Gene Set Analysis (GSA)

RNA-Seq group, IFB-AVIESAN 2021

2021-11-20

Intro

For this session, we use the following packages:

library("clusterProfiler") # Make enrichment analysis library("limma") # A lots of math-related operations library("DOSE") # Disease Ontology library("enrichplot") # Awesome graphs library("pathview") # Nice pathway plot library("org.At.tair.db") # A. Thaliana annotation

From monday we have :

- 1. Cleaned FastQ files (FastQC + Trimmomatic)
- 2. Mapped FastQ reads to the genome (STAR)
- **3.** Estimated mapped-reads counts over the genome (FeatureCounts)
- 4. Analyzed differnetially expressed genes over the genome (SARTools)

We have a large table with many columns

```
deseq_genes <- read.table(
   file="tables/KOvsWT.complete.txt",
    sep="\t",
    header=TRUE
)
print(names(deseq_genes))</pre>
```

[1] "Td" "WT1" [4] "WT3" "KU1" [7] "norm.WT1" "K03" "norm.WT3" [10] "norm.KO1" "norm.KO3" "baseMean" [13] [16] "KO" "FoldChange" [19] "stat" "pvalue" [22] "dispGeneEst" "dispFit" [25] "dispersion" "betaConv"

"WT2" "KO2" "norm.WT2" "norm.KO2" "WT" "log2FoldChange" "padj" "dispMAP" "maxCooks"

We have a large table with many lines

print(head(deseq_genes\$Id))

Id

- 1 gene:AT1G01010
- 2 gene:AT1G01020
- 3 gene:AT1G01030
- 4 gene:AT1G01040
- 5 gene:AT1G01050
- 6 gene:AT1G01060

Gene Identifiers

Let's search: "gene:AT1G61580"

print(deseq_genes[deseq_genes\$Id == "gene:AT1G61580",])

Td WT1 WT2 WT3 KO1 KO2 KO3 norm.WT1 5120 gene: AT1G61580 248 231 205 119 131 125 229 norm.WT2 norm.WT3 norm.KO1 norm.KO2 norm.KO3 baseMean 5120 210 215 131 131 123 173.19 WT KO FoldChange log2FoldChange stat pvalue 5120 218 128 0.588 -0.766 -4.48 7.465947e-06 padj dispGeneEst dispFit dispMAP dispersion 5120 0.0001156724 0 0.0311 0.0149 0.0149 betaConv maxCooks 5120 TRUE 0.0222

Details about this gene

Its name is gene: AT1G61580, it has a mean expression in the KO equal to 128, a mean expression in the WT equal to 218, a fold change of 0.588.

This means that this gene is less expressed in the KO, in comparison to the WT.

The adjusted p-value almost equals to 7.5e–06, which means that it is very likely that the difference of expression is related to the KO/WT status.

Intro Gene Identifiers Gene sets ORA GSEA Sets Networks

What is that gene name, not in computer gibberish ?

						Gene	 ✓ Search
tair	Home Help	Contact Abou	t Us Subscribe	Login Register			
Search	Browse	Tools	Portals	Download	Submit	News	Stocks
LOCUS: AT1G61580 What's new on this page Add a Comment				Add a Comment			
Representative Gene Model 😡	AT1G61580.1						
Gene Model Type	protein_coding						
Other names:	ARABIDOPSIS RIBOSOMAL PROTEIN 2, ARP2, R-PROTEIN L3 B, RPL3B						
Description 0	R-protein L3 B;(source:Araport11)						

AT1G61580 vs ARP2

To whom does ARP2 refer? Both genes down here does not belong to the same genomic location: Chr1:3A22720431-22723281 or Chr3:3A9952305-9956158

	Locus	Description
□ 1	AT1G61580	Other names: ARABIDOPSIS RIBOSOMAL PROTEIN 2, ARP2, R-PROTEIN L3 B, RPL3B R-protein L3 B;(source:Araport11)
2	AT3G27000	Other names: ACTIN RELATED PROTEIN 2, ARP2, ATARP2, WRM, WURM encodes a protein whose sequence is similar to actin-related proteins (ARPs) in other organisms, its transcript level is down regulated by light and is expressed in very low levels in all organisms.

AT1G61580 vs ARP2

ARP2 is not only related to A. Thaliana!

Search results

Items: 1 to 20 of 6078

<< First < Prev Page 1 of 304 Next > Last >>

See also 195 discontinued or replaced items.

