

LONG-READ SEQUENCING

Claude THERMES

PLATEFORME DE SÉQUENÇAGE I2BC

INSTITUT DE BIOLOGIE INTÉGRATIVE DE LA CELLULE

GIF-SUR-YVETTE

12^{ème} ÉCOLE DE BIOINFORMATIQUE EBAII - 06/11/2023

www.nature.com/nmeth/January 2023 Vol. 20 No. 1

nature methods

Method of the Year 2022: Long-read sequencing

LONG-READS VERSUS SHORT-READS

Assembly of DNA fragments with repeated sequences repeat repeat repeat NGS short reads assembly repeat Several contigs \rightarrow incomplete assembly, underestimation of repeats Long reads assembly repeat repeat repeat Long-reads (1- 200 kb) allow assembly of large repeat-rich regions (centromeres, telomeres...)

LONG-READS VERSUS SHORT-READS

Long-reads facilitate phasing of maternal and paternal haplotypes

LONG-READS VERSUS SHORT-READS

Detection of splicing isoforms

Long-reads allow identification of multiple splicing events along mRNAs

The 3rd generation winning technologies

Pacific Biosciences

Oxford Nanopore

Sequel – Revio

Single molecules Up to 200 kbp long

MinION – PromethION

Single molecules Up to 1 Mbp long

The 3rd generation winning technologies

Pacific Biosciences

Oxford Nanopore

Sequel – Revio

Single molecules Up to 200 kbp long

MinION – PromethION

Single molecules Up to 1 Mbp long

PacBio : Single Molecule Real Time (SMRT) sequencing

PacBio DNA-seq library

Phospholinked nucleotides are introduced into the ZMW chamber

As a base is held in the detection volume, a light pulse is produced

Constance.

Contractory of the second

G

Eid, J., et al. Science (2009)

PACIFIC BIOSCIENCES

High error rate : 10% - 15%

Fusberg et al. Nature Methods (2010)

DETECTION OF MODIFIED DNA BASES

Signal modification depends on the neighbor nucleotides (sequence context)

Fusberg et al. Nature Methods (2010)

LENGTH OF PACBIO READS

Circular consensus sequencing (CCS) reads are obtained when the SMRT bell template is replicated several times by the polymerase

Contraction of

A Statistication

CIRCULAR CONSENSUS SEQUENCES (CCS): HIFI READS

CIRCULAR CONSENSUS SEQUENCES (CCS): HIFI READS

Subreads (passes)

er et al. Nat. Biotechnol. (2019)

CIRCULAR CONSENSUS SEQUENCES (CCS): HIFI READS

er et al. Nat. Biotechnol. (2019)

Next Generation Sequencing

- BASIC CONCEPTS

SEQUENCING PROCESS

SEQUENCING

SEQUENCING PROCESS : MinION FLOW CELL

MinION : 1 flow cell \rightarrow 512 pores

PromethION : 1 flow cell \rightarrow 3000 pores (48 flow cells)

BASE CALLING

"TWO READERS" NANOPORE

"One-reader" pore has difficulty to read homopolymers

Sereika et al. Nature Methods, 2022

Long homopolymers are better "seen" by the pore and can be decoded with higher accuracy

"TWO READERS" NANOPORE

"One-reader" pore has difficulty to read homopolymers

"TWO READERS" NANOPORE

"One-reader" pore has difficulty to read homopolymers

Kolmogorov et al. bioRxiv. (2023)

Mean accuracy (R10) > 99% \rightarrow Q20+

DETECTION OF MODIFIED DNA BASES

LENGTH OF NANOPORE READS

"Ultra long" reads (lab.loman.net, March 2017)

DUPLEX SEQUENCING

Duplex Reading both strands

Duplex scheme

- · Second strand follows first strand through nanopore
- Two orthogonal signals provide complementary information
- · Signals are combined to produce a Duplex base call

DUPLEX SEQUENCING

Duplex Reading both strands

Duplex scheme

- · Second strand follows first strand through nanopore
- Two orthogonal signals provide complementary information
- Signals are combined to produce a Duplex base call

C. Brown London Calling 2023

DUPLEX SEQUENCING

Duplex

25

Raw read accuracy (Q)

20

10

15

30

35

40

45

- Outputs rates of Duplex greatly increased recently
- Now achieving > 50 Gb Duplex from a single

PromethION flowcell

SMALL GENOMES ASSEMBLY : NANOPORE VS PACBIO

SMALL GENOMES ASSEMBLY : NANOPORE VS PACBIO

Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing Sereika et al. *Nature Methods* 2022

- Samples :
 - Seven bacteria
 - Saccharomyces cerevisiae
 - Metagenome : anaerobic digester
- Sequenced with :
 - Illumina MiSeq (2 × 300 bp)
 - PacBio Sequel II HiFi
 - Oxford Nanopore R9.4.1 (MinION) and R10.4 (PromethION)
- Read processing
 - reads assembled with Flye

SMALL GENOMES ASSEMBLY : NANOPORE VS PACBIO

Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing Sereika et al. *Nature Methods* 2022

SMALL GENOMES ASSEMBLY : NANOPORE VS PACBIO

Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing Sereika et al. *Nature Methods* 2022

Metagenome-assembled genome (MAG) from the anaerobic digester sample

of their best-matching known protein in a database
SMALL GENOMES ASSEMBLY : NANOPORE VS PACBIO

Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing Sereika et al. *Nature Methods* 2022

Conclusions
HiFi reads : very low error rate, best genome assembly
• Nanopore reads : the improvement in assembly accuracy from R9.4.1 to R10.4 is largely due to an improved ability to call homopolymers
No significant improvement for R10.4 by the addition of Illumina polishing
 -> Near-finished microbial reference genomes can be obtained from R10.4 data alone at a coverage of approximately 40-fold
ONT more cost-effective than PacBio

DNA MODIFICATIONS

DETECTION OF DNA m6A WITH CCS

Single-molecule regulatory architectures captured by chromatin fiber sequencing Stergachis et al. *Science* (2020)

DETECTION OF DNA m6A WITH CCS

Single-molecule regulatory architectures captured by chromatin fiber sequencing Stergachis et al. *Science* (2020)

DETECTION OF DNA 5mCpG WITH NANOPORE

Robust methylation-based classification of brain tumours using nanopore sequencing Kuschel et al. *Neuropathol Appl Neurobiol.* 2023

DNA methylation profiling (5mC) of human brain tumours — profound impact on clinical neuro-oncology

Hybridisation microarrays :

- time consuming
- costly

Nanopore genome sequencing (R9.4.1 flow cell) :

- 382 tissue samples
- 46 brain tumour (sub)types
- Bootstrap sampling in a cohort of 55 cases :
 - classification by ad hoc random forests
 - sensitivity 80.4%

DETECTION OF DNA 5mCpG WITH NANOPORE

Robust methylation-based classification of brain tumours using nanopore sequencing Kuschel et al. *Neuropathol Appl Neurobiol.* 2023

WHO integrated diagnosis	Methylation class family (MCF)	Recalibrated score	Concordance with reference
Meningloma (59)			
Glioblastoma, IDH-wildtype (48)	MNG (61)		
Angiomatous meningioma (1) Meningothelial meningioma (1) Embryonal tumour with multisyered rosettes, C19MC- Chordoma (1) CNS Ewing sarcoma family tumor with CIC alteration (Subependymal giant cell astrocytoma (2) Medulloblastoma, genetically defined, group 3 (2)	altered (2) 1) MCF GBM (63)	score > 0.15 (148)	Correct (167)
Anaplastic pilocytic astocytoma (1) Medullobiastoma, genetically defined, non-WNT/hon-5 Haemanglobiastoma (1) Phinitary adenoma densely granulated GH/STH produ Medullobiastoma, genetically defined, group 4 (1)	EHH (2) ETMR (2) CHORDM (1) eFT, CIC (1) MCF MB G3G4 (5)		
 Medulobastoma, conscience and a second a second	(1) MB, WNT (1) MCF IDH OLM (13)	Score < 0.15 (36)	Incorrect (17)
Ependymoma (2) Glioblastoma, IDH-mutant (2) Diffuse astrocytoma, IDH-mutant (1)	SFT HMPC (1) LYMPHO (3) EPN, PF B (1)		
Schwarnoma (12) Pilocytic astrocytoma (4) Adamantinomatous Craniopharyngioma (2) Pituitary adenoma ACTH producing (4)	SCHW (0) MCF PA (2) PITAD, ACTH (5)	Classification result	s in the validation cohort of N = 184
Priortary adenoma sparsely granulated GNPSTH produ Prisomorphic xanthoastrocytoma (2) CNS embryonal tumour, NOS (1) Meduilobiastoma, NOS (1) Meduilobiastoma, NOH activated (1) Abylical teratoldrhabdoid tumour (1) Subependymoma (1)	MCF NB SHH (1) MCF PLEX T (2) PXA (1) MCF MB SHH (2) MCF ATRT (1) SUBEPN, ST (1)	independent sample	эs.

CONCLUSION

Nanopore sequencing → DNA methylation-based classification in brain tumour diagnostics :

- rapid and cost-effective
- shorten the time to diagnosis
- augment neuropathological decision making
- improve diagnostic precision

TARGETED SEQUENCING

- Specification of target regions
- Real time basecalling
- Mapping of ~ 500 first bases
- Before the molecule is fully sequenced : If it differs from target -> reversion of polarity and ejection

Cancer gene panel - 202 target regions

Adaptive nanopore sequencing to determine pathogenicity of *BRCA1* exonic duplication Filser et al. *J. Med. Genet.* Jun. 2023

Patient with a breast tumor : Initial molecular analysis

- germline DNA extracted from blood cells -> sequenced with Illumina
- NGS panel (HBOC) -> duplication encompassing BRCA1 exons 18–20
- But :
 - NGS data could not demonstrate that reading frame of BRCA1 transcript was altered
 - ie, that the event was a tandem duplication
 - *if* further cDNA analysis required to confirm pathogenicity
 - but RNA is not routinely available
 - and the technique is very time-consuming (~2 months for analysis)

Decision of Nanopore sequencing with adaptive sampling

Dynamic, adaptive sampling during nanopore sequencing using Bayesian experimental design Weilguny et al. *Nature Biotechnology* Jan. 2023

Dynamic, adaptive sampling during nanopore sequencing using Bayesian experimental design Weilguny et al. *Nature Biotechnology* Jan. 2023

Ultra-fast deep-learned CNS tumour classification during surgery Vermeulen et al. *Nature Oct.* 2023

