

alliance nationale pour les sciences de la vie et de la santé

Atelier scRNA-seq Check your signal with a genome browser IGV

Sophie Lemoine, IBENS - GenomiqueENS, Paris

École de bioinformatique AVIESAN-IFB-INSERM 2023

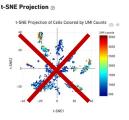
Organisation of the scRNA-seq course

- From cells to nucleotide sequences (reads)
 - focus on the 10X genomics technology
 - how are the reads organised
- Preprocessing : from reads to raw count matrix
 - quality check (FASTQC)
 - o mapping (STAR)
 - how is annotation used
 - barcode and UMI treatment
 - visualizing the reads
 - constructing the count matrix
 - o call cells / empty droplets filtering

Single cell analysis is about counts so why visualizing the reads in a genome browser ?

- You do not understand the counts on your favourite gene ?
- The global results look weird ?
- ightarrow Your reads may not overlap the gene positions...

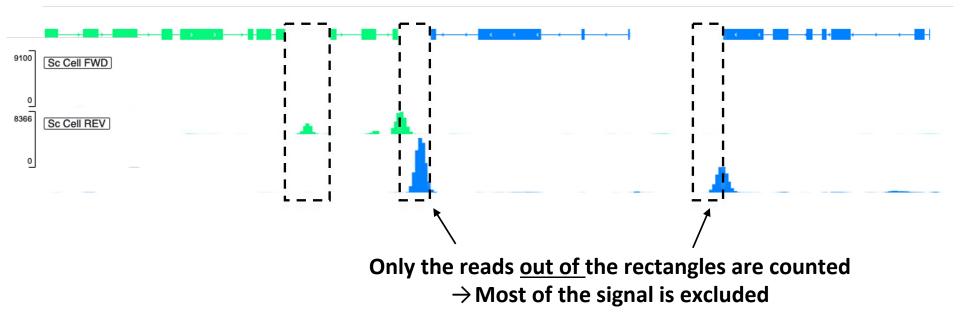
Bad counts result in poor and even fake results


Alerts

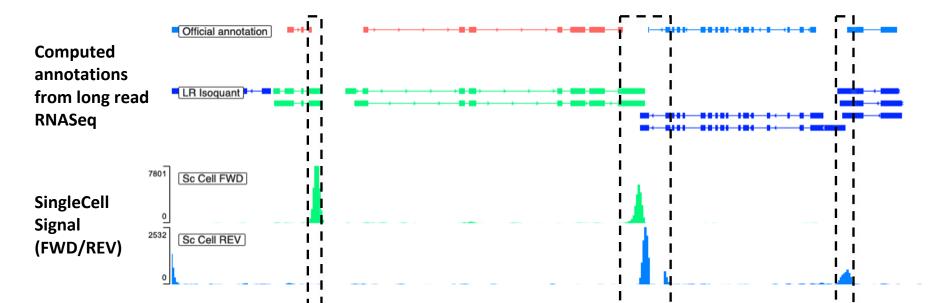
 The analysis detected A 1 warning.

 Alert
 Value
 Detail

 A Low Fraction Reads
 23.3%
 Ideal > 30%. This can indicate use of the wrong reference transcriptome, a reference transcriptome with overlapping genes, poor library quality, poor sequencing quality, or reads shorter than the recommended minimum. Application performance may be affected.


 \rightarrow The clusters are then based on a very limited amount of reads and will not be reliable

→ If the counted reads are low, the estimated number of cells will be smaller (relies on a smaller amount of BC+UMIs)


What is not annotated cannot be counted

- If the gene annotations are deduced from the protein annotations, the 5' and 3' UTRs (10x data) are not included
- If you work on a not so popular model organism or cancer data, annotations may not fit your data
 - > It's clearly an issue for single cell analyses

Compute a new annotation using bulk RNASeq data (short and long reads)

You can build a **new annotation** using either **long or/and short read protocoles** (but stranded if possible) and tools such as **Isoquant**, **Stringtie2**, etc...