Name/Gene ID	Description	Location	Aliases	MIM
ARP2 ID: 851532	actin-related protein 2 [Saccharomyces cerevisiae S288C]	Chromosome IV, NC_001136.10 (399340400638)	YDL029W, ACT2	
<u>Arp2</u> ID: 32623	Actin-related protein 2 [Drosophila melanogaster (fruit fly)]	Chromosome X, NC_004354.4 (1654829016553968, complement)	Dmel_CG9901, ARP14D, ARP2, Actr14D, Arp14D, CG9901, Dmel\CG9901, arp2	
<u>arp2</u> ID: 5802965	ARP2/3 actin-organizing complex subunit Arp2 [<i>Schizosaccharomyces</i> <i>pombe</i> (fission yeast)]	Chromosome I, NC_003424.3 (47830074784765)	SPAC11H11.06, SPAC22F8.01	
ARP2 ID: 822317	actin related protein 2 [Arabidopsis thaliana (thale cress)]	Chromosome 3, NC_003074.8 (99524799955982, complement)	AT3G27000, ACTIN RELATED PROTEIN 2, ATARP2, WRM, WURM, actin related protein 2	
ARP2 ID: 30037080	actin-related protein 2 [Sugiyamaella lignohabitans]	Chromosome D, NC_031673.1 (877948878958)	AWJ20_4899	
arp2 ID: 9626912	actin-related protein Arp2 [Volvox carteri f. nagariensis]		VOLCADRAFT_107669	

AT1G61580 vs ARP2

- AT = Arabidopsis Thaliana
- 1 = Chromosome number
- $\mathsf{G}=\mathsf{Protein}\ \mathsf{coding}\ \mathsf{gene}$

 $61580 = \mbox{Unique}$ gene identifier, given from top/north to bottom/south of chromosome.

Gene name vs Gene identifier

A *Gene name* is human understandable. If is not unique, neither to an organism, nor to a genomic location. A gene name is also called *Symbol*.

A *Gene identifier* is not designed for human. It is unique to both organism and genomic location.

You must use gene identifiers as much as possible. Keep gene names for meetings, and nice-looking graphs. You're right, gene identifiers are horrible on a daily use !

Fix gene identifiers (1/2)

In our table, the genes identifiers begin with "gene:". This going to break further analysis!

head(deseq_genes\$Id)

[1] gene:AT1G01010 gene:AT1G01020 gene:AT1G01030
[4] gene:AT1G01040 gene:AT1G01050 gene:AT1G01060
27655 Levels: gene:AT1G01010 gene:AT1G01020 ... gene:ATMG01410

For a computer: "gene:AT1G01010" is not "AT1G01010"

Fix gene identifiers (2/2)

We need a raw gene identifier:

Replace the names in the ID column
deseq_genes\$Id <- sub("gene:", "", deseq_genes\$Id)</pre>

And we can check our genes identifiers with the function "head": head(deseq_genes\$Id)

[1] "AT1G01010" "AT1G01020" "AT1G01030" "AT1G01040" [5] "AT1G01050" "AT1G01060"

Translate Gene Identifiers with bitr

```
annotation <- bitr(
  geneID = deseq_genes$Id,  # Our gene list
  fromType = "TAIR",  # We have TAIR ID
  toType = c("ENTREZID", "SYMBOL"),# Other ID list
  OrgDb = org.At.tair.db  # Our annotation
)</pre>
```

print(head(annotation))

	TAIR	ENTREZID	SYMBOL
1	AT1G01010	839580	ANAC001
2	AT1G01010	839580	NAC001
3	AT1G01020	839569	ARV1
4	AT1G01030	839321	NGA3
5	AT1G01040	839574	ASU1
6	AT1G01040	839574	ATDCL1

Merge the translation and the original table

```
deseq_genes <- merge(
    x = deseq_genes, y = annotation,
    by.x = "Id", by.y = "TAIR"
)
print(head(deseq_genes, 1))</pre>
```

Id WT1 WT2 WT3 KO1 KO2 KO3 norm.WT1 norm.WT2 1 AT1G01010 533 541 473 931 1052 1124 493 492 norm, WT3 norm, KO1 norm, KO2 norm, KO3 baseMean WT KΟ 1023 1050 1108 777.09 494 1060 1 496 FoldChange log2FoldChange stat pvalue padj 1.104 9.276 1.76535e-20 2.582102e-18 1 2.149 dispGeneEst dispFit dispMAP dispersion betaConv maxCooks 1 0.021 0.0087 0.0087 0 TRUE 0.0187 ENTREZID SYMBOL 1 839580 ANAC001

Conclusion

- 1. We know to read differential gene expression results
- 2. We know how to read gene identifiers and how to translate them
- We know that human-readable gene names are source of mistakes/confusions
- 4. We agree that computer-readable gene identifiers are horrible on Monday morning meetings.

