---
title: "TP SingleCell GSEA"
output: html_document
date: "2023-11-08"
---
# Load libraries
```{r load_libraries, echo=TRUE, eval=FALSE}
base::library(package = "BiocParallel") # Optionally multithread some steps
base::library(package = "DT") # Display nice table in HTML
base::library(package = "ggplot2") # Draw graphs and plots
base::library(package = "ggpubr") # Draw nicer graphs
base::library(package = "rstatix") # Base R statistics
base::library(package = "knitr") # Build this presentation
base::library(package = "dplyr") # Handle big tables
base::library(package = "Seurat") # Handle SingleCell analyses
base::library(package = "SeuratObject") # Handle SingleCell objects
base::library(package = "SingleCellExperiment") # Handle SingleCell file formats
base::library(package = "UpSetR") # Nice venn-like graphs
base::library(package = "EnhancedVolcano") # Draw Volcano plot
```
# Load RDS object
```{r load_seurat_object, echo=TRUE, eval=TRUE}
sobj <- base::readRDS(
file = "/shared/projects/2325_ebaii/SingleCell/GSEA/Scaled_Normalized_Seurat_Object.RDS",
)
```
# Your time to work!
## Get Gene-Sets
Use the function `getGeneSets` from the `escape` package.
Remember:
1. we work on a mouse dataset
2. we use the library `MH`
```{r gene_sets, echo=TRUE, eval=TRUE}
# Write down your code here
```
## Run Escape
Use the function `enrichIt` of the package `escape`.
Remember:
1. We use the gene set we justcreated
2. We use the Seurat object stored in the variable `sobj`
3. If we use more CPU (`cores`) the analysis is faster!
```{r gsea, echo=TRUE, eval=TRUE}
# Write down your code here
```
## Session info
Use the function `sessionINfo()` to keep a track of your package version!
Remember:
1. I can't remember the package name... Can you find it?
```{r session_info, echo=TRUE, eval=TRUE}
# Write down your code here
```