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Main RNA-Seq steps

Tissue/cells RNA cDNA Library

Differential 
analysis

Bioinformatics Sequencing

Designing the 
experiment and the 

sequencing
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Citations

"To consult a statistician after an experiment is 
finished is often merely to ask him to conduct a 

post-mortem examination. He can perhaps say what 
the experiment died of."

Ronald A. Fisher, Indian Statistical Congress, 1938, vol. 4, p 17

“While a good design does not guarantee a successful experiment, a suitably 
bad design guarantees a failed experiment”

Kathleen Kerr, Atelier Inserm 145, 2003
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Statistical modeling

Goal of an experiment: address one biological question

Result of an experiment: many numerical values

Statistical modeling consists in using a 
mathematical formula involving:

● Experimental conditions X
● Numerical values measured Y
● Parameters β linking X and Y (to be estimated), e.g.:

Y ∼ Xβ + ε
● Some hypotheses on the data variability/law, e.g.:

ε ∼ Gaussian(0, σ2)
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Starting point of the differential analysis

T0-1 T0-2 T0-3 T4-1 T4-2 T4-3 T8-1 T8-2 T8-3

gene1 151 131 183 31 35 44 19 31 18

gene2 142 134 153 650 629 783 136 241 151

gene3 157 147 166 7 10 20 8 10 8

gene4 275 249 342 70 44 91 75 64 62

gene5 4 5 2 0 0 1 2 2 3

gene6 2 0 1 0 1 2 7 3 3

gene7 4 7 3 0 0 0 0 0 0

gene8 10 16 10 28 12 10 16 33 23

gene9 12 20 24 74 84 77 10 10 9

gene10 269 262 379 112 132 138 44 33 48

gene11 10065 9593 11955 4076 3739 4137 2736 3311 2749

gene12 651 566 819 101 86 74 97 87 96

gene13 118 116 150 18 24 42 15 8 5

... ... ... ... ... ... ... ... ... ...

geneN 18 31 39 4 4 7 2 6 2

Goal: find genes differentially expressed between biological conditions
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Vocabulary

Design file:

Example:

Samples VariableV FactorF

ReplicateA-1 levelA biologicalConditionX

ReplicateA-2 levelA biologicalConditionY

ReplicateB-1 levelB biologicalConditionX

ReplicateB-2 levelB biologicalConditionY

id strain day

WT-1 WT d1

WT-2 WT d2

WT-3 WT d3

KO-1 KO d1

KO-2 KO d2

KO-3 KO d3
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Outline

1. Introduction

2. Designing the experiment

3. Description/exploration

4. Normalization

5. Modeling

6. SARTools
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Why an experimental design?

To control the variability during the experiment in order to be able to 
address the biological question:
1. What is the biological question?
2. How to estimate the associated biological variabilities?
3. How to control the technical variabilities (day, lane, run, etc.)?

Biological or technical uncontrolled effects could:
● Hide/cancel the biological effect of interest
● Wrongly increase the biological effect of interest

“Ensure that the right type of data, and enough of it, is available to answer 
the questions of interest as clearly and efficiently as possible”

http://www.stats.gla.ac.uk/steps/glossary/anova.html#expdes
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Why an experimental design?

“A good experimental design starts with a well-defined hypothesis [...]. The 
experimental design should aim to reduce the types and sources of 
variability, increase the generalizability of the experiment, and make it 
replicable and reusable. It is both easier and more cost efficient to identify 
and correct experimental design issues ahead of time than to address 
deficiencies thereafter. Thus, discussion between data-generating 
researchers and bioinformaticians is highly desirable and should occur as 
early as possible during project development and experimental design.”
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Basic comparison

id state

h1 healthy

h2 healthy

h3 healthy

cf1 CF

cf2 CF

cf3 CF

I want to find differentially expressed genes between time
0 and time 24h on cultures of E. Coli

mRNA sequencing of lung cells.

- one factor of interest : 
the state of the patients

- this factor has two levels: 
healthy and CF
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Paired samples

id state RNA extraction date

h1 healthy June 12th, 2019

h2 healthy June 20th, 2019

h3 healthy June 25th, 2019

cf1 CF June 12th, 2019

cf2 CF June 20th, 2019

cf3 CF June 25th, 2019

I want to find differentially expressed genes between time
0 and time 24h on cultures of E. Coli
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On the laboratory bench...

Time course experiment (paired)

I want to find differentially expressed genes between time
0 and time 24h on cultures of E. Coli
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On the laboratory bench...

Time course experiment (paired)

I want to find differentially expressed genes between time
0 and time 24h on cultures of E. Coli



14 |  Elise Jacquemet |  RNA-Seq data analysis  |  Nov. 2023

On the laboratory bench...

Time course experiment (unpaired)

I want to find differentially expressed genes between time
0 and time 24h on cultures of E. Coli
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Complex design

id strain infection

m1 B6 low

m2 B6 low

m3 B6 high

m4 B6 high

m5 SEG low

m6 SEG low

m7 SEG high

m8 SEG high

I want to study the effect of a virus infection level (high vs. low) 
on the transcriptome of two mouse strains (B6 vs. SEG).