Gene sets

Which genes are expressed in the roots

Go to planteome.org, search for roots ... 19065 genes !

Object	Object name	Object Type	Direct annotation	Ontology (aspect)
ELIP2	AT4G14690	protein	root	Anatomy (A)
APS3	AT4G14680	protein	root	Anatomy (A)
BIA1	AT4G15400	protein	root	Anatomy (A)
RIP2	AT2G37080	protein	root	Anatomy (A)

Definition of gene sets

A gene set is nothing more than a group of genes belonging to the same ...

Genes annotations: database expectations (1/2)

- Gene Ontology (GO): which hosts a controlled vocabulary (fixed terms) for annotating genes
 - *Molecular Functions*: Molecular-level activities performed by gene products
 - *Cellular Components*: Locations relative to cell compartments and structures
 - *Biological Process*: Larger processes accomplished by multiple molecular activities

http://geneontology.org/

Genes annotations: database expectations (2/2)

- KEGG: Kyoto Encyclopedia of Genes and Genomes
 - *Pathways*: Larger processes accomplished by multiple molecular activities

• ... https://www.genome.jp/

• MSigDB: Molecular Signatures Database

• Multiple collections of genes sets (human centered)

http://software.broadinstitute.org/gsea/msigdb/index.jsp

Within R: OrgDb

• **OrgDB**: From bioconductor, you may find a lot of organism annotations

Bioconductor version 3.12 (Release)

Autocomplete biocViews search:

С	ustomArray (2)	
⊳ C	ustomDBSchema (6)	
F	unctionalAnnotation (31)	
► 0	organism (634)	
▼ P	ackageType (681)	
	AnnotationHub (11)	
	BSgenome (100)	
	cdf (118)	
	ChipDb (167)	
	db0 (19)	
	EuPathDB (1)	
	FRMA (11)	
	InparanoidDb (8)	
	MeSHDb (78)	
	OrganismDb (3)	
	OrgDb (20)	
	nrohe (97)	

Packages found under OrgDb:

Rank based on number of downloads: lower numbers are more frequently downloaded.

Show All Y entri	ies	Search table:	
Package	Maintainer	Title	Rank 🔺
org.Hs.eg.db	Bioconductor Package Maintainer	Genome wide annotation for Human	3
org.Mm.eg.db	Bioconductor Package Maintainer	Genome wide annotation for Mouse	5
org.Rn.eg.db	Bioconductor Package Maintainer	Genome wide annotation for Rat	18
org.Dm.eg.db	Bioconductor Package Maintainer	Genome wide annotation for Fly	29
org.Sc.sgd.db	Bioconductor Package Maintainer	Genome wide annotation for Yeast	30
org.At.tair.db	Bioconductor Package Maintainer	Genome wide annotation for Arabidopsis	32
org.Dr.eg.db	Bioconductor Package Maintainer	Genome wide annotation for Zebrafish	38
org.Ce.eg.db	Bioconductor Package Maintainer	Genome wide annotation for Worm	50
org.Bt.eg.db	Bioconductor Package Maintainer	Genome wide annotation for Bovine	60

Within R: Many others

- Software (1975)
- AnnotationData (971)
 - ChipManufacturer (388)
 - ChipName (196)
 - CustomArray (2)
 - CustomDBSchema (6)
 - FunctionalAnnotation (31)
 - Ørganism (634)
 - Anopheles_gambiae (4)
 - Apis_mellifera (4)
 - Arabidopsis_thaliana (14)
 - Asparagus_officinalis (1)
 - Bacillus_subtilis (2)
 - Bos_taurus (15)
 - Caenorhabditis_elegans (13)
 - Callithriv jacobus (1)

Protein - Protein Interactions (PPIs)

PPIs are useful for understanding functional relationships between proteins and the biology of the cell

Pathways vs Network

Adapted from: Nature Methods. Pathway and network analysis of cancer genomes (2015)

Conclusion

- 1. A gene set is a group of genes that have a function, location, treatment response, or anything else in common.
- 2. There are a lot of gene set databases, one must choose them wisely.
- **3.** You can relate genes, proteins, other kind of molecules together in a (gene) set.

Intro	Gene Identifiers	Gene sets	ORA	GSEA	Sets	Networks
00000	0000000000000000	0000000000	•000000000000	000000000000000000000000000000000000000	0000	000000

Over Representation Analysis

ORA stands for *Over Representation Analysis*. It is almost what we did 5 minutes earlier!

Given a list of differentially expressed genes, search the gene sets containing these genes, and run an enrichment test on each of them.