Using nanopore adaptive sampling to obtain a methylation profile (5mCpG sites) during surgery :

- Development of Sturgeon software
- patient-agnostic transfer-learned neural network
- enables molecular subclassification of central nervous system tumours based on such profiles

Sturgeon delivered :

- Diagnosis within 40 minutes after starting sequencing
- Diagnostic turnaround time of less than 90 min
- Accurate diagnosis in 45 out of 50 retrospectively sequenced samples
- Applicability in real time during 25 surgeries
- Of these, 18 (72%) diagnoses were correct

LARGE GENOME ASSEMBLY

VERY BRIEF SUMMARY OF HUMAN GENOME ASSEMBLY

- 2001: Celera Genomics and International Human Genome Sequencing Consortium :
 - initial drafts of the human genome
- But many complex regions were left unfinished or incorrectly assembled for over 20 years :
 - they represent 8% of the genome

T2T : telomere to telomere assembly: largest addition of new content to human genome in the past 20 years

- 1 The complete sequence of a human genome Nurk et al. *Science* 2022
- 2 Chasing perfection: validation and polishing strategies for telomere-to-telomere genome assemblies Mc Cartney et al. *Nature Methods* 2022
- 3 The complete sequence of a human Y chromosome Rhie et al. *Nature* Sept. 2023

The complete sequence of a human genome Nurk et al. *Science* 2022

RESEARCH ARTICLE

HUMAN GENOMICS

The complete sequence of a human genome

Sergey Nurk¹⁺, Sergey Koren¹⁺, Arang Rhie¹⁺, Mikko Rautiainen¹⁺, Andrey V. Bzikadze², Alla Mikheenko³, Mitchell R. Vollger⁴, Nicolas Altemose⁵, Lev Uralsky^{6,7}, Ariel Gershman⁸, Sergey Aganezov⁹±, Savannah J. Hoyt¹⁰, Mark Diekhans¹¹, Glennis A. Logsdon⁴, Michael Alonge⁹, Stylianos E. Antonarakis¹², Matthew Borchers¹³, Gerard G. Bouffard¹⁴, Shelise Y. Brooks¹⁴, Gina V. Caldas¹⁵, Nae-Chyun Chen⁹, Haoyu Cheng^{16,17}, Chen-Shan Chin¹⁸, William Chow¹⁹, Leonardo G. de Lima¹³, Philip C. Dishuck⁴, Richard Durbin^{19,20}, Tatiana Dvorkina³, Ian T. Fiddes²¹, Giulio Formenti^{22,23}, Robert S. Fulton²⁴, Arkarachai Fungtammasan¹⁸, Erik Garrison^{11,25}, Patrick G. S. Grady¹⁰, Tina A. Graves-Lindsay²⁶ Ira M. Hall²⁷, Nancy F. Hansen²⁸, Gabrielle A. Hartley¹⁰, Marina Haukness¹¹, Kerstin Howe¹⁹, Michael W. Hunkapiller²⁹, Chirag Jain^{1,30}, Miten Jain¹¹, Erich D. Jarvis^{22,23}, Peter Kerpedjiev³¹, Melanie Kirsche⁹, Mikhail Kolmogorov³², Jonas Korlach²⁹, Milinn Kremitzki²⁶, Heng Ll^{16,17}, Valerie V. Maduro³³, Tobias Marschall³⁴, Ann M. McCartney¹, Jennifer McDaniel³⁵, Danny E. Miller^{4,36}, James C. Mullikin^{14,28}, Eugene W. Myers³⁷, Nathan D. Olson³⁵, Benedict Paten¹¹, Paul Peluso²⁹, Pavel A. Pevzner³², David Porubsky⁴, Tamara Potapova¹³, Evgeny I. Rogaev^{6,7,38,39}, Jeffrey A. Rosenfeld⁴⁰, Steven L. Salzberg^{9,41}, Valerie A. Schneider⁴², Fritz J. Sedlazeck⁴³, Kishwar Shafin¹¹, Colin J. Shew⁴⁴, Alaina Shumate⁴¹, Ying Sims¹⁹, Arian F. A. Smit⁴⁵, Daniela C. Soto⁴⁴, Ivan Sović^{29,46}, Jessica M. Storer⁴⁵, Aaron Streets^{5,47}, Beth A. Sullivan⁴⁸, Françoise Thibaud-Nissen⁴², James Torrance¹⁹, Justin Wagner³⁵, Brian P. Walenz¹, Aaron Wenger²⁹, Jonathan M. D. Wood¹⁹, Chunlin Xiao⁴², Stephanie M. Yan⁴⁹, Alice C. Young¹⁴, Samantha Zarate⁹, Urvashi Surti⁵⁰, Rajiv C. McCoy⁴⁹, Megan Y. Dennis⁴⁴, Ivan A. Alexandrov^{3,7,51}, Jennifer L. Gerton^{13,52}, Rachel J. O'Neill¹⁰, Winston Timp^{8,41}, Justin M. Zook³⁵, Michael C. Schatz^{9,49}, Evan E. Eichler^{4,53}*, Karen H. Miga^{11,54}*, Adam M. Phillippy¹*

The complete sequence of a human genome Nurk et al. *Science* 2022

SEQUENCING

Data were obtained with a "complete hydatidiform mole" (CHM13) cell line (homozygous with a 46,XX karyotype) :

