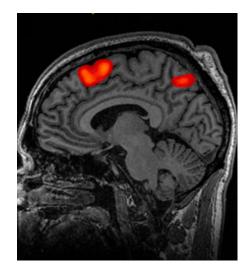
Medical records

Social media

Google

Legal documents

Bing


Deep web > 90%

Youtube

Scientific papers

Genetic sequences

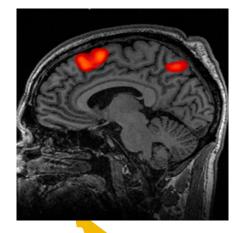
- 1st line = label
- 2nd line = raw sequence (A,T,C,G)
- 4th line = quality score for each base

Medical image

- MRI as imaging modality
- brain as imaging target
- labeled data (intensity/volume ?) 23

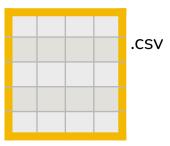
Make

@HWI-ST534_129:2:24:20503:16510:CGATGT


better exchange, interpret & reason on diverse data !!

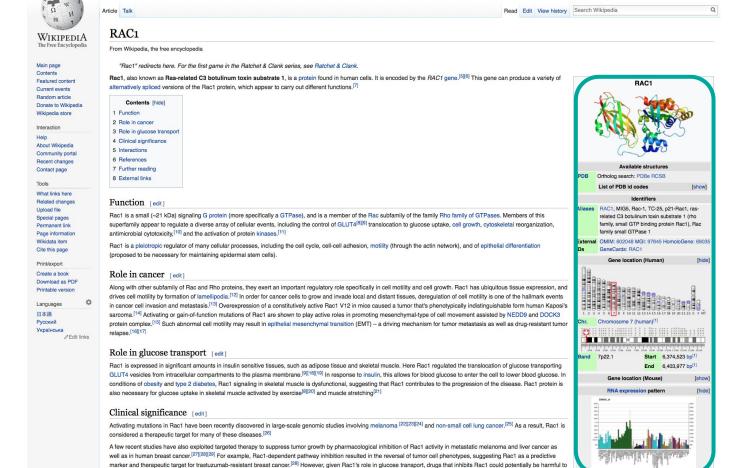
CTGAGAGCCGGGGAAGCCGGCGGAGCCGGGGGACTGGCGAGCCGGAACAT + HHHHHHHHHHHHEFDDGDDFBFGG>7D4<9;<&?:;<DC>CCDD@?=?A### @HWI_ST534_129:2:42:2118:9580:CGATGT GGCGGAGCCGGGTGACTGGCGAGCCGGAACATCAGGCGCCGCCGCAGAGAA + GEECGGGBGIDF6FFFEF=IDEFBEE8E8E?EEB@6=9B########## @HWI_ST534_129:2:2:12654:80229:CGATGT CGGAGCCGGGTGACTGGCGAGCCGGAACATCAGGCGCCGCCGCAGAGAAG + GGEGFCDCBBAEEEEGGFGFG;EGEEGFFBBEDEBDFGFCFF;DF2D<DD

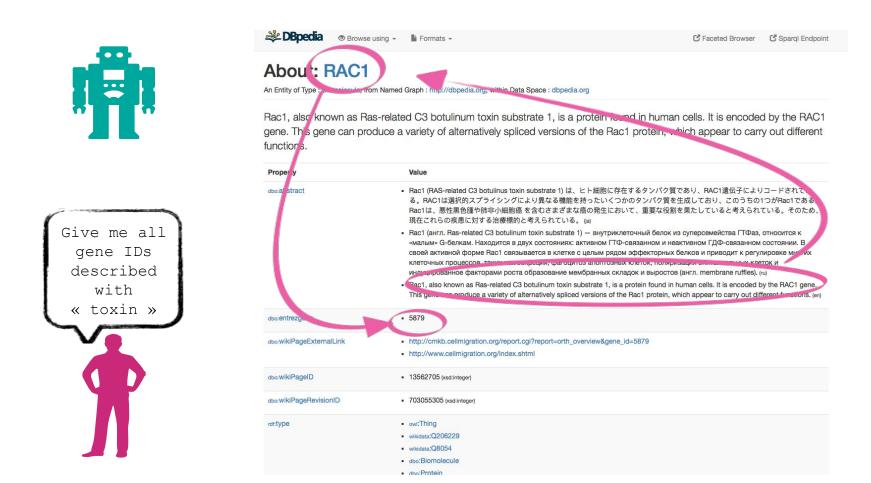
@HWI-ST534_129:2:48:12356:179714:CGATGT GAGCCGGGTGACTGGCGAGCCGGAACATCAGGCGCCGCCGCAGAGAAGAA


E=GHFHEGHHBCGDDBEEBBCBDDDE@EGBD=ABDCB?EC;@@8@EEB;E @HWI-ST534_129:2:44:8225:39540:CGATGT GGGTGACTGGCGAGCCGGAACATCAGGCGCCGCCGCAGAGAAGAACTATG

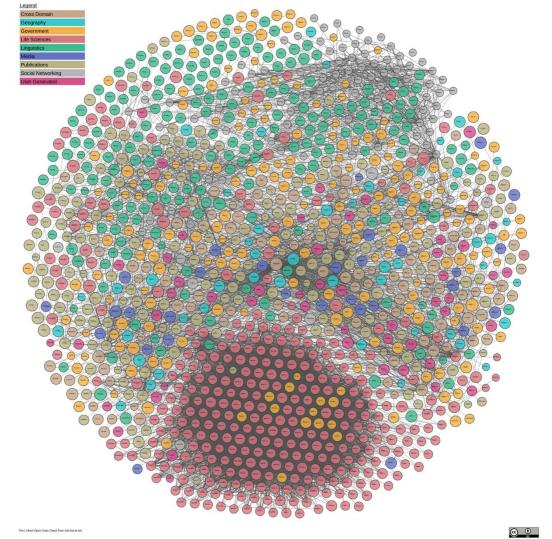
HHHEHHHHHHHHGHHHHFHHHHHHHHDFDHHBHFDDFEFEFF>G<CCCE

http://dbpedia.org/resource/RAC1

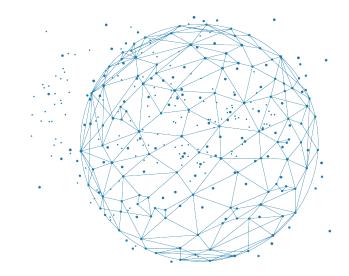



abstract Rac1, also known as toxin substrate 1, is cells. It is encoded b can produce a variet versions of the Rac1 carry out different fu