Two factors of interest with 
two levels each : 

- the infection level of the 
patients (low or high)

- the mouse strain (SEG and B6)
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Interaction between two factors/variables

      m1
      m2

      m3
      m4

      m5
      m6

      m7
      m8

Low High

B6

SEG

Strain

Infection
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Interaction between two factors/variables

Interaction:
● Is the infection effect different between the two strains?
● Does the difference between the strains change according to the 

infection?

      m1
      m2

      m3
      m4

      m5
      m6

      m7
      m8

Low High

B6

SEG

Strain

Infection
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Examples of interactions
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Examples of interactions
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Examples of interactions
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Complex design with nested factors

A treatment T is applied to two CF patients and two healthy people. We 
study the initial transcriptome and after 4h of treatment.

The "patient" effect need to be taken into account, but it is nested into the 
"state" effect.

id state time patient

h1-0 healthy 0h h1

h2-0 healthy 0h h2

h1-4 healthy 4h h1

h2-4 healthy 4h h2

cf1-0 CF 0h cf1

cf2-0 CF 0h cf2

cf1-4 CF 4h cf1

cf2-4 CF 4h cf2
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Be careful with confounding effects !

id state age sex RNA extraction day experimentalist

h1 healthy 45 female July 9th, 2019 Louis

h2 healthy 52 female July 12th, 2019 Louis

h3 healthy 48 female July 15th, 2019 Louis

cf1 CF 31 male Feb 20th, 2019 Françoise

cf2 CF 25 male Feb 24th, 2019 Françoise

cf3 CF 27 male Feb 29th, 2019 Françoise

Comparison of lung cells in healthy and cystic fibrosis patients
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Status

Age

17%

82%
1%

low
low

low

Sex

Flawed design

Be careful with confounding effects !

A gene is detected as being differentially expressed between healthy 
and CF patients. Is it due to:

● The disease?
● The sex effect?
● The age effect?
● The date effect?
● The technician effect?
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Be careful with confounding effects !

Age

Status

Sex

29%

52%
18%

low

low low
low

Crossed design

Re-doing the experiment but making sure all levels of all factors are 
crossed to avoid any confusion

Possibility to distinguish every source 
of variability & their interaction : 

● The disease
● The sex effect
● The age effect
● The date effect
● The technician effect
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Biological vs. technical replicates

Individual RNA Library Sequencing

Technical 
replicates

Biological 
replicates
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Biological vs. technical replicates in RNAseq

Technical replicates:

● Several extractions of the same RNA
● Several libraries built from the same RNA extraction
● A library sequenced several times

Allow to get more sequencing depth and a better coverage. Need to sum the 
counts associated to each technical replicates.

Biological replicates:

● Parallel measurements of biologically distinct samples 
● Correspond to the variability visible in the real life 

Comment: what happens when studying fungi/yeast?
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Why replicate?

Perfect world:

No biological nor technical variability

Only one sample from each condition to conclude!

Our world:

Each individual has its own behavior

Need several biological replicates to handle variability
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Why replicate?
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Reproducibility of an experiment: 3 KO vs 3 WT
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Population: set of all mice we could measure

Sampling must be representative of the whole population under study !
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Sampling 1: selection of 3 mice per condition
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Sampling 2: non representative
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Sequencing design

Goal:
Do not add any confounding technical effect (day, lane, run, etc.) to the 
factor of interest.

Healthy 1

Healthy 2

Healthy 3

CF 1

CF 2

CF 3

Healthy 1

CF 2

Healthy 3

CF 1

Healthy 2

CF 3

Lane 1        Lane 2

Bad example Good example

Healthy 1

Healthy 2

Healthy 3

CF 1

CF 2

CF 3

Healthy 1

Healthy 2

Healthy 3

CF 1

CF 2

CF 3

Lane 1        Lane 2 Lane 1        Lane 2

Good example
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Sequencing design

Goal:
Do not add any confounding technical effect (day, lane, run, etc.) to the 
factor of interest.

Impossible to cross evenly all 
sources of technical variation

Randomize !
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Sequencing design

Technical variabilities:

● Lane
● Flowcell
● Run

lane effect < flowcell effect < run effect << biological variability

Use the same multiplexing rate for all the samples!



36 |  Elise Jacquemet |  RNA-Seq data analysis  |  Nov. 2023

Experimental design : Take-home message

Identify all the sources of variability to avoid confounding effects
- Change of biological condition (e.g. KO vs WT)
- Within replicates variability (e.g. KO1 vs KO2 vs KO3)
- Experimentalist or day effect
- RNA: quality and extraction
- Library: PCR, concentration, random priming, rRNA removal
- Sequencing machine, flowcell and lane, …

The simpler, the better : If >2 factors, the results may be very difficult to interpret

Express the biological question as accurately as possible to build an 
experimental design which will be able to address it.
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Experiments must be replicated to precisely measure the biological variability 
associated with the condition under study.

Sampling must be representative of the whole population under study

The higher the within group variability … the higher the number of biological 
replicates, in order to make sure that the whole range of variation is covered 

Experimental design : Take-home message

Ideally, use blocking … to ensure that the biological conditions are evenly distributed 
among factors that are important  unwanted) sources of variability.