- 30× PacBio HiFi
- 120× Nanopore ultra-long read
- BioNano optical maps
- 70× Hi-C
- 100× Illumina PCR-Free sequencing

WHOLE GENOME ASSEMBLY

- 1. HiFi-based graph construction
- 2. ONT-based tangle resolution
- 3. Gap filling
- 4. Polishing

The complete sequence of a human genome Nurk et al. *Science* 2022

٠

chr12 8% of the genome completed by this T2T assembly including all 22 autosomes plus chr6 Chromosome X : chrX chr8 Corrects numerous errors ٠ chr11 chr10 Introduces 200 million bp of novel sequence containing : ٠ chr18 chr19 1956 gene predictions, 99 predicted as protein coding ٠ chr5 all centromeric regions chr2 ٠ chr3 entire short arms (p) of acrocentric chromosomes (13, 14, 15, 21, 22) ٠ chr4 chr7 chr17 chr20 chr21 chr14 chr22 chr16 chr13 C chr15 chr1 chr9 1 0 30 20 10 Novel bases (Mbp)

LARGE GENOME ASSEMBLY

Chasing perfection: validation and polishing strategies for telomere-to-telomere genome assemblies Mc Cartney et al. *Nature Methods* 2022

Recent Telomere-to-Telomere (T2T) human genome assembly

- this assembly has evidence of small errors and structural misassemblies
- polishing strategy :
 - ✓ Make corrections in large repeats without over-correction
 - ✓ Ultimately fixing 51% of errors and improving the assembly QV to 73.9
 - ✓ show sequencing biases in PacBio HiFi and ONT reads that cause errors that can be correcte

• 1,457 corrections :

- ✓ replacing a total of 12,234,603 bp with 10,152,653 bp
- ✓ ultimately leading to the first complete human genome ever assembled

LARGE GENOME ASSEMBLY

The complete sequence of a human Y chromosome Rhie et al. *Nature* Sept. 2023

The landscape of genomic structural variation in Indigenous Australians Reis et al. bioRxiv, Oct. 2023

Samples : 121 Australian Indigenous + 18 non-indigenous

- Sequenced on Promethion flow cells R10.4.1
- ~30-fold genome coverage ; ~9.2 kb read-length
- T2T Consortium -> T2T-chm13 chosen as reference genome for mapping and structure variant detection • •
- By comparison to hg38 : ____ T2T-chm13 affords additional ~125 Mbases accessible to analysis
- abundance of large indels (n=136,797) structural variants (n=159,912) •
- 73% not previously annotated .
- large fraction (30%) exclusive to Indigenous Australians .

Large diversity of genomic structural variation within Aboriginal communities .

LONG READ cDNA SEQUENCING

PacBio cDNA SEQUENCING

Full-length transcript sequencing of human and mouse cerebral cortex identifies widespread isoform diversity and alternative splicing Leung et al. Cell Report 2021

Transcripts annotated to MEG3 gene in the human cortex

- 11,913 novel transcripts associated with 5,327 genes mean size = 2.84 kb, mean number of exons =11.1
- "novel in catalog" (NIC: n=8,721) contain a combination of known donor and acceptor splice sites
- "novel not in catalog" (NNC: n=3021) with at least one novel donor or acceptor site ٠
- Novel transcripts are generally less abundant than annotated and presumably harder to detect using standard RNA-seq
- They are longer with more exons
- Our data confirm the importance of alternative splicing in the cortex, dramatically increasing transcriptional diversity and representing an important mechanism underpinning gene regulation in the brain

PacBio cDNA SEQUENCING

Full-length transcript sequencing of human and mouse cerebral cortex identifies widespread isoform diversity and alternative splicing Leung et al. *Cell Report* 2021

Increasing interest in the role of AS (alternative splicing) in human disease :

- correction of AS deficits has therapeutic benefit in several disorders including spinal muscular atrophy.
- AS impacts neurodevelopment and key neural functions
- AS is a common feature of many neuropsychiatric and neurodegenerative diseases with recent studies highlighting splicing differences associated with autism

Transcripts mapping to disease-associated genes in human						
Description	Human Cortex					
Description	AD	sz	Autism			
Disease-associated genes	62	339	393			
Detected disease-associated genes ("Detected")	33	288	317			
Total Number of Transcripts	128	967	1042			
Number and % of Annotated Transcripts	72 (56.25%)	558 (57.7%)	669 (64.2%)			
Number and % of Novel Transcripts	56 (43.75%)	409 (42.3%)	373 (35.8%)			
FSM	50	424	412			
ISM	22	134	257			
NIC	43	313	288			
NNC	13	96	85			

SINGLE CELL SEQUENCING

Single-cell transcriptome :

• 10 000 to 50 000 reads / single-cell

PacBio system Sequel II :

• ~ 8 million Hi-Fi reads -> hundreds of single-cell transcriptomes

PromethION :

• ~ 100 million reads / flow cell -> thousands of single-cell transcriptomes

SINGLE CELL PacBio SEQUENCING

SINGLE CELL NANOPORE SEQUENCING

High throughput single cell long-read sequencing analyses of same-cell genotypes and phenotypes in human tumors Schiau et al. *Nature Communications* July 2023

5'-CTACACGACGCTCTTCCGATCT-N16-N12-TTTTTTTVN-cDNA-CTCTGCGTTGATACCACTGCTT 3'-GATGTGCTGCGAGAAGGCTAGA-N16-N12-AAAAAAAABN-cDNA-GAGACGCAACTATGGTGAC