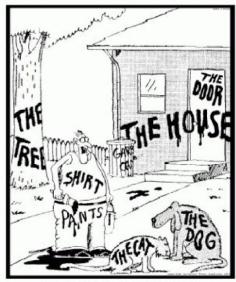
Rac1, also known as Ras-related C3 botulinum toxin substrate 1, is a protein found in human cells. It is encoded by the RAC1 gene. This gene can produce a variety of alternatively spliced versions of the Rac1 protein, which appear to carry out different functions. (en)


Wikipedia ... for humans

aluggag homogetesis



<pre>LECT DISTINCT ?gene ?entrez_id ?uniprot_idWHERE {</pre>	entrez_id	d uniprot_id
?gene dbo:abstract ?abstract . http://dbpedia.org/resource/DsbA	"948353"	" POAEG4"
http://dbpedia.org/resource/Cholinesterase	"590"	"P06276"
FILTER (regex(?abstract, "toxin")).	"590"	"P22303"
?gene dbo:entrezgene ?entrez id . http://dbpedia.org/resource/Cholinesterase	"43"	"P06276"
OPTIONAL {?gene dbo:uniprot ?uniprot id .	"43"	"P22303"
http://dbpedia.org/resource/Clostridium_perfringens_alpha_to	<u>cin</u> "988262"	1
http://dbpedia.org/resource/Lymphotoxin	"4049"	"P01374"
http://dbpedia.org/resource/Lymphotoxin	"4049"	"Q06643"
http://dbpedia.org/resource/Lymphotoxin	"4050"	"P01374"
http://dbpedia.org/resource/Lymphotoxin	"4050"	"Q06643"
http://dbpedia.org/resource/Casein_kinase_2	"1457"	"P19784"
http://dbpedia.org/resource/Casein_kinase_2	"1457"	"P67870"
http://dbpedia.org/resource/Casein_kinase_2	"1457"	"P68400"
http://dbpedia.org/spargl http://dbpedia.org/resource/Casein_kinase_2	"1460"	"P19784"
Virtuoso SPARQL Query Editor About Namespace Profixes Inference rules RDE views ISPARQL http://dbpedia.org/resource/Casein_kinase_2	"1460"	"P67870"
Default Data Set Name (Graph IRI) http://dbpedia.org/resource/Casein_kinase_2	"1460"	"P68400"
Query Text http://dbpedia.org/resource/Casein_kinase_2	"1459"	"P19784"
http://dbpedia.org/resource/Casein_kinase_2	"1459"	"P67870"
http://dbpedia.org/resource/Casein_kinase_2	"1459"	"P68400"
http://dbpedia.org/resource/Collagenase	"4317"	"P03956"
http://dbpedia.org/resource/Collagenase	"4317"	"P22894"
http://dbpedia.org/resource/Collagenase	"4312"	"P03956"
http://dbpedia.org/resource/Collagenase	"4312"	"P22894"
(Security restrictions of this server do not allow you to retrieve remote RDF data, see details.) Results Format:	"2980"	"Q02747"
Execution timeout: 30000 milliseconds (values less than 1000 are ignored) Options: Strict checking of void variables http://dbpedia.org/resource/Macrophage_inflammatory_protein	6348"	"P10147"
□ Log debug info at the end of output (has no effect on some queries and output formats) □ Generate SPARQL compilation report (instead of executing the query)	<u>1</u> "6348"	"P13236"
(The result can only be sent back to browser, not seved on the server, see details) http://dbpedia.org/resource/Macrophage_inflammatory_protein	<mark>1</mark> "6351"	"P10147"
http://dbpedia.org/resource/Macrophage inflammatory protein	6351"	"P13236"

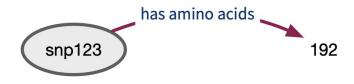

Representing Knowledge Graphs

There has to be a better way

O. Dameron

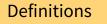
"Now! *That* should clear up a few things around here!"

Definitions

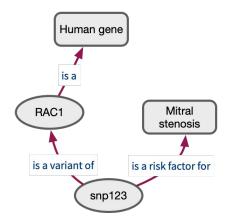

- an RDF statement represents a relationship between two entities: the subject and the object
- (2) the **predicate** represents the nature of their relationship
- (3) the relationship is phrased in a directional way (from subject to object) and is called in RDF a property
- (4) RDF statements are called **triples**: they consist of three elements they
- (5) Nodes are **URIs** to identify **named entities** on the web or **Literals** to represents text, numbers

<http://RAC1> <http://is_a> <http://Human_Gene> .

<http://snp123> <http://is_a_variant_of> <http://RAC1> .



<http://RAC1> <http://has_amino_acids> 192 .


Definitions

- A graph structure is formed with a set of nodes (resources) and edges(relationships between resources)
- (2) A set of RDF triples is called an RDF graph. RDF is a **directed**, **labeled graph** data format for representing information in the Web.

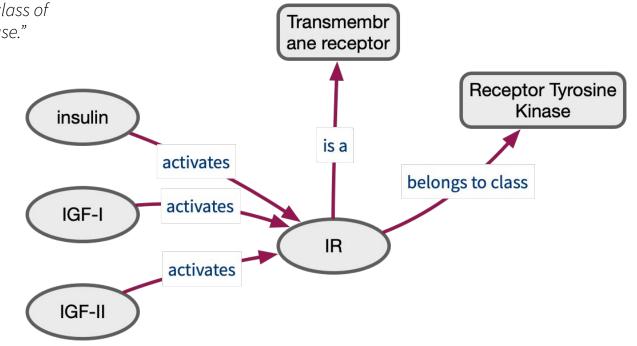
- (1) One line per triple, each element separated by space, each triple endswith a .
 S P O .
- (2) If two triples describe the same subject, you can reuse it:
- (3) If two triples describe the same subject and predicate, you can reuse it:
 - $S \ P \ O_1$, O_2 .

@prefix ns: <<u>http://my/namespace/</u>> .

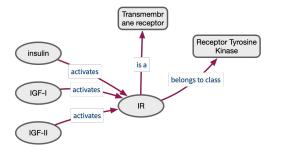
ns:RAC1	rdf:type	ns:Human_gene .
ns:snp123	ns:is_a_variant_of	ns:RAC1 ;
	ns:is_a_risk_factor_of	ns:Mitral_stenosis

Exercise

From wikipedia : "The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase."