… or randomization when blocking is not possible
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Outline

1. Introduction

2. Designing the experiment

3. Description/exploration

4. Normalization

5. Modeling

6. SARTools
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Starting point of the differential analysis

T0-1 T0-2 T0-3 T4-1 T4-2 T4-3 T8-1 T8-2 T8-3

gene1 151 131 183 31 35 44 19 31 18

gene2 142 134 153 650 629 783 136 241 151

gene3 157 147 166 7 10 20 8 10 8

gene4 275 249 342 70 44 91 75 64 62

gene5 4 5 2 0 0 1 2 2 3

gene6 2 0 1 0 1 2 7 3 3

gene7 4 7 3 0 0 0 0 0 0

gene8 10 16 10 28 12 10 16 33 23

gene9 12 20 24 74 84 77 10 10 9

gene10 269 262 379 112 132 138 44 33 48

gene11 10065 9593 11955 4076 3739 4137 2736 3311 2749

gene12 651 566 819 101 86 74 97 87 96

gene13 118 116 150 18 24 42 15 8 5

... ... ... ... ... ... ... ... ... ...

geneN 18 31 39 4 4 7 2 6 2

Goal: find genes differentially expressed between biological conditions
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Many plots to produce

Description sample by sample:
● Total number of reads
● Percentage of null counts
● Percentage of reads caught by the most expressed gene
● Distribution of the counts

Multivariate description of the data:
● SERE coefficient for each pair of samples [2]
● Principal Component Analysis
● Hierarchical clustering
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“It is a good approximation to say that there is a linear relationship between 
read counts resulting from a sequencing experiment and the abundance of 
each sequence in the starting RNA material.” [1]

Lane: N << M fragments

Distribution of counts data

Library: M 
fragments of RNA

RNA fragments from gene G

RNA fragments from other genes

Random 
sampling
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Distribution of counts data

Let πG = proportion of fragments of gene G:
{read R comes from gene G} ~ Bernoulli(πG)

Thus:
XG = nb. of reads from gene G ~ Binomial(N, πG) ≈ Poisson(NπG)

Lane: N << M fragments

Library: M 
fragments of RNA

RNA fragments from gene G

RNA fragments from other genes

Random 
sampling



43 |  Elise Jacquemet |  RNA-Seq data analysis  |  Nov. 2023

Distribution of counts data

With a deeper sequencing (i.e. larger N):
● Higher probability to catch lowly expressed genes
● Higher precision when estimating πG

Lane: N << M fragments

Library: M 
fragments of RNA

RNA fragments from gene G

RNA fragments from other genes

Random 
sampling
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If XG ~ Poisson(NπG):
mean(XG) = variance(XG) = NπG

Due to biological variability, we observe over-dispersion:

→ Need a statistical law with variance ≠ mean.

Distribution of counts data
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Distribution of counts data

Let xij the number of reads that align on gene i for sample j (intersection row i 
- column j of the count matrix).

xij ∼ Negative-Binomial(mean = μij, variance = σij
2)

where:
● σij

2 = μij + φi μij
2

● φi : biological dispersion of gene i

Particularity: 
the xij’s are null or positive integers.
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Descriptions sample by sample
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SERE coefficient [2]

Simple Error Ratio Estimate
Goal: assess the similarity/dissimilarity between samples

SERE(A, B)

More suited to RNA-Seq data than the Pearson/Spearman 
correlation coefficients.

= 0 if A = B
≈ 1 if A and B are technical replicates

> 1 if A and B are biological replicates
>> 1 if A and B come from different bio. conditions
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SERE coefficient: details

● 2 samples (A and B) and N genes under study
● yij = # of reads for gene i (1, …, N) and sample j (A or B)
● Lj = total # of reads (library size) for sample j
● Ei = yiA + yiB = number of reads for gene i
● Expected # of reads for gene i and sample j:

ŷij = Ei x Lj / (LA + LB)

● Expected variation for each observation yij : (yij – ŷij)
2

● Expected variation under Poisson assumption: ŷij
● Overdispersion for each gene i: si

2 = (yiA – ŷiA)2/ŷiA + (yiB – ŷiB)2/ŷiB

SERE(A, B) = sqrt((Σi=1..N si
2) / N)
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SERE coefficient: details
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SERE coefficient: example

Drawback: not very easy to interpret with many samples.

T0-1 T0-2 T0-3 T4-1 T4-2 T4-3 T8-1 T8-2 T8-3

T0-1 0 2.97 3.88 73.89 71.83 74.02 74.69 76.90 74.03

T0-2 2.97 0 3.00 72.21 70.03 72.33 72.94 75.15 72.32

T0-3 3.88 3.00 0 76.34 74.28 76.33 77.18 79.38 76.51

T4-1 73.89 72.21 76.34 0 5.83 10.42 17.27 14.93 17.99

T4-2 71.83 70.03 74.28 5.83 0 10.89 17.77 15.07 18.10

T4-3 74.02 72.33 76.33 10.42 10.89 0 19.86 18.25 20.07

T8-1 74.69 72.94 77.18 17.27 17.77 19.86 0 6.72 4.04
T8-2 76.90 75.15 79.38 14.93 15.07 18.25 6.72 0 8.22
T8-3 74.03 72.32 76.51 17.99 18.10 20.07 4.04 8.22 0
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Exploratory data analysis (EDA)

Two main tools:
● Principal Component Analysis (PCA)
● Clustering

Pre-requisite:
● Notion of distance between the samples
● Make the data homoscedastic

variance must be independent of the mean
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Variance increases with intensity
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Log-transformation
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Variance-Stabilizing Transformation [3]

Use these data to perform Exploratory Data Analysis!