Before and after re-annotation analyses

	Official annotation	Isoquant annotation
Estimated Number of Cells	2114	2624
Reads Mapped to Genome	82	82
Reads Mapped Confidently to Genome	79,9	80,2
Reads Mapped Confidently to Intergenic Regions	46,3	11,4
Reads Mapped Confidently to Intronic Regions	3,6	1,4
Reads Mapped Confidently to Exonic Regions	30	67,4
Reads Mapped Confidently to Transcriptome	23,3	66,1
Reads Mapped Antisense to Gene	0,5	2

Integrative Genome viewer (IGV) is the most popular Genome Browser

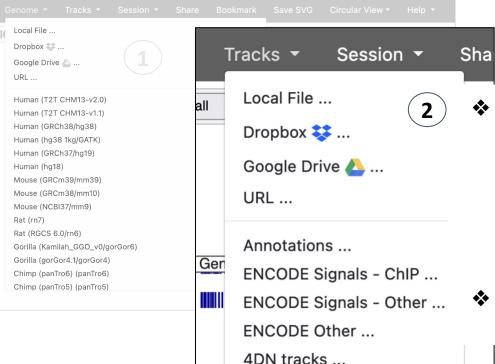
- IGV is a java multiplatform tool : It will work under Linux, macOSX and Windows
- IGV is open, free, lively and maintained at the Broad Institute



IGV is available in multiple forms

- the original IGV a Java desktop application
- IGV-Web a web application

What do you need to use IGV ?



How to begin with IGV ?

Genome - Tracks - Session - Sha	Bookmark Save SVG	Circular View 🔻 Help 👻
Local File		
Dropbox 😝		
Google Drive 🔼		
URL	6	7 8 9 10 11
Human (T2T CHM13-v2.0)		
Human (T2T CHM13-v1.1)		
Human (GRCh38/hg38)		
Human (hg38 1kg/GATK)		
Human (GRCh37/hg19)		
Human (hg18)		•
Mouse (GRCm39/mm39)		Load a gend
Mouse (GRCm38/mm10)		
Mouse (NCBI37/mm9)		fai index file
Rat (rn7)		
Rat (RGCS 6.0/rn6)		> be sure
Gorilla (Kamilah_GGO_v0/gorGor6)		
Gorilla (gorGor4.1/gorGor4)		SC 202
Chimp (panTro6) (panTro6)		SC ana
Chimp (panTro5) (panTro5)		

- Load a genome from the list or upload a fasta file (with fai index file)
 - be sure it's the same as the genome used for your SC analysis

How to begin with IGV ?

- Load an annotation from the list or upload a gtf file
 - Again be sure it's the same as the annotation used for your SC analysis
 - Be sure it goes with your genome file (Chromosome name...)
- Load your bam, bed, bedgraph files

How to begin with IGV ?

Local File Dropbox 😻 Google Drive 🦾 URL									
Human (T2T CHM13-v2.0) Human (T2T CHM13-v1.1) Human (GRCh38/hg38) Human (hg38 1kg/GATK) Human (GRCh37/hg19) Human (bn18)	all	Tracks Sess Local File 2 Dranbay		Session St Local Fil	- S	nare	Bookmark	Save S	VG
Human (hg18) Mouse (GRCm39/mm39) Mouse (GRCm38/mm10) Mouse (NCBI37/mm9) Rat (rn7) Rat (RGCS 6.0/rn6) Gorilla (Kamilah_GGO_v0/gorGor6)	Dropbox 😻 Google Drive 🖉 URL		Dropbox Google I Load UR	Drive Fil			6	7	
Gorilla (gorGor4.1/gorGor4) Chimp (panTro6) (panTro6) Chimp (panTro5) (panTro5)	Ger	ENCODE Signais	- d II	SKBR3 -	Pacbio Sniffle	(Schatz s and Do	-	01 001 110100 11 10 101 11	
		4DN tracks		Save	3	Sav files	e you sessio S	n to a	voic

References

Single cell analysis failure and gene annotation

• Pool, AH., Poldsam, H., Chen, S. *et al.* Recovery of missing single-cell RNA-sequencing data with optimized transcriptomic references. *Nat Methods* **20**, 1506–1515 (2023).

Isoquant

- Prjibelski, A.D., Mikheenko, A., Joglekar, A. *et al.* Accurate isoform discovery with IsoQuant using long reads. *Nat Biotechnol* **41**, 915–918 (2023)
- <u>https://github.com/ablab/IsoQuant</u>

Stringtie2

- Shumate A, Wong B, Pertea G, Pertea M Improved transcriptome assembly using a hybrid of long and short reads with StringTie, *PLOS Computational Biology* 18, 6 (2022)
- <u>https://github.com/gpertea/stringtie</u>

IGV

- James T. Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander, Gad Getz, Jill P.Mesirov. Integrative Genomics Viewer. Nature Biotechnology 29, 24–26 (2011)
- <u>https://igv.org/doc/desktop/</u>