- 1. Draft a graphical representation of the associated knowledge graph.
 - \checkmark Identify verbs \rightarrow predicates
 - ✓ Identify linked entities, who is a subject of a relation ? who is the object of a relation ?
- 2. Give the **RDF syntax** for this KG.

Practice ...



In practice ...

"The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase."

In practice

@prefix ns: <<u>http://my/namespace/</u>> .

ns:insulin	ns:activates	ns:IR .
ns:IGF_I	ns:activates	ns:IR .
ns:IGF_II	ns:activates	ns:IR .

ns:IR rdf:type ns:TransmembraneReceptor ;
Ns:belongs_to_class ns:ReceptorTyrosineKinase .

In practice ...

https://legacy.uniprot.org/uniprot/P06213.ttl

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix up: <http://purl.uniprot.org/core/> .
@prefix annotation: <http://purl.uniprot.org/annotation/> .

<P06213> rdf:type up:Protein ; up:citation citation:2859121 , citation:2983222 , up:annotation annotation:PRO_0000016687 , annotation:PRO_0000016689 , annotation:VAR 015924 .

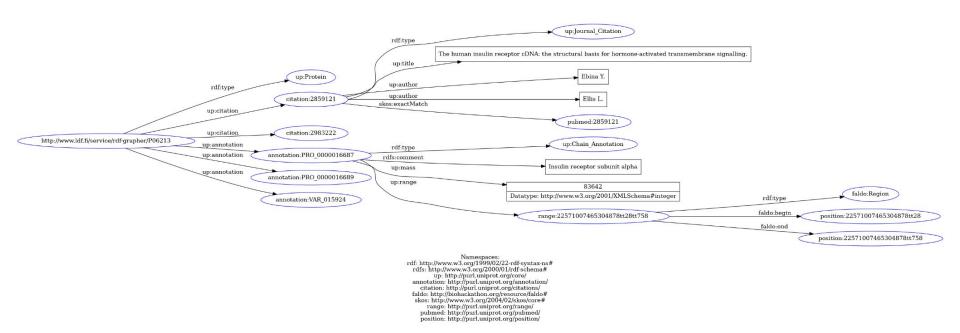
citation:2859121 rdf:type up:Journal_Citation ;

up:title "The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling." ; up:author "Ebina Y." , "Ellis L." ;

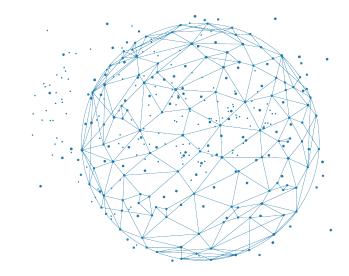
skos:exactMatch pubmed:2859121 .

annotation:PRO_000016687 rdf:type up:Chain_Annotation ;
rdfs:comment "Insulin receptor subunit alpha" ;
up:mass 83642 ;
up:range range:22571007465304878tt28tt758 .

- range:22571007465304878tt28tt758 rdf:type faldo:Region ;
 faldo:begin position:22571007465304878tt28 ;
 - faldo:end position:22571007465304878tt758 .

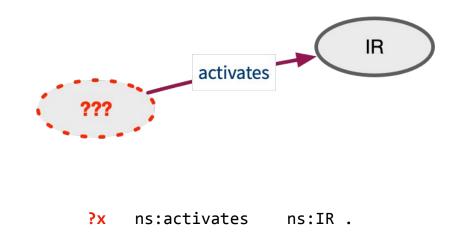

Exercice

1. Draft the knowledge graph associated to the RDF triples of the P06213 Uniprot entity.


Practice ...

https://www.ldf.fi/service/rdf-grapher

Querying with graph patterns

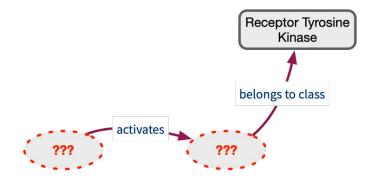

Triple patterns (TP)

SPARQL is the W3C language to query multiple data sources expressed in RDF.

The principle consists in defining a graph pattern to be matched against an RDF graph.

Definition

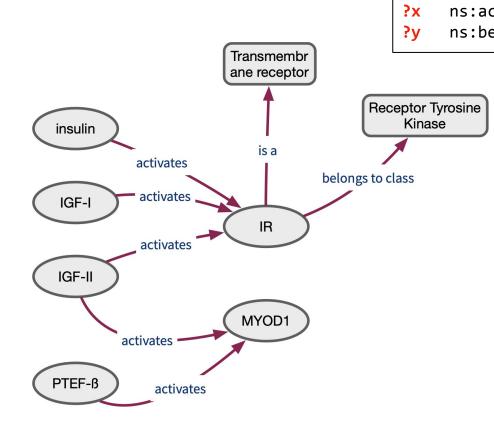
Triple Patterns (TPs) are like RDF triples except that each of the subject, predicate and object may be a **variable**. Variables are prefixed with a **?**. Give me all known activators of IR?