Use these data to perform Exploratory Data Analysis ONLY !
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Principal Component Analysis (PCA)

Goal:
Facilitate the vision of a large (high dimensional) data set.

Method:
Project a cloud of P dots (samples) of dimension N (genes) on a subspace 
(e.g. a line or a plan) while conserving most of its structure.



56 |  Elise Jacquemet |  RNA-Seq data analysis  |  Nov. 2023

Projection: loss of information
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PCA on a fish (source: bioinfo-fr.net)
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PCA on a fish (source: bioinfo-fr.net)
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PCA of a small cloud (2 dimensions)

One dot = one sample
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PC1 = z1
1 Gene1 + z1

2 Gene2

PC2 = z2
1 Gene1 + z2

2 Gene2

PCA of a small cloud (2 dimensions)

PC 2

PC 1

One dot = one sample
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PCA: important scores

Percentage of inertia associated with an axis:
● Proportion of the total information supported by this axis
● Decreases with the axis rank (by construction)

Number of axes to interpret:
● Such as the sum of the percentages of inertia is ≥ x%
● Elbow criterion
● And many other methods

Comment: the data structure is (supposed to be) known in a differential 
analysis framework.
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PCA: RNA-Seq example

Pre-requisite: counts must be transformed (made homoscedastic) before 
building the PCA.
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PCA: dimensionality reduction
T0-1 T0-2 T0-3 T4-1 T4-2 T4-3 T8-1 T8-2 T8-3

gene1 6.41 6.35 6.47 5.36 5.54 5.38 5.03 5.41 4.96

gene2 7.07 7.10 7.02 9.21 9.24 9.05 7.69 8.19 7.77

gene3 6.21 6.24 6.12 3.71 4.06 4.32 3.93 4.05 3.91

gene4 7.35 7.34 7.44 6.51 6.12 6.44 6.71 6.47 6.50

gene5 1.04 1.24 0.62 0.16 0.17 0.50 1.02 0.97 1.26

gene6 0.69 0.04 0.36 0.12 0.67 0.80 2.02 1.28 1.32

gene7 0.24 0.69 -0.01 -0.76 -0.74 -0.79 -0.72 -0.74 -0.72

... 3.29 3.76 3.18 4.74 3.98 3.47 4.31 4.95 4.65

geneN 3.65 4.17 4.13 5.96 6.17 5.65 4.09 4.02 3.98

From genes/variables to 
principal components

PC1 -60.1 -61.0 -61.5 25.9 30.4 28.8 31.0 33.1 33.3

PC2 1.3 0.5 -0.1 -11.9 -14.0 -15.0 15.1 7.9 16.3

PC3 0.4 0.3 0.1 -0.1 -0.2 -0.3 0.1 0 -0.1

PC4 -0.2 0 -0.1 0.1 0.1 0.2 -0.1 -0.2 0.2



64 |  Elise Jacquemet |  RNA-Seq data analysis  |  Nov. 2023

Transcriptome study of a bacteria at 0h, 2h, 16h and 24h:

PCA: confounding effect

      0h              2h                   4h              8h                16h            24h

r1
r2
r3

r1
r2
r3

label time replicate date libraries_method libraries_exp libraries_date
0h-1 0h r1 oct18 robot Bob nov18
0h-2 0h r2 oct18 robot Bob nov18
0h-3 0h r3 oct18 robot Bob nov18
2h-1 2h r1 oct18 robot Bob nov18
2h-2 2h r2 oct18 robot Bob nov18
2h-3 2h r3 oct18 robot Bob nov18
16h-1 16h r1 oct18 robot Bob nov18
16h-2 16h r2 oct18 robot Bob nov18
16h-3 16h r3 oct18 robot Bob nov18
24h-1 24h r1 oct18 robot Bob nov18
24h-2 24h r2 oct18 robot Bob nov18
24h-3 24h r3 oct18 robot Bob nov18
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Transcriptome study of a bacteria at 0h, 2h, 16h and 24h:

PCA: confounding effect
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Add samples 4h and 8h from the same cultures:

PCA: confounding effect

label time replicate date libraries_method libraries_exp libraries_date
0h-1 0h r1 oct18 robot Bob nov18
0h-2 0h r2 oct18 robot Bob nov18
0h-3 0h r3 oct18 robot Bob nov18
2h-1 2h r1 oct18 robot Bob nov18
2h-2 2h r2 oct18 robot Bob nov18
2h-3 2h r3 oct18 robot Bob nov18
4h-1 4h r1 oct18 manual Donald jun19
4h-2 4h r2 oct18 manual Donald jun19
4h-3 4h r3 oct18 manual Donald jun19
8h-1 8h r1 oct18 manual Donald jun19
8h-2 8h r2 oct18 manual Donald jun19
8h-3 8h r3 oct18 manual Donald jun19
16h-1 16h r1 oct18 robot Bob nov18
16h-2 16h r2 oct18 robot Bob nov18
16h-3 16h r3 oct18 robot Bob nov18
24h-1 24h r1 oct18 robot Bob nov18
24h-2 24h r2 oct18 robot Bob nov18
24h-3 24h r3 oct18 robot Bob nov18

