

alliance nationale pour les sciences de la vie et de la santé

Preprocessing Prepping the count matrix

Bastien Job, Gustave Roussy, Villejuif

Rémi Montagne, Institut Curie, Paris

Nathalie Lehmann, ADLIN

École de bioinformatique AVIESAN-IFB-INSERM 2022

Organisation of this session

Organisation of this session

- Prepping the raw counts matrix
 - Assessing, removing ambient RNA
 - Filtering low quality droplets
 - Filtering bad cells on signatures metrics (%mito, %ribo, ...)
 - Estimating cell cycle phase
 - Identifying, filtering doublets

Ambient RNA filtering (soupX) THERE IS RNA HERE (CELL IN GEM RNA emptyDrops : removed + AMBIENT) empty droplets THERE IS RNA HERE TOO ! (contained only (NO CELL = 100% AMBIENT)ambient RNA) BUT non-empty tSNE1

droplets **ALSO** have ambient RNA !

 soupX determines the amount of ambient RNA in counts, removes it

HBB expression removal

Young et al. ص GigaScience (2020)

QC and filtering

Filtering of empty / bad quality cells

- Visualize data and deduce thresholds
- Possible visualization: Violin Plot : Distribution of a cell feature. Can add points to visualize cells exactly (1 point = 1 cell)
- Ideal distribution should be normal. In practice, it is bimodal

QC and filtering

Filtering of empty and bad quality cells

- Visualize data and deduce thresholds
- Possible visualization: Violin Plot : Distribution of a cell feature. Can add points to visualize cells exactly (1 point = 1 cell)

Mitochondrial (mt) genes expression

High % of mt genes may be due to apoptotic or hyperp-, dead cells

Here the distribution has a long right tail.

Depending on dataset, remove cells > 5, 10, 20, 25% mtRNAs...

Reflects cell stress or cellular activity? Cell cycle?

Is it a good marker: community debate.

+ Mechanical stress

QC and filtering

Filtering of empty and bad quality cells

- Visualize data and deduce thresholds
- Possible visualization: Violin Plot : Distribution of a cell feature. Can add points to visualize cells exactly (1 point = 1 cell)

Select the thresholds carefully if you expect a population with a small transcriptome: e.g. immune cells

Cell cycle phase estimation

- Variational expression due to cell phase may be strong !
- Training on reference set with the 3 phases identified
- Use pairs of differential genes
- Apply model pairs to new dataset, assign phases
- Implemented in cyclone (scran), Seurat, ...

Filtered matrix composition : Doublets

- True cells
- Empty, low quality droplets
- Doublets:
 - 1% for 1000 cells
 - 5% for 10 000 cells

• Visualize nb UMIs (nCount) as a Violin Plot and set a threshold

- Doublets harbor a non-natural expression :
 - Higher level but same profile for doublets of the same cell type
 - Artificial profile for doublets of different cell types
- This may have a **major impact** on the structure of signal in the data

• Visualize nb UMIs as a Violin Plot and set a threshold

• doublet detection by simulation

- doublet detection by clustering:
 - doublets composed of two cell types cluster between these cell types
 - check differentially expressed genes between putative doublets cluster and pop1 + pop2: there should not be many

findDoubletClusters()

Visualization : a real-life example

- 10X 3' scRNAseq v2
- Osteosarcoma metastasis
- 8911 cells x 18613 genes

Osteoblasts

Osteoclasts

- PCA (109 PCs retained)
- Louvain clustering • 12 clusters
- uMAP representation

Bias : Dying cells status / score

Bias : Cell cycle phases / scores

Bias : Cell doublet status / score