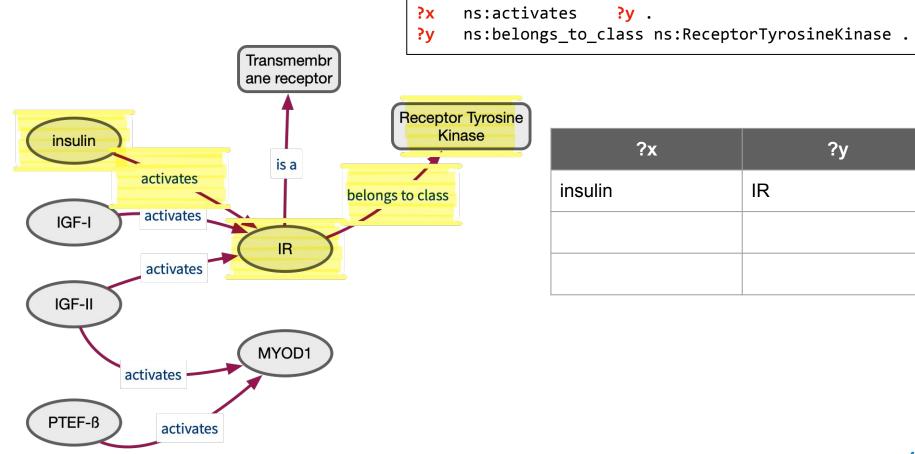
Definition

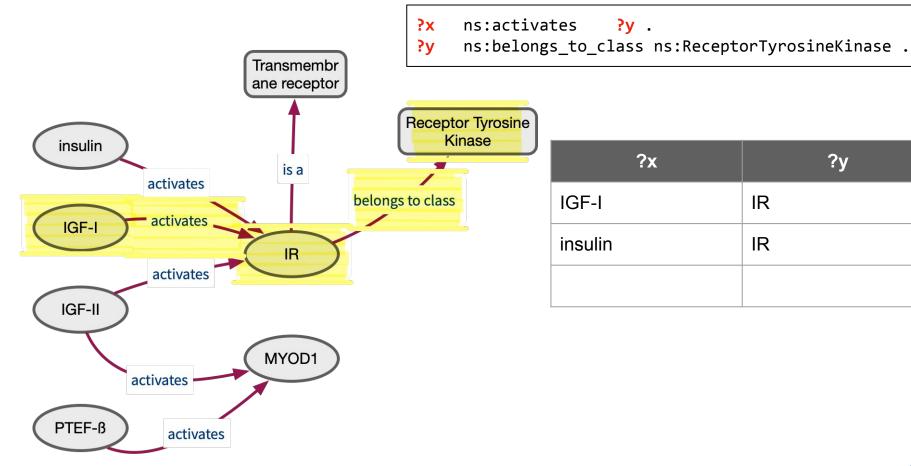
Basic Graph Patterns (BGPs) consist in a set of triple patterns to be matched on an RDF graph.

Give me **all** known activators of **any** Receptor Tyrosine Kinase ?

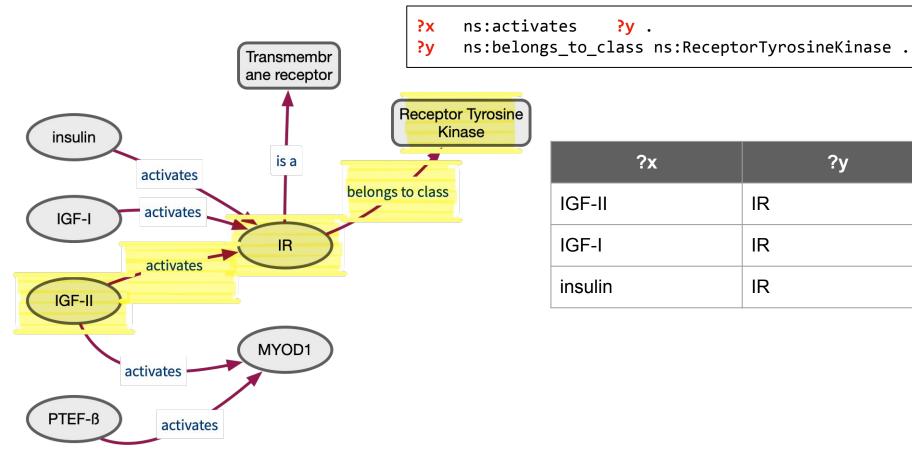

→ all entities that activate something that belongs to class "Receptor Tyrosine Kinase"

?x ns:activates ?y .
?y ns:belongs_to_class ns:ReceptorTyrosineKinase .

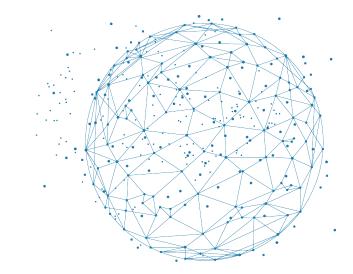




tes ?y . s_to_class ns:Recepto	orTyrosineKinase .
?x	?у



?у



	1 -	PREFIX rdf:	<http: 02="" 1999="" 22-rdf-syntax-ns#="" www.w3.org=""></http:>	
	2	PREFIX rdfs:	<http: 01="" 2000="" rdf-schema#="" www.w3.org=""></http:>	
Shortcuts	3	PREFIX dc:	<http: 1.1="" dc="" elements="" purl.org=""></http:>	
	4	PREFIX wp:	<http: vocabularies.wikipathways.org="" wp#=""></http:>	
definition	5	PREFIX dcterms:	<http: dc="" purl.org="" terms=""></http:>	
aetinition	б	PREFIX identifie	ers: <http: ensembl="" identifiers.org=""></http:>	
	7	PREFIX atlas: <h< th=""><th>http://rdf.ebi.ac.uk/resource/atlas/></th><th></th></h<>	http://rdf.ebi.ac.uk/resource/atlas/>	
	8	PREFIX atlastern	<pre>ms: <http: atlas="" rdf.ebi.ac.uk="" terms=""></http:></pre>	
	9	PREFIX efo: <htt< th=""><th>tp://www.ebi.ac.uk/efo/></th><th></th></htt<>	tp://www.ebi.ac.uk/efo/>	
	10			
Query clause	11 -	SELECT DISTINCT	?wpURL ?pwTitle ?expressionValue ?pvalue where	{
0	12			•
	13 -	SERVICE <https: <="" th=""><th><pre>//www.ebi.ac.uk/rdf/services/atlas/sparql> {</pre></th><th>T</th></https:>	<pre>//www.ebi.ac.uk/rdf/services/atlas/sparql> {</pre>	T
T	14	?factor rdi	f:type efo:EFO_0000270 .	
1	15	?value atla	asterms:hasFactorValue ?factor .	
BGP	16	?value atla	asterms:isMeasurementOf ?probe .	
	17	?value atla	asterms:pValue ?pvalue .	QUEVIA
1	18	?value rdfs	s:label ?expressionValue .	Query pattern
	19	?probe atla	asterms:dbXref ?dbXref .	a attaine
1	20	}		pullern
•	21	?pwElement	dcterms:isPartOf ?pathway .	
RCD I	22	?pathway do	c:title ?pwTitle .	
•	23	?pathway do	c:identifier ?wpURL .	
• 3	24	?pwElement	wp:bdbEnsembl ?dbXref .	
1	25	}	1' 1'	•
3	26	ORDER BY ASC(?pv	value) modifier	

.