      0h              2h                   4h              8h                16h            24h

r1
r2
r3

r1
r2
r3
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Global analysis of times 0h, 2h, 4h, 8h, 16h and 24h:

PCA: confounding effect

1st sequencing batch

2nd sequencing batch

$
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Two treatments applied to human cells coming from 3 donors:

PCA: pairing factor

label treatment donor

d1-IFN IFN d1

d1-Ctrl Ctrl d1

d2-IFN IFN d2

d2-Ctrl Ctrl d2

d3-IFN IFN d3

d3-Ctrl Ctrl d3
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Two treatments applied to human cells coming from 3 donors:

PCA: pairing factor
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Two treatments applied to human cells coming from 3 donors:

PCA: pairing factor
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Transcriptome study of a cyanobacteria at 8 time points from 0h to 24h:

PCA: most beautiful RNA-Seq example
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Clustering

Goal: build groups of samples such that:
● samples within a group are similar
● samples from distinct groups are different

Method (ascendant clustering):
1. Calculate the distances between each pair of samples
2. Gather the two nearest samples into a cluster
3. Calculate the distance between this cluster and each sample
4. Gather the two nearest clusters/samples
5. Go back to step 3 until getting a single cluster
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Hierarchical clustering: example

Source: MOOC FUN Analyse de données 2015 – Agrocampus Ouest



74 |  Elise Jacquemet |  RNA-Seq data analysis  |  Nov. 2023

Hierarchical clustering: RNA-Seq example

Pre-requisite: counts must be transformed (made homoscedastic) before 
building the PCA.
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Clustering parameters

Distance between two samples: euclidean, correlation, Manhattan, SERE 
...

Aggregation criterion (i.e. distance between two clusters):
● Average linkage: average distance between all the samples
● Single linkage: distance between the two closest samples
● Complete linkage: distance between the two furthest samples
● Ward: merge the clusters that lead to the cluster with minimum variance

?
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Always visualize your data first !
To detect early on potential problems in the design
To guide you through the next steps of the analysis
To provide some biological interpretation
To communicate your results

Don’t overlook potential breach of hypothesis for the analysis methods, or 
choices of parameters

Data exploration : Take-home message
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Outline

1. Introduction

2. Designing the experiment

3. Description/exploration

4. Normalization

5. Modeling

6. SARTools
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Goal

Identify and correct for systematic technical bias and make the counts 
comparable between samples.
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Framework

Normalization framework:
● RNA-seq data
● Differential expression experiment
● Counts data (positive integer values)

Total number of reads (library size): number of reads sequenced, mapped 
and counted for a given sample (sum over the rows for a given column of the 
count matrix).
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What is a differentially expressed gene? [10]

C. Evans et al. Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions. Briefings in Bioinformatics, 2017.
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What is a differentially expressed gene? [10]

C. Evans et al. Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions. Briefings in Bioinformatics, 2017.
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Goal of the DESeq2/edgeR normalizations

1. Correct for the differences of library sizes:

2. Correct for the differences of library compositions:

Sample 1 Sample 2

gene1 30 60

gene2 50 100

gene3 20 40

gene4 100 200

Total 200 400

Sample 1 Sample 2

gene1 30 60

gene2 50 100

gene3 20 40

gene4 100 0

Total 200 200
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DESeq2 normalization: computation of s1

T0-1 T0-5 ... T8-3

gene1 151 131 ... 18

gene2 142 134 ... 151

gene3 157 147 ... 8

gene4 275 249 ... 62

gene5 4 5 ... 3

gene6 2 0 ... 3

gene7 4 7 ... 0

gene8 10 16 ... 23

gene9 12 20 ... 9

gene10 269 262 ... 48

... ... ... ... ...

geneN 18 31 ... 2

DESeq2 computes a size factor per sample:
Step 1 : Creating a pseudo-reference sample (row-wise geometric mean)



84 |  Elise Jacquemet |  RNA-Seq data analysis  |  Nov. 2023

DESeq2 normalization: computation of s1

T0-1 T0-5 ... T8-3

gene1 151 131 ... 18 31

gene2 142 134 ... 151

gene3 157 147 ... 8

gene4 275 249 ... 62

gene5 4 5 ... 3

gene6 2 0 ... 3

gene7 4 7 ... 0

gene8 10 16 ... 23

gene9 12 20 ... 9

gene10 269 262 ... 48

... ... ... ... ...

geneN 18 31 ... 2

DESeq2 computes a size factor per sample:
Step 1 : Creating a pseudo-reference sample (row-wise geometric mean)

x xx(                           )
1/n

pseudo-ref
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DESeq2 normalization: computation of s1