Identification of cell-type-specific:

- isoforms (LIQA software)
- mutations
- gene expression
- \rightarrow synchronous cell-lineage (genotype) and cell-fate (phenotype)
- 2-4 times more genes with different combination of isoforms in tumor cells (chimio-resistance pathway) compared to immune and stromal cell types

SINGLE CELL NANOPORE SEQUENCING

High throughput single cell long-read sequencing analyses of same-cell genotypes and phenotypes in human tumors

Schiau et al. Nature Communications July 2023

5'-CTACACGACGCTCTTCCGATCT-N18-N12-TTTTTTTVN-cDNA-CTCTGCGTTGATACCACTGCTT-3' 3'-GATGTGCTGCGAGAAGGCTAGA-N18-N12-AAAAAAAABN-cDNA-GAGACGCAACTATGGTGACGAA-5'

Identification of cell-type-specific:

- isoforms (LIQA software)
- mutations
- gene expression
- → synchronous cell-lineage (genotype) and cell-fate (phenotype)
- 2-4 times more genes with different combination of isoforms in tumor cells (drug-resistance pathway) compared to immune and stromal cell types

SPATIAL TRANSCRIPTOMICS

The spatial landscape of gene expression isoforms in tissue sections

The spatial landscape of gene expression isoforms in tissue sections Lebrigand et al. NAR March 2023

Spatial isoform transcriptomics (SiT) combines :

- short-read sequencing of cDNA -> spatial gene expression
- long-read sequencing -> spatial full-length isoforms and sequence data

The spatial landscape of gene expression isoforms in tissue sections Lebrigand et al. *NAR* March 2023

Coronal brain sections :

10 million UMIs assigned to a precise isoform

→ 33097 isoforms encoded by 16899 genes

126 genes present regional isoform switching

The spatial landscape of gene expression isoforms in tissue sections Lebrigand et al. *NAR* March 2023

Regional isoform switching gene Snap25 : codes 2 isoforms (role in synaptic plasticity)

The spatial landscape of gene expression isoforms in tissue sections Lebrigand et al. NAR March 2023

Conclusion

1 Nanopore flowcell (100 millions reads) is sufficient to :

- explore the spatial landscape of mRNA isoform expression in a typical Visium experiment
- resolve spatially the expression of pathological isoforms (e.g. fusion transcripts) and cancer mutations
- better characterize the heterogeneity of tumor biopsies

DIRECT RNA SEQUENCING

DETECTION OF MODIFICATIONS

MODIFIED RNA

RNA modifications (> 150) play important roles in regulating RNA fate :

- RNA folding and structure
- base pairing
- recruitment of RNA-binding proteins
- can be dynamic and reversible

In mRNAs (translation, stability, splicing..)

- 6mA most abundant and better characterized
- pseudo U
- 2'O-methyl
-

Also found in ncRNAs

- microRNAs (miRNAs)
- long non-coding RNAs (IncRNAs)
- circular RNAs (circRNAs)

Viral RNAs contain high levels of modifications (modulate virus cycle)

• HIV RNA rich in 6mA
DIRECT RNA SEQUENCING

Quantitative

DIRECT RNA SEQUENCING : DETECTION OF MODIFICATIONS

DIRECT RNA SEQUENCING : DETECTION OF MODIFICATIONS

DIFFERENT TOOLS

Furlan et al, RNA Biology, 2021.

mRNA vaccine quality analysis using RNA sequencing Gunter et al. *Nat. Comm. Sept.* 2023

mRNA vaccines must be rigorously analyzed :

- to measure their integrity
- detect contaminants that reduce their effectiveness and induce side-effects
- Currently, mRNA vaccines and therapies are analysed using time-consuming and costly methods
- This work describes a how to analyse mRNA vaccines using long-read nanopore sequencing.

mRNA vaccine quality analysis using RNA sequencing Gunter et al. *Nat. Comm. Sept.* 2023

Nanopore cDNA sequencing of mRNA vaccine:

mRNA vaccine quality analysis using RNA sequencing Gunter et al. *Nat. Comm. Sept.* 2023

mRNA vaccine quality analysis using RNA sequencing Gunter et al. *Nat. Comm. Sept.* 2023

Compared to other industry-standard techniques, VAX-seq can comprehensively measure key mRNA vaccine quality attributes, including sequence, length, integrity, and purity.

Direct RNA sequencing can analyse mRNA chemistry, including the detection of nucleoside modifications.

tRNA profiling using Nanopore sequencer Tsutomu Suzuki, London Calling Nanopore meeting 2023

Collaboration with Dr. Hiroki Ueda (RCAST, UTokyo)

tRNA profiling using Nanopore sequencer Tsutomu Suzuki, London Calling Nanopore meeting 2023

Development of "classifier" for E. coli tRNA

tRNA profiling using Nanopore sequencer Tsutomu Suzuki, London Calling Nanopore meeting 2023

Signal-based approach successfully detects most of tRNA modifications

Future improvements

RNA enzyme motor developed for better speed and output

- Now averaging speed of 125 bps (~2x improvement)
- Hitting outputs of 30 million reads from PromethION flowcell

C. Brown London Calling 2023

LARGE SEQUENCING PROJECTS

Towards complete and error-free genome assemblies of all vertebrate species Rhie et al. *Nature* 2021