1.1.1

Reasoning with Knowledge graphs

Handle synonyms (from PubMed https://pubmed.ncbi.nlm.nih.gov/)

- Look for articles about "vitamin c" in full text search
- Look at the MeSH annotations
- Look for the MeSH term vitamin C and the articles it annotates
- Look for the MeSH term ascorbic acid and the articles it annotates

Handle taxonomy (from the MeSH https://www.nlm.nih.gov/mesh/)

- Look for cardiovascular disease
- Select the relevant MeSH term (<u>https://meshb.nlm.nih.gov/record/ui?ui=D002318</u>)
- Look at its synonyms and its descendants
- Add it to the search builder
- Search on PubMed

Synonyms and taxonomy are handled transparently

In the GO website (<u>http://geneontology.org/</u>)

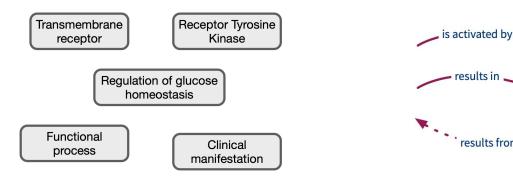
- Look for "glucose metabolic process"
- Select "ontology" in the radio box
- Select the relevant GO term (<u>http://amigo.geneontology.org/amigo/term/GO:0006006</u>)
- Select either the "graph view" or the "inferred tree view"
 - Visualise the GO term ancestors
 - Visualize the GO term descendants
- For Homo sapiens, how may proteins, miRNA, etc are annotated by this GO term (or one of its descendants)?

Definitions

"[...] an explicit specification of a conceptualization" (Gruber, 1993)

"[...] a formal specification of a shared conceptualization" (Borst, 1997)

Explicit → a machine does not spontaneously "understand", "infer" or "reason"


Conceptualization → a knowledge model aimed at reducing the complexity (generalizing) real facts

Formal \rightarrow reasoning mechanisms must be correct for reliable deductions

Shared \rightarrow domain knowledge result from the consensus of expert communities

The **insulin receptor** (**IR**) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase.^[5] Metabolically, the insulin receptor plays a key role in the regulation of glucose homeostasis, a functional process that under degenerate conditions may result in a range of clinical manifestations including diabetes and cancer.

How these concepts are related together ?

How these relations link concepts together ?

Do they allow deductions?

Toy example

is activated by activates Protein Functional results in process sub-class of Clinical sub-class of manifestation Receptor Regulation of glucose homeostasis sub-class of sub-class of sub-class of Transmembrane sub-class of receptor Receptor tyrosine kinase Diabetis Cancer model belongs to class instances is a plays a role in insulin is activated by IGF-I is activated by IR IGF-II is activated by

•

RDF-Schema aims at providing a simple vocabulary to **organize domain-specific knowledge** through classes (**concepts**) and properties (**relationships**).

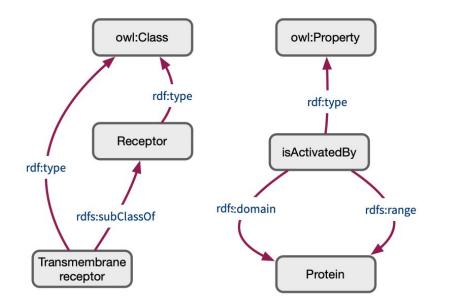
Class VS Instances

Resources may be classified into groups called **classes**. The members of a class are known as **instances** of the class. The rdf:**type** property is used to state that a resource is an instance of a class (« is a » relation).

Defining ontologies

- rdf:**type**: to state that a resource is an instance of a class
- owl:Class & owl:Property to define specific classes or properties
- rdfs:subClassOf: to state that all the instances of one class are instances of another
- rdfs:subPropertyOf: to state that all resources related by one property are also related by another

- rdfs:range: a constraint on the class membership(s) for values of this property
- rdfs:domain: a constraint on the class membership(s) for resources having this property
- rdfs:label, rdfs:comment


@prefix etbii: <http://our-namespace#> .
@prefix wikipedia: <https://en.wikipedia.org/wiki/>

etbii:TransmembraneReceptor rdf:type owl:Class ;
 rdfs:subClassOf etbii:Receptor ;
 rdfs:seeAlso wikipedia:Cell_surface_receptor .

etbii:Receptor rdf:type owl:Class ;
 rdfs:subClassOf etbii:Protein .

etbii:Protein rdf:type owl:Class .

etbii:isActivatedBy rdf:type owl:Property .
 rdfs:domain etbii:Protein ;
 rdfs:range etbii:Protein .

	~ <	> 0	0		i bi	oportal.bi	oontology.org	ି ସହ			Û H				
0					Welco	me to the N	ICBO BioPortal	NCBO BioPortal							
D Bi	oPort	al ^{on}	tologies	Search	Annotati	or Rec	ommender	Mappings		Login	Supp				
7th. During	this period	d, the Bio	Portal sys	tem will	not proce	ss new s	submissions	January 13th thro s, and will not reta elete. Thank you fo	in any metadata	a change					
V	Velcor	ne to	BioF				's most ontologi	compreher ies	isive repos	itory o	of				
Search	for a class						Find an	ontology							
Enter	a class, e.g	a. Melano	ma		Q		Start typing ontology name, then choose from								
Advanc	ed Search						Browse Ontologies -								
Ontolo	gy Visits (D	ecember	2022)				BioPort	al Statistics							
MED	DRA						Ontolog	gies			1,044				
SNOME							Classes	3		14,0	54,427				
1	ото						Propert	ies			36,286				
RXNC															
More	0 5,I	000 10,00	0 15,000	20,000 2	5,000 30,00	00	Mappin	igs.		79,0	36,946				
PRODUC	rs		SUPP	ORT			ABOUT		CONNEC	r					
BioPortal BioPortal	REST API		Conta Docun NCBO	nentatior			About Us Mission & Team	Vision	f 🛩	0					