T0-1 T0-5 ... T8-3

gene1 151 131 ... 18 31

gene2 142 134 ... 151 650

gene3 157 147 ... 8 7

gene4 275 249 ... 62 70

gene5 4 5 ... 3 2

gene6 2 0 ... 3 1

gene7 4 7 ... 0 5

gene8 10 16 ... 23 28

gene9 12 20 ... 9 74

gene10 269 262 ... 48 112

... ... ... ... ... ...

geneN 18 31 ... 2 4

DESeq2 computes a size factor per sample:
Step 1 : Creating a pseudo-reference sample (row-wise geometric mean)

pseudo-ref
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DESeq2 normalization: computation of s1

T0-1 T0-5 ... T8-3

gene1 151 131 ... 18 31 4.87

gene2 142 134 ... 151 650 0.22

gene3 157 147 ... 8 7 22.43

gene4 275 249 ... 62 70 3.93

gene5 4 5 ... 3 2 2.00

gene6 2 0 ... 3 1 2.00

gene7 4 7 ... 0 5 0.80

gene8 10 16 ... 23 28 0.36

gene9 12 20 ... 9 74 0.16

gene10 269 262 ... 48 112 2.40

... ... ... ... ... ... ...

geneN 18 31 ... 2 4 4.87

Step 2 : Comparing each sample to pseudo-reference (ratio)

DESeq2 computes a size factor per sample:

T0-1 / refpseudo-ref



87 |  Elise Jacquemet |  RNA-Seq data analysis  |  Nov. 2023

DESeq2 normalization: computation of s1

T0-1 T0-5 ... T8-3

gene1 151 131 ... 18 31 4.87

gene2 142 134 ... 151 650 0.22

gene3 157 147 ... 8 7 22.43

gene4 275 249 ... 62 70 3.93

gene5 4 5 ... 3 2 2.00

gene6 2 0 ... 3 1 2.00

gene7 4 7 ... 0 5 0.80

gene8 10 16 ... 23 28 0.36

gene9 12 20 ... 9 74 0.16

gene10 269 262 ... 48 112 2.40

... ... ... ... ... ... ...

geneN 18 31 ... 2 4 4.87

s1 = median

Step 3 : Final size factor (median)

DESeq2 computes a size factor per sample:

T0-1 / refpseudo-ref
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DESeq2 normalization: computation of s1

T0-1 T0-5 ... T8-3

gene1 151 131 ... 18 31 4.87

gene2 142 134 ... 151 650 0.22

gene3 157 147 ... 8 7 22.43

gene4 275 249 ... 62 70 3.93

gene5 4 5 ... 3 2 2.00

gene6 2 0 ... 3 1 2.00

gene7 4 7 ... 0 5 0.80

gene8 10 16 ... 23 28 0.36

gene9 12 20 ... 9 74 0.16

gene10 269 262 ... 48 112 2.40

... ... ... ... ... ... ...

geneN 18 31 ... 2 4 4.87

Step 1 : geometric mean 
of each gene

Step 2 : ratio between 
sample and reference

s1 = median

Step 3 : median

Normalized count : 
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DESeq2 normalization [3]

Size factor sj per sample:

Normalized counts:

Assumptions:
1. The majority of the genes is not differentially expressed
2. As many down- as up-regulated genes

● xij: number of reads for gene i in sample j
● n: number of samples studied
● sj : normalization factor for sample j
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edgeR normalization [4]

edgeR computes a normalization factor 
fj per sample and normalizes the total
numbers of reads Nj:

We can calculate DESeq2-like size factors sj in order to normalize the 
counts:

and so

Assumptions: same than DESeq2.

● xij: number of reads for gene i in sample j
● Nj: total number of reads in sample j (lib size)
● n: number of samples studied
● sj or fj: normalization factor for sample j
● Li: length of gene i
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Other normalization methods

Total number of reads:

or

Robustness issue if a gene catches a very high number of reads.

RPKM (Reads Per Kilobase per Million mapped reads):

● Same issue than the total number of reads method
● Introduce other biases [5]
● No need to correct for the gene length since the gene is "fixed"
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Effect of the normalization (DESeq2 or edgeR)
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Outline

1. Introduction

2. Designing the experiment

3. Description/exploration

4. Normalization

5. Modeling

6. SARTools
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Classic linear model

Goal:
Explain a dependent variable Y thanks to a set a explicative variables
X = (X1 , ..., Xn) using the model:

Y ∼ Xβ + ε

Output of the model:
Estimations of β1, ..., βn: effect of each explicative variable on Y.
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Linear model: RNA-Seq example

Goal: explain counts of gene g thanks to the biological conditions.
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Linear model: RNA-Seq example

Goal: explain counts of gene g thanks to the bio. conditions (T0, T4 and T8).

Here:                   β0g = 5.95,    β1g = 2.91     and     β2g = 3.57

One model per gene → thousands of models!

^ ^ ^
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Biological question:

Is gene g differentially expressed between green and gray mice?

Statistical testing 

Green1 Green2 Green3 Gray1 Gray2 Gray3

Gene g 151 131 183 135 184 122
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Biological question:

Is gene g differentially expressed between green and gray mice?