International effort to generate high-quality, complete reference genomes :

- For all of the roughly 70,000 extant vertebrate species
- To enable a new era of discovery across the life sciences

Arang Rhie^{1,003}, Shane A. McCarthy^{2,3,003}, Olivier Fedrigo^{4,003}, Joana Damas⁵, Giulio Formenti^{4,6}, Sergey Koren¹, Marcela Uliano-Silva^{7,8}, William Chow³, Arkarachai Fungtammasan⁹, Juwan Kim¹⁰, Chul Lee¹⁰, Byung June Ko¹¹, Mark Chaisson¹², Gregory L. Gedman⁶, Lindsey J. Cantin⁶, Francoise Thibaud-Nissen¹³, Leanne Haggerty¹⁴, Iliana Bista^{2,3}, Michelle Smith³, Bettina Haase⁴, Jacquelyn Mountcastle⁴, Sylke Winkler^{15,16} Sadye Paez^{4,6}, Jason Howard¹⁷, Sonja C. Vernes^{10,19,20}, Tanya M. Lama²¹, Frank Grutzner²², Wesley C, Warren²³, Christopher N, Balakrishnan²⁴, Dave Burt²⁵, Julia M, George²⁶, Matthew T. Biegler⁶, David Iorns²⁷, Andrew Digby²⁸, Daryl Eason²⁸, Bruce Robertson²⁹, Taylor Edwards³⁰, Mark Wilkinson³¹, George Turner³², Axel Meyer³³, Andreas F. Kautt^{33,34}, Paolo Franchini²³, H. William Detrich III²⁵, Hannes Svardal^{26,37}, Maximilian Wagner³⁶ Gavin J. P. Navlor³⁹, Martin Pippel^{15,40}, Milan Malinsky^{3,41}, Mark Mooney⁴², Maria Simbirsky⁹, Brett T. Hannigan⁹, Trevor Pesout⁴³, Marlys Houck⁴⁴, Ann Misuraca⁴⁴, Sarah B. Kingan⁴⁵, Richard Hall⁴⁵, Zev Kronenberg⁴⁵, Ivan Sović^{45,46}, Christopher Dunn⁴⁵, Zemin Ning³, Alex Hastie⁴⁷, Joyce Lee⁴⁷, Siddarth Selvaraj⁴⁶, Richard E. Green^{43,49}, Nicholas H. Putnam⁵⁰, Ivo Gut^{51,52}, Jay Ghurye^{40,53}, Erik Garrison⁴³, Ying Sims³, Joanna Collins³, Sarah Pelan³, James Torrance³, Alan Tracey³, Jonathan Wood³, Robel E. Dagnew¹², Dengfeng Guan^{2,54}, Sarah E. London⁵⁵, David F. Clayton⁵⁶, Claudio V. Mello⁵⁷, Samantha R. Friedrich⁵⁷, Peter V. Lovell⁵⁷, Ekaterina Osipova^{15,40,58}, Farooq O. Al-Ajli^{52,60,61}, Simona Secomandi⁶², Heebal Kim^{10,11,63}, Constantina Theofanopoulou⁶, Michael Hiller^{64,65,66}, Yang Zhou⁶⁷, Robert S. Harris⁶⁸, Kateryna D. Makova^{68,69,70}, Paul Medvedev^{69,70,71,72}, Jinna Hoffman¹³, Patrick Masterson¹³, Karen Clark¹³, Fergal Martin¹⁴, Kevin Howe¹⁴, Paul Flicek¹⁴, Brian P. Walenz¹, Woori Kwak^{63,73}, Hiram Clawson⁴³, Mark Diekhans⁴³, Luis Nassar⁴³, Benedict Paten⁴³, Robert H. S. Kraus^{33,74}, Andrew J. Crawford⁷⁵, M. Thomas P. Gilbert^{70,77} Guojie Zhang^{70,72,80,81}, Byrappa Venkatesh⁸², Robert W. Murphy⁸³, Klaus-Peter Koepfli⁸⁴, Beth Shapiro^{85,86}, Warren E. Johnson^{84,87,88}, Federica Di Palma⁸⁹, Tomas Margues-Bon et^{20,21,22,23}, Emma C. Teeling²⁴, Tandy Warnow²⁵, Jennifer Marshall Graves²⁶, Oliver A. Ryder^{44,97}, David Haussler^{43,85}, Stephen J. O'Brien^{30,99}, Jonas Korlach⁴⁵, Harris A. Lewin^{5,100,101}, Kerstin Howe^{3,104}, Eugene W. Myers^{16,40,102,104} Richard Durbin^{2,3,04}, Adam M. Phillippy^{1,104} & Erich D. Jarvis^{4,0,80,104}

VERTEBRATE GENOMES PROJECT (VGP)

Towards complete and error-free genome assemblies of all vertebrate species Rhie et al. *Nature* 2021

VGP assembly pipeline applied across multiple species

Obtain high-quality cells or tissue that would yield high-molecular-weight DNA :

- for long-read sequencing (PacBio and ONT)
- optical mapping (Bionano)

"We will take advantage of continuing improvements in genome sequencing technology, assembly, and annotation, including advances in PacBio HiFi reads, Oxford Nanopore reads, and replacements for 10XG reads"