Human Phenotype Ontology Last uploaded: December 15, 2022		1 0 A 🕯 E
Summary Classes Properties Notes	Mappings Widge	ts
Jump to:	Details Visualization	Notes (0) Class Mappings (18)
a All	Preferred Name	Type II diabetes mellitus
 Blood group Clinical modifier Frequency Mode of inheritance Past medical history Phenotypic abnormality Abnormality of blood and blood-forming i Abnormality of head or neck Abnormality of metabolism/homeostasis Abnormal cellular physiology Abnormal culating metabolite concent 	Synonyms	Noninsulin-dependent diabetes mellitus Noninsulin dependent diabetes mellitus Type II diabetes Diabetes mellitus, noninsulin-dependent Diabetes mellitus type 2 NIDDM diabetes NIDDM Diabetes mellitus Type II Type 2 diabetes
Abnormal CSF metabolite concentration Abnormal CSF protein concentration Abnormal drug response Abnormal enzyme/coenzyme activity	Definitions	A type of diabetes mellitus initially characterized by insulin resistance and hyperinsulinemia and subsequently by glucose interolerance and hyperglycemia. Persons with type II diabetes mellitus rarely develop ketoacidosis.
 Abnormal erythrocyte sedimentation rat Abnormal homeostasis 	ID	http://purl.obolibrary.org/obo/HP_0005978
Abnormal energy expenditure Abnormal glucose homeostasis	comment	Persons with type II diabetes mellitus rarely develop ketoacidosis.
Abnormal blood glucose concentrati Glucose intolerance Diabetes mellitus Diabetic ketoacidosis	database_cross_reference	SNOMEDCT_US:44054006 MSH:D003924 UMLS:C0011860
 Insulin-resistant diabetes mellitu: Maternal diabetes Maturity-onset diabetes of the yc 	definition	A type of diabetes mellitus initially characterized by insulin resistance and hyperinsulinemia and subsequently by glucose interolerance and hyperglycemia.
Type I diabetes mellitus Type II diabetes mellitus Impaired glucose tolerance	has_alternative_id	HP:0005965 HP:0100652
Hyperinsulinemia Impaired gluconeogenesis Increased proinsulin:insulin ratio Insulin insensitivity Husulin resistance Abnormality of acid-base homeostasis Abnormality of fluid regulation Abnormality of fluid regulation Abnormality of fluid regulation Abnormality of fluid regulation	has_exact_synonym	Noninsulin dependent diabetes mellitus Type II diabetes Diabetes mellitus, noninsulin-dependent NIDDM diabetes mellitus Non-insulin-dependent diabetes NIDDM Diabetes mellitus Type II Type 2 diabetes
Abnormal metabolism	has_obo_namespace	human_phenotype
 Abnormal aslivary metabolite concentra Abnormal stool composition Abnormal tissue metabolite concentration 	has_related_synonym	Noninsulin-dependent diabetes mellitus Diabetes mellitus type 2

W3C

RDF 1.1 Semantics

W3C Recommendation 25 February 2014

This version: http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/ Latest published version: http://www.w3.org/TR/rdf11-mt/ Test suite: http://www.w3.org/TR/2014/NOTE-rdf11-testcases-20140225/ Implementation report: http://www.w3.org/2013/rdf-mt-reports/index.html Previous version: http://www.w3.org/TR/2014/PR-rdf11-mt-20140109/ **Previous Recommendation:** http://www.w3.org/TR/rdf-mt/ Editors: Patrick J. Hayes, Florida IHMC Peter F. Patel-Schneider, Nuance Communications Please check the errata for any errors or issues reported since publication.

The English version of this specification is the only normative version. Non-normative translations may also be available.

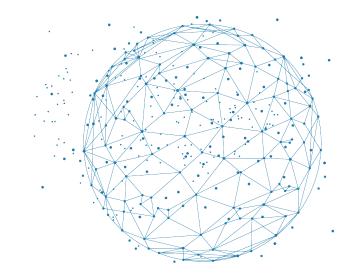
Copyright © 2004-2014 W3C[®] (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply

Inference rules to produce new logical facts, or to check for logical soundness (satisfiability)

Deduce the multiple **types** of an entity based on **class hierarchies**

Deduce the **types** of entities exploiting the definition of **relations**

... more possibilities with OWL (Web Ontology Language) and Description Logics (DL)



From the specification of a "link", how to infer the type of a linked entity?

RDFS er	ntailment patterns.						
	If S contains:	then S RDFS entails recognizing D:					
rdfs1	any IRI aaa in D	<pre>aaa rdf:type rdfs:Datatype .</pre>					
rdfs2	aaa <mark>rdfs:domain</mark> XXX . yyy aaa zzz .	yyy rdf:type xxx .	IF	x	rdfs:domain	Y	
rdfs3	aaa rdfs:range xxx . yyy aaa zzz .	<pre>ZZZ rdf:type XXX .</pre>					
rdfs4a	ххх ааа ууу .	XXX rdf:type rdfs:Resource .					
rdfs4b	ххх ааа ууу.	<pre>yyy rdf:type rdfs:Resource .</pre>	AND	(a)	Х	(b)	
rdfs5	<pre>XXX rdfs:subPropertyOf yyy . yyy rdfs:subPropertyOf ZZZ .</pre>	XXX rdfs:subPropertyOf ZZZ .					
rdfs6	<pre>XXX rdf:type rdf:Property .</pre>	<pre>XXX rdfs:subPropertyOf XXX .</pre>					
rdfs7	aaa <mark>rdfs:subPropertyOf</mark> bbb . xxx aaa yyy .	xxx bbb yyy .	THEN	a	rdf:type	Y	
rdfs8	<pre>XXX rdf:type rdfs:Class .</pre>	<pre>XXX rdfs:subClassOf rdfs:Resource .</pre>		a	rui.type		
rdfs9	XXX rdfs:subClassOf yyy . ZZZ rdf:type XXX .	ZZZ rdf:type yyy .					
rdfs10	<pre>XXX rdf:type rdfs:Class .</pre>	xxx rdfs:subClassOf xxx .					
rdfs11	<pre>XXX rdfs:subClassOf yyy . yyy rdfs:subClassOf ZZZ .</pre>	XXX rdfs:subClassOf ZZZ .					
rdfs12	<pre>XXX rdf:type rdfs:ContainerMembershipProperty .</pre>	<pre>XXX rdfs:subPropertyOf rdfs:member .</pre>					
rdfs13	<pre>XXX rdf:type rdfs:Datatype .</pre>	<pre>XXX rdfs:subClassOf rdfs:Literal .</pre>				Protein	
\langle	IR is activated by	insulin	a = IR b = ins		IR	< .	rdf:type insulin
(70			X = is Y = Pro	activated by tein		is activated by	

https://www.w3.org/TR/rdf11-mt/

Multi-omics and multi-approach

ICAN cohort : 34 univ. hospitals / 3400 subjects

- 3000 MRIs
- 1000 genotypes (2000 more expected)
- 93 exomes
- 600 whole genomes (under processing)

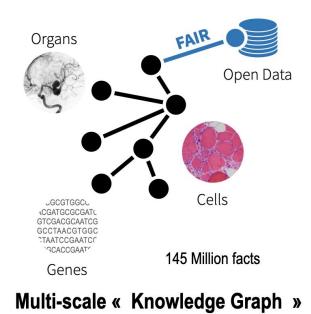
risk of rupture ?