Statistical formalization

Let μ1 the average expression of gene g for gray mice and μ2 the expression 
of green mice. We wish to test the hypotheses:

H0: μ1 = μ2       vs.       H1: μ1 ≠ μ2

Statistical testing 

Green1 Green2 Green3 Gray1 Gray2 Gray3

Gene g 151 131 183 135 184 122

How to decide ?
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Type I error rate: α

Framework and goal:

We wish to show that the expression of gene g of gray mice is different from 
the expression of green mice.

Which risk α of being wrong do we allow when saying : 
“gene g is differentially expressed?”

The risk α is chosen before the analysis
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Type II error rate: β

We assume that gene g is truly differentially expressed between gray and 
green mice.

● Which risk β of not discovering gene g do we allow?
● Which power 1 − β do we want?

We can theoretically control the risk β according to the risk α and the number 
of replicates.
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Type I and type II errors

Hotdog classification
Type I error

Type II error
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Formalization

Let μ1 the average expression of gene g for gray mice and μ2 the expression 
of green mice. We wish to test the hypotheses:

H0: μ1 = μ2       vs.       H1: μ1 ≠ μ2

The risks can be summarized in:

Do not reject H0 Reject H0

H0 true 1 - α α

H0 false β 1 - β

Decision

Unknown 
truth

TN

FN

FP

TP
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Statistical Power 

power

power increases with sample size and with effect size !
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p-value and conclusion of the test

Definition:

Conclusion:
if p-value ≤ α then we reject H0

 p-value = Proba(reject H0 | H0 true)

= Proba(doing a mistake when rejecting H0)

= Proba(observed difference is due to hazard)

With a risk α, we can conclude that there is a significant difference in 
gene g expression between green and gray mice
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Equal Fold-Changes – different p-values

Reminder: Fold-Change definition:

                   FC =                                                            =

Gene m1 m2 m3 m4 m5 m6 FC p-value

gene1 5 7 6 2 2 2 3 0.06

gene2 800 1000 900 350 250 200 3 0.03

gene3 700 900 1100 350 200 250 3 0.10

gene4 900 500 1300 200 550 50 3 0.06

... ... ... ... ... ... ... ... ...

expression condition “green”
expression condition “gray”

µ2

µ1
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Distribution of raw p-values
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Distribution of raw p-values
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Omics data: multiple testing issue

Context:
We perform a large number N of statistical tests for which we reject or not H0.

Possible conclusions:

Among all the genes told differentially expressed, the False Discovery Rate (FDR) is:

Non rejects of H0 Rejects of H0

H0 true TN FP

H0 false FN TP

FP
FP + TP

Decisions

Unknown 
truths
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Example of the multiple testing issue

We perform N = 10000 statistical tests and we get the following conclusions:

                     =                           = 36% of falsely discovered genes!

Non rejects of H0 Rejects of H0 Total

H0 true 8550 450 9000

H0 false 200 800 1000

Total 8750 1250 10000

FP
FP + TP

450
450 + 800
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Control of the FDR

Goal: control the FDR among the list of differentially expressed genes.

(Very strong) assumption: all the N statistical tests are independent.

Procedure: The Benjamini & Hochberg [6] algorithm transforms the N raw 
p-values in N adjusted p-values.

Conclusion:

if adjusted p-value ≤ α then we reject H0

.25

.2

.15

.1

.05

0.0
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Importance of the # of biological replicates

RNA-Seq specificity: often 2 or 3 replicates because of the high cost of the 
experiment … But it’s not ideal !

With more biological replicates...
● Better estimation of:

○ the variability present in the populations studied
○ the difference between the biological conditions

● Better control of the FDR: bad control with only 2 replicates [7]
● Higher statistical power: we detect more easily genes which are truly 

differentially expressed

At the very least : 3 replicates !
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DESeq2 [3] and edgeR [4,8]

Three main steps:
1. Normalization
2. Dispersion (i.e. variability) estimation: crucial step
3. Statistical tests and adjustment for multiple testing

Advantages:
● User friendly and very well documented
● Good performances
● Authors are reactive on web forums and mailing lists

Many other tools exist: NBPSeq, TSPM, baySeq, EBSeq, NOISeq, SAMseq, ShrinkSeq, voom(+limma)

Similarities:
● Negative Binomial distribution
● Generalized Linear Model 

(GLM)

Differences:
● Dispersion estimation
● Way of dealing with outlier 

counts
● Low counts filtering
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Dispersion estimation φi: DESeq2 vs edgeR

Reminder:
xij ∼ NB(μij, σij

2 = μij + φi μij
2)
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Statistical theory and parameters tuning
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Statistical testing

For each gene g, DESeq2 and edgeR give:

● an estimation of βg = log2(FCg)

● the precision of this estimation (standard error)

● so the p-value associated with gene g

The set of the N p-values is adjusted in order to conclude.
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Description of the results: MA-plot and volcano-plot
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Description of the results: heatmap

Much more complex than it appears:

● Use expression data or log2(FC)?
● Which genes to display?

● Expression data transformation:
○ Homoscedasticity?
○ Row centering and scaling?

● Row/column clustering method?

● Average data by condition?
● Batch/replicate effect removal?
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Data normalization is crucial to make sure you are really testing your biological 
question by removing systematic bias. Specific RNASeq methods must take into 
account library size & composition.