THE HUMAN PANGENOME PROJECT

Perspective

The Human Pangenome Project: a global resource to map genomic diversity

Nature April 2022

Current Membership of the Human Pangenome Reference Consortium

The Human Pangenome Reference Consortium Coordination Center Lucinda Antonacci-Fulton¹, Eddie Belter¹, Sarah Cody¹, Changxu Fan^{1,2,3}, Paul Flicek⁴, Ira M. Hall⁵, David Haussler^{8,7}, Heather A. Lawson^{1,2,3}, Daofeng Li^{1,2,3}, Joshua F. McMichael¹, Karen H. Miga⁶, Benedict Paten⁶, Chad Tomlinson¹, Deepak Purushotham^{1,2,3}, Ting Wang^{1,2,3}, Ann Zhang^{1,2,3}

Sample Working Group including Teams for Population Genetics and Ethical, Legal, and Social Issues

Carlos Bustamante⁸, Judy Cho^{9,10,11}, Robert Cook-Deegan¹², Jean-Francois Deleuze¹³, Richard Caños Bustamante", Judy Choir, Robert Cook-Deegan", Jean-Francois Dereuze ", Richard Durbin^{14,15}, Simon Easteal¹⁶, Evan E. Eichler^{17,18}, Xiaowen Feng^{19,20}, Nanibaa Garrison^{21,22,23}, Nadine Gassner⁶, Mary Goldman⁶, Ed Green⁶, David Haussler^{5,7}, Erich D. Jarvis^{24,25}, Eimear E. Kenny^{9,11}, Barbara A. Koenig²⁶, Bastien Llamas^{27,28}, Nicole C. Lockhart²⁹, Bartha M. Knoppers³⁰, Ann M. McCartney³¹, Karen H. Miga⁸, Jessica Mozersky³², Hardip Patel^{27,28}, Alice B. Popejoy³³, Charles Rotimi³⁴, Charmaine Royal³⁵, Yassine Souilmi^{27,28}, Nathan O Stitziel^{12,36}, Lisa Wang^{9,11}

Technology and Production Working Group Mark Akeson⁶, Brandy Baird⁶, Giulio Formenti^{24,25}, Robert S. Fulton¹, Ed Green⁶, Miten Jain⁶, Brittany Kerr³⁷, Chris Markovic¹, Matthew W. Mitchell³⁷, Katy Munson¹⁷, Hugh Olsen⁶, Sadye Paez24,25, William Rowell38, Sam Sacco39, Lauren Shalmivev24,25, Arvis Sulovari17

Assembly, T2T, and Pangenome Working Group

Mobin Asri⁶, Pete Audano¹⁷, Paolo Carneval¹⁴⁰, Mark Chaisson⁴¹, Shubham Chandak⁴², Xian Chang⁶, Haoyu Cheng^{19,20}, Vincenza Colonna⁴³, Daniel Doerr⁴⁴, Peter Ebert⁴⁴, Jana Ebler⁴⁴, Evan E. Eichler^{17,18}, Jordan Eizenga⁶, Olivier Fedrigo^{24,25}, Xiaowen Feng^{19,20}, Christian Eizen⁴⁵, Stacey Gabriel⁴⁶, Yan Gao⁴⁷, Shilpa Garg^{19,20,48}, Kiran Garimelle⁴⁶, Erik Garrison⁴⁵, Ed Green⁶, Stephanie Greer⁴⁹, Andrea Guarracino⁵⁰, Ira M. Hall⁵, William Harvey¹⁷, Marina Haukness⁶, David Haussler^{5,7}, Simon Heumos⁵¹, Glenn Hickey⁶, Kerstin Howe¹⁵, Eric D. Jarvis^{24,25}, Hanlee Ji⁴⁹, Sergey Koren³¹, Hojoon Lee⁴², Heng Li^{19,20}, Wen-Wei Liao⁵, Ryan Lorig-Roach⁶, Ernesto Lowy⁴, Tony Tsung Yu Lu⁴¹, Shuangjia Lu⁵, Julian Lucas⁶, Rebecca Serra Mari⁴⁴, Dmitri Pavlichin⁴⁹, Pierre Marijon⁴⁴, Charles Markello⁶, Tobias Marschall⁴⁴, Melissa Merediths⁶, Karen H. Miga⁶, Jean Monlong⁶, Njagi Mwaniki^{45,25}, Eugene W. Myers^{53,45,55}, Adam M. Novack⁶, Sergey Nurk³¹, Benedict Paten⁶, Dmitri Pavlichin⁴², Trevor Pesout⁶, Adam M. Phillippy³¹, Brandon Pickett³¹, David Porubksy¹⁷, Pjotr Prins⁴⁵, Mikko Rautiainen³¹, Arang Rhie³¹, Kishwar Shafin⁶, Jonas Sibbesen⁶, Jouni Siren⁶, Varsha Sreekanth⁶, Arvis Sulovari¹⁷, Kedar Tatwawadi⁴², Flavia Villani⁴¹, Mitchell Vollger¹⁷, Alexander Wait Zaranek⁴⁸, Tsachy Weissman⁴²