Maxime Folschette

Kirsley Chenner

Bridging imaging-omics-clinical data: **INEX-MED**

iCU3E



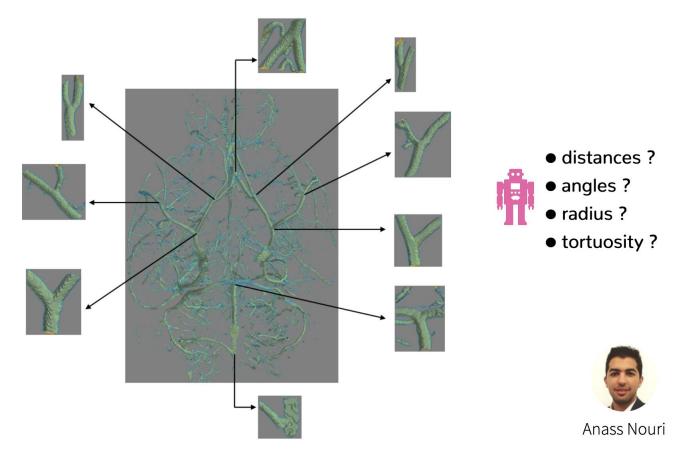
INSTITUTDE

MYOLOGIE

Intracranial aneurysms (3.2 % world population) Congenital myopathies (rare diseases)

Predict Explain

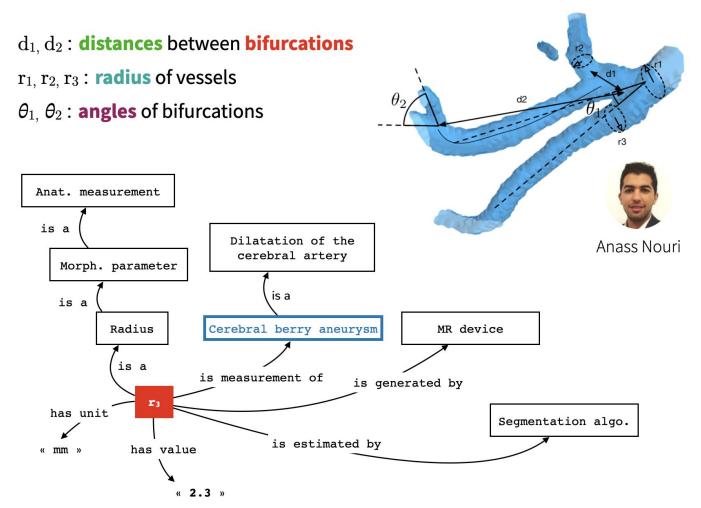
Statistics Reasoning Machine learning



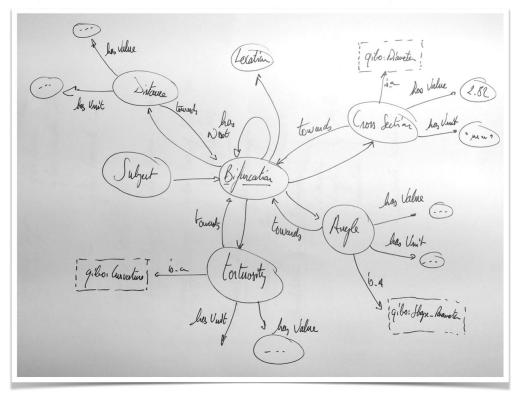
@Strasbourg

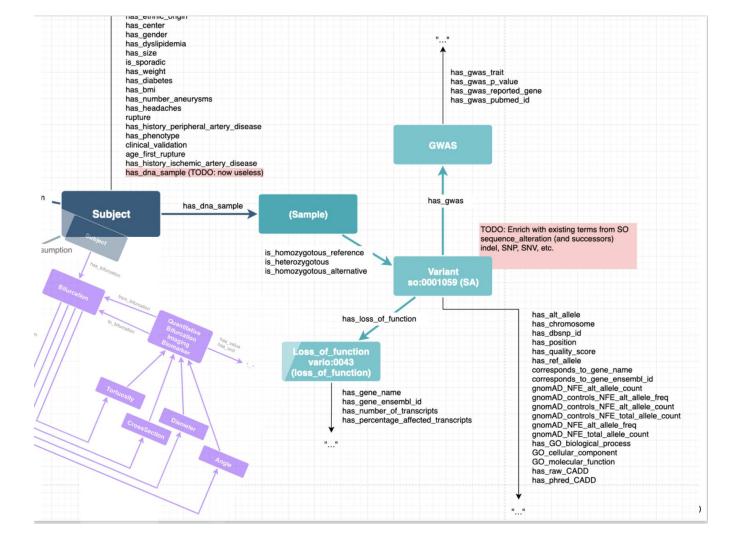
Association between imaging phenotypes - « omics » signatures ? Patients with high/low aneurysm rupture risk ?

Quantifications of cerebral artery bifurcations


Anass Nouri, Florent Autrusseau

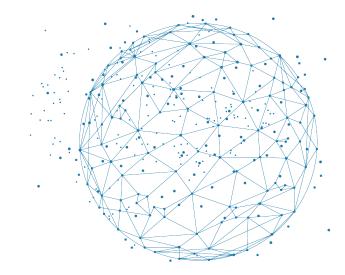
Quantifications of cerebral artery bifurcations