Multiple testing must be corrected using FDR as many tests are done 
simultaneously

Replicate your measures according to the expected variability in the data and the 
differences you want to highlight

Visualize your results and use diagnostic plots to check that the model / test you 
chose was adapted to your data. 

Data normalization & modelling : Take-home message
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Outline

1. Introduction

2. Designing the experiment

3. Description/exploration

4. Normalization

5. Modeling

6. SARTools
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Why SARTools?

SARTools = Statistical Analysis of RNA-Seq Tools [9]

1. Perform a systematic quality control of the data
2. Avoid misusing the DESeq2 or edgeR packages
3. Keep track of all the parameters used: reproducible research
4. Provide a HTML report containing all the results of the analysis
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Input files

Target: tab-delimited text file describing the experimental design:

Counts: one tab-delimited text file per sample (from HTSeq-count or 
featureCounts):

label files condition

WT1 WT1.counts.txt WT

WT2 WT2.counts.txt WT

KO1 KO1.counts.txt KO

KO2 KO2.counts.txt KO

gene1 23

gene2 355

gene3 0

... ...

gene4 3643
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Source code available on GitHub

github.com/PF2-pasteur-fr/SARTools/
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Utilization: with 
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Utilization: with Galaxy
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Output: HTML report
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Output: HTML report
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Output: lists of differentially expressed genes

Three tab-delimited text files per comparison:
● *.complete.txt: all the genes
● *.up.txt: up-regulated genes ordered by adj. p-value
● *.down.txt: down-regulated genes ordered by adj. p-value

Columns: gene id, log2(Fold-Change), adjusted p-value, ...
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HTML tutorial

● Installation
● Input files
● Definition of the parameters
● Potential issues: technical problems, inversion of samples, batch effects, 

outliers...
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Potential issue: detecting outliers
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Potential issue: detecting outliers



131 |  Elise Jacquemet |  RNA-Seq data analysis  |  Nov. 2023

Potential issue: inversion of samples
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Potential issue: inversion of samples
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Potential issue: inversion of samples
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Potential issue: batch effect
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Other cases :
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DESeq2 and edgeR common parameters

● Project and author names
● Target and count files paths
● Rows of the count files to remove
● Factor of interest and the reference biological condition
● Adjustment variable (batch effect, pairing) in the target file
● Multiple testing adj. method and significance threshold α
● Colors for the graphics
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DESeq2-specific parameters

● fitType: type of link to model the intensity-dispersion relationship, 
parametric (by default) or local

● cooksCutoff: TRUE (by default) to detect genes having outlier counts
● independentFiltering: TRUE (by default) to filter out lowly expressed 

genes and gain power on the others
● typeTrans: VST (by default) or rlog to make the data homoscedastic to 

perform exploratory data analysis (PCA, clustering, heatmaps)
● locfunc: median (by default) or shorth. shorth allows to improve the 

normalization for some cases
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edgeR-specific parameters

● cpmCutoff: low counts filtering threshold (in counts per million of reads)
● gene.selection: genes selection method for the MDS-plot (pairwise 

by default)
● normalizationMethod: TMM by default, RLE (DESeq2), or 

upperquartile



139 |  Elise Jacquemet |  RNA-Seq data analysis  |  Nov. 2023

Conclusion

SARTools...
● facilitates the utilization of DESeq2 and edgeR
● performs quality control and helps to detect potential problems
● fits the reproducible research criteria

Take time to interpret each figure/table in the HTML report!
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Interpreting lists of DE genes: gene-set level analysis

What is a gene-set?
→ Any group of genes having a biological meaning

Note: some genes can belong to several sets and others to none

Two main approaches:
● Competitive null hypothesis: genes in the set are “as DE as” genes not 

in the set
● Self-contained null hypothesis: genes in the set are not DE

Several methods:
● Over-Representation Analysis (competitive): are genes in the set more 

DE than genes not in the set? → Fisher’s hypergeometric test
● Linear models using limma R package’s functions:

○ competitive: camera() and romer()
○ self-contained: roast() and fry()
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Interpreting lists of DE genes: gene-set level analysis

Several issues/options to deal with:

● Make gene IDs compatible with the gene-sets by converting diff. analysis 
Ensembl IDs (for instance) into ENTREZ IDs: no perfect matching and 
be careful with the annotation version(s) used

● Which gene-sets to test?
○ depends on the biological question
○ will impact the p-value adjustment for multiple testing
○ restrict the background to genes belonging to at least one set?

● Separate down- and up-regulated genes?

● Import gene-sets into R and make them ready for the analysis: from 
MSigDB or R packages… but there may be some differences
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Interpreting lists of DE genes: gene-set level analysis
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General conclusion

● RNA-Seq project = discussions between biologists, bioinformaticians and 
biostatisticians... as soon as the project starts!

● Statistical needs during all the project, not only for the differential 
analysis
○ Normalization step is critical: the assumptions have to be checked
○ No magic recipe: need to choose the statistical model according to 

your biological question
○ Statistical analysis must not be a black box!

● Data visualization is a crucial tool along all the steps of the analysis

Complex experimental design → difficult interpretation of the results



144 |  Elise Jacquemet |  RNA-Seq data analysis  |  Nov. 2023

The end

Thank you for your attention!
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