Annotation, Maintenance and Improvement Working Group

Derek Albracht¹, Eddie Belter¹, Shelby Bidwell⁵⁶, Konstantinos Billis⁴, Caryn Carson^{1,2,3}, Karen Clark⁵⁶, Mark Diekhans⁶, Sarah Dyer⁴, Susan Fairley^{4,57}, Paul Flicek⁴, Adam Frankish⁴, Nadine Gassner⁶, Carlos Garcia Giron⁴, Mary Goldman⁶, Tina A. Graves-Lindsay¹, Marina Haukness⁶, Kevin Howe¹⁵, Sarah Hunt⁴, Paul Kitts⁵⁶, Milinn Kremitizki¹, Fergal Martin²³, Terence Murphy³⁰, Valerie Schneider, Francoise Thibaud-Nissen³⁰, Sergey Nurk¹³, David Thybert⁴, Thomas Walsh⁴, Ting Wang^{1,2,3}, Chunlin Xiao⁵⁶, Daniel Zerbino⁴, Xiaoyu Zhuo^{1,2,3}

THE HUMAN PANGENOME PROJECT

ID	Pipeline	Technologies	Contigs	Scaffolders	Team
Diploid contig a	and scaffold assemblies				
asm23a,b	Trio VGP	CLR, 10X, BN and Hi-C	Trio Canu	Trio based: Scaff10x, Bionano solve and Salsa	Rockefeller
asm10a,b	DipAsm	HiFi and HiC	Peregrine	DipAsm, 3D-DNA, HapCUT2 and Whatshap	UCPH
asm2a,b	DipAsm HiRise	HiFi and HiC	Peregrine	HiRise and HapCUT2	Dovetail
asm22a,b	DipAsm Salsa	HiFi and HiC	Peregrine	Salsa and HapCUT2	Dovetail
asm14a,b	PGAS	HiFi and Strand-seq	Peregrine	SaaRclust	HHU+UW
asm17a,b	CrossStitch	HiFi, ONT-UL and HiC	CrossStitch	Ref-based to GRCh38 and HapCUT2	JHU
Diploid contig a	ssemblies				
asm6a,b	Trio Flye ONT std	ONT	Trio Flye	NA	NHGRI
asm7a,b	Trio Flye ONT-UL	ONT-UL more than 100kb	Trio Flye	NA	NHGRI
asm19a,b	Trio HiCanu	HiFi	Trio HiCanu	NA	NHGRI
asm20a,b	Trio HiPeregrine	HiFi	Trio Peregrine	NA	NHGRI
asm9a,b	Trio hifiasm	HiFi	Trio hifiasm	NA	DFCI Harvard
asm11a,b	DipAsm HiRise	HiFi and HiC	Peregrine	NA	UCPH
asm3a,b	Peregrine HiFi 25kb	HiFi long	Peregrine	NA	FBDS
asm4a,b	Peregrine HiFi 20 kb	HiFi	Peregrine	NA	FBDS
asm16a,b	FALCON Unzip	HiFi	FALCON unzip	NA	PacBio
asm8a,b	HiCanu	HiFi	HiCanu and Purge_dups	NA	NHGRI
Merged haploid	d contig and scaffold asse	mblies			
asm5	Flye ONT	ONT and HiFi	Flye	Flye	UCSD
asm18	Shasta ONT HiRise	ONT-UL and Hi-C	Shasta	HiRise	UCSC-CZI
asm21	Shasta ONT Salsa	ONT-UL and Hi-C	Shasta	Salsa2	UCSC-CZI
asm15	MaSuRCA Flye ONT	ONT-UL more than 120kb and HiFi	Flye	Reference based to GRCh38 and MaSuRCA	JHU
asm1	MaSuRCA Combo	Old ONT, Ill and HiFi	MaSuRCA	Reference based to GRCh38 and MaSuRCA	JHU
Merged haploid	d contig assemblies				
asm3a	Peregrine HiFi 25K	HiFi long	Peregrine	NA	FBDS
asm4a	Peregrine HiFi	HiFi	Peregrine	NA	FBDS
asm13	wtdbg2 HiFi	HiFi and Ill	wtdbg2	NA	CAAS-AGIS
asm12	NECAT ONT	ONT (no UL)	NECAT	NA	Clemson
Final diploid					
HPRC mat,pat	Trio HPRC v1.0	HiFi, ONT-UL, BN and Hi-C	Trio hifiasm	Trio based: Bionano Solve, Salsa, gap fill and curated	HPRC

THE HUMAN PANGENOME PROJECT

Wang et al. The Human Pangenome Project: a global resource to map genomic diversity. Nature 2022

Goals of the Human Pangenome Project

- To generate the highest quality phased genomes possible, prioritize the use of long-read and long-range technologies for assemblies, with haplotype-aware algorithms
- As long-read sequencing costs fall and pangenome methods evolve, we predict that patient samples will probably be sequenced using long-read technology.

Summary

PacBio

- Maximum read length : 200 kb
- CCS sequencing (HiFI reads) :
 - Very low error rate, best genome assembly
 - Sequencing of cDNAs (resolution of alternative splicing)
 - Detection of modified DNA (6mA > 5mC)
 - cDNA :
 - RNA-seq
 - Efficient for splicing isoforms detection

Nanopore

- Very light sequencing system portability
- Very long reads : maximum length > 1 Mb
- 10.4.1 flow cells: low error rate, accurate genome assembly
- Duplex sequencing may allow higher accuracy and challenge HiFi reads
- Detection of modified DNA (5mC, 6mA)
- Direct sequencing of RNA :
 - Direct RNA sequencing :
 - RNA-seq
 - splicing isoforms detection
 - Detection of modified RNA (6mA, pseudo U, etc..)