Anass Nouri, Florent Autrusseau


X coord	Y coord	Z coord	centrers bifs ID	CS (to neighbor1)	CS (to neighbor2)	CS (to neighbor3)	CS (to neighbor4) neighbor1 ID	neighbor2 ID	neighbor3 ID	neighbor4 ID	FB1	FB2	FB3	Dist. to FB1	Dist. to FB2	Dist. to FB3
176	241	0		2.82842712474619	2.9428090415820	4.93223042511211	-1		2		-	-1	-1	1	-1		5
212	275	0		4.47213595499958		5.21895141649746				-	-	1 -1	3	-1	-1		
186	299	0		2.55228474983079		2.94280904158206			22				-	-1	-1		-
195	273	4		-1	-	3.21895141649746			4		-		-1	-1	5		
	230.666666			-1		-1					15		-	-1	5		-
122 50	240 162	10		-1 2.82842712474619		3.97874585671244			10					-1	-1	i -1 3	-
	139.666666	25		2.82842/124/4619		-1			26				-	-1	-1		
127	223	25		3.82136720504592	· ·	-1	-1	-	13				-	-1	23		
111	223	20		-1		4.15737865166653			11				-1	-1			
132.5	222.5	34			4.1573786516665	-1	-1		26					-1	-1		-1
171	225	34		-1		4	-1		19				-1	-1	4	-1	
	218.33333	36.333333		3.31207919004578	2.9428090415820	4.15737865166653	-1		41	19		-1	-1	9	-1	-1	78
124	176	38	29	5.63299316185545	3.8856180831641	4	-1	49	38	3 31		30	-1	-1	18	-1	
173					4.3147573033330	4.15737865166653	-1			38		8				-1	-
128.666666		38.333233	31	4.70966340149732	4.1573786516665	6.60262336462821		35		14	1				27	-1	-
202		-18		4.61441712195517	4 1573700510	5 009321 1001044		+	00	35	10	23	0	0	10	-1	-
138		9		71 762 62 8	ГАТ			36			11	- 2		10	29	-1	-
113	200	1	nte	1: 3786 33	276 49			32	6		/ U l	U	-		• 22	-1	-1
147	229															-1	-1
114	239	41														-1	-1
84	62				3.2189514164974	5.10456949966159 101595-0059	-1		60		2					-1	-1
48 214	119			3.9787458 1124				34	rn.	nr				-1		-1	
214	185			3.9787458 1124				24								-1	-1
134								C 57	50	38						-1	
143	228	43						48	42							-1	-1
Angles1	Ang	les2	Angles3	Angles4	Angles5	Angles	C Tortu	ecity to poin	hbor1 To	ortuosity to n	eighbor2	Tortuo	sity to	neigh	nbor3 To	ortuosity to	neighbor 4
9.346165	92 61.219					10 9 37 37			66667								-1
6.982497	28 36 699	2252004	46.97728606104			0048 46.9772860	610453	.447117 52	5385								-1
5.524601	90 65.575	5794768	89.77008119090	35 25.5246019	011, 65.5755794	7681 89.7700811	909635 0	.434782608	695652	0.3811188	81118881	0.	47883	59788	35979		-1
9.616568	23 75.121	1354659	72.07978686060	077 39.6165682	339 75.1211354	596 72.0797868	606077		-1	0.4056372	54901961	0.	38690	47619	04762		-1
-	1	-1		-1	-1	-1	-1		-1		-1				-1		-1
-	1	-1		-1	-1	-1	-1		-1		-1			0.4	71875		-1
-	1	-1		-1	-1	-1	-1 (.406666666	666667		-1				-1		-1
9.811050	20 67.346	0505207	18.29113790830	32 99.81105020	024 67.3460505	2073 18.2911379	083032		-1		-1				-1		-1
3.736047	28 26.084	5415520	74.4986404330	63 83.7360472	800 26.0845415	5204 74.4986404	433063	0.	471875	0.3787878	78787879				-1		-1
	1	-1		-1	-1	-1	-1		-1	0.4393939	39393939	0.	40126	98412	69841		-1
1.563109	85 83.017	5027120	35.8609692198	911 61.5631098	511 83.0175027	1208 35.8609692	198911 ().328502415	458937	0.3647058	82352941				-1		-1
-	1	-1		-1	-1	-1	-1		-1		-1	0.	36470	58823	52941		-1
6.789089	23 66.401	7912129	58.24859258384	08 56.7890892	391 66.4017912	1297 58.2485925	838408 0).425925925	925926	0.5060606	06060606	0.	40126	98412	69841		-1
2.574595	95 79.897	3882083	84.83729875636	339 22.5745959	504 79.8973882	0831 84.8372987	563639 0	.341666666	666667		0.25	0.	35555	55555	555556		-1

BrainHack project

« From MS excel sheets to semantic bioimaging markers : representing and querying cerebral vascular measures with the QIBO ontology »



SELECT * WHERE {

Search variants

?subject ican:has_dna_sample ?sample . ?sample ican:is_heterozygotous ?variant . ?variant ican:has_chromosome "19"; ican:has_position ?position ; ican:has_alt_allele ?alt_allele ; ican:has_ref_allele ?ref_allele . FILTER (?position > 10092337 && ?position < 10106407) # dbSNP identifier OPTIONAL { ?variant ican:has_dbsnp_id ?dbSNPid . } # First aneurysm rupture: age and localisation OPTIONAL { ?subject ican:age_first_rupture ?ageRupt . } **OPTIONAL** { ?subject ican:loc_first_rupture ?locRupt . }

Keep in mind

Complex data analyses require fine-grained, explicit descriptions

- Annotate your data with RDF to assemble knowledge graphs (KGs)
- Support future integration by referring to other Knowledge Graphs: URIs
- Formalize domain knowledge with ontologies: RDFS, OWL
- Mine (multiple) KGs with graph patterns: (federated) SPARQL queries

Advantages

- Graphs for humans & machines
- Semantic heterogeneity
- Established web technologies
- Technological framework
 for F * I R principles
- De-centralized: many query-able datasets published on the web (Linked Data Cloud)

Disadvantages

- Semantic heterogeneity (many Life Science ontologies ...)
- Reliability of external SPARQL endpoints
- No graphical user interfaces... learn RDF syntaxes and SPARQL query language
- Scalable querying is still a hot research topic ...

Going further

- Bob DuCharme
 - What is RDF? <u>http://www.bobdc.com/blog/whatisrdf/</u>
 - What is RDFS? <u>http://www.bobdc.com/blog/whatisrdfs/</u>
 - SPARQL in 11 minutes <u>https://www.youtube.com/watch?v=FvGndkpa4K0</u>
 - Learning SPARQL, 2nd ed. O'Reilly
- <u>https://www.w3.org/TR/rdf11-primer/</u>
- https://www.w3.org/TR/sparql11-query/
- <u>https://www.slideshare.net/LeeFeigenbaum/sparql-cheat-sheet</u>
- http://www.wikipathways.org/index.php/Help:WikiPathways_Sparql_queries
- https://www.fun-mooc.fr/fr/cours/web-semantique-et-web-de-donnees/

Questions?

olivier.dameron@univ-rennes1.fr alban.gaignard@univ-nantes.fr

🌵 Inserm