Select differentially expressed genes

de_genes <- deseq_genes[deseq_genes[, "padj"] <= 0.001,]
de_genes <- de_genes[!is.na(de_genes[, "log2FoldChange"]),]
dim(deseq_genes)</pre>

[1] 35684 29

dim(de_genes)

[1] 2743 29

Cluster Profiler Enrichment on GO: Cellular Components

We would like to perform Gene Set Enrichment analysis against the Gene Ontology's Cellular Components:

```
ego <- enrichGO(
          = de genes$ENTREZID, # Ranked gene list
 gene
 universe= deseq_genes$ENTREZID, #All genes
 OrgDb = org.At.tair.db,
                                # Annotation
 keyType = "ENTREZID",
                                # The genes ID
 ont = "CC".
                                # Cellular Components
 pvalueCutoff = 1,
                                # Significance Threshold
 pAdjustMethod = "BH",
                                # Adjustment method
 readable = TRUE
                                # For human beings
```

Cluster Profiler: Plots (1/3)

We want to visualize these results. To do so, let's use the function "barplot" and the function "dotplot" from the "enrichplot" package:

```
barplot(ego, showCategory=15)
dotplot(object = ego, showCategory=15)
```

Cluster Profiler: Plots (2/3)

Cluster Profiler: Plots (3/3)

36 / 74
What about roots ? (1/4)

res_ego <- ego@result
print(head(res_ego, 3))</pre>

ID Description GD:0009579 GD:0009579 thylakoid plastid thylakoid membrane GD:0055035 GD:0055035 GD:0009535 GD:0009535 chloroplast thylakoid membrane BgRatio pvalue p.adjust GeneRatio 89/1620 470/24412 1.519540e-19 2.873124e-17 GD:0009579 GD:0055035 67/1620 295/24412 2.789440e-19 2.873124e-17 GD:0009535 66/1620 293/24412 8.176875e-19 5.382279e-17 qvalue GD:0009579 2.554540e-17 G0:0055035 2.554540e-17 GD:0009535 4.785471e-17

GO:0009579 PSAD-2/EMB2784/PnsL2/NA/NDF1/NDF6/ATLENR2/DRT1³⁷/N

What about roots ? (2/4)

Nothing about roots ? Really ?

roots <- res_ego[with(res_ego, grepl("root", Description)),]
print(head(roots))</pre>

[1] ID Description GeneRatio BgRatio[5] pvalue p.adjust qvalue geneID

[9] Count

<0 rows> (or 0-length row.names)

What about roots ? (3/4)

```
ego <- enrichGO(
         = de_genes$ENTREZID, # Ranked gene list
 gene
 universe= deseq_genes$ENTREZID, #All genes
 OrgDb = org.At.tair.db,
                                # Annotation
 keyType = "ENTREZID",
                                # The genes ID
 ont = "BP".
                                # Biological Process
 pvalueCutoff = 1,
                                # Significance Threshold
 pAdjustMethod = "BH",
                                # Adjustment method
 readable = TRUE
                                # For human beings
```


40 / 74

Intro Gene Identifiers Gene sets ORA GSEA Sets Networks

41/74

What about roots ? (4/4)

res_ego <- ego@result
roots <- res_ego[with(res_ego, grepl("root", Description)),]
print(head(roots))</pre>

1	Description			ID	
3	morphogenesis	root		GD:0010015	GD:0010015
ı	ifferentiation	dermal cell di	root epic	GD:0010053	GD:0010053
5	ll development	root hair cel		GD:0080147	GD:0080147
ı	air elongatior	root ha		GD:0048767	GD:0048767
ı	ifferentiation	t hair cell di	root	GD:0048765	GD:0048765
5	ot development	lateral roc		GD:0048527	GD:0048527
	p.adjust	pvalue	BgRatio	GeneRatio	
	9.549964e-23	6.349710e-26	458/20443	102/1447	GD:0010015
	7.965974e-22	2.118610e-24	365/20443	87/1447	GD:0010053
	4.246296e-14	1.694001e-16	203/20443	52/1447	GD:0080147
	1.281131e-13	5.962711e-16	188/20443	49/1447	GD:0048767
42 / 74	1.536649e-13	9.195374e-16	323/20443	67/1447	GD:0048765

ntro Gene Identifiers Gene sets ORA GSEA Sets Networks

Enrichment VS Gense Set Enrichment Analysis (1/2)

Note that, up to now, we used genes identifiers, and only genes identifiers. We have guessed which pathways had more differentially expressed genes than the others.

However:

- 1. we do not have any idea whether these pathways are up/donw regulated.
- we do not know whether these pathway have up/down-regulated genes.

Enrichment VS Gense Set Enrichment Analysis (2/2)

Most of the time, we do not need to know that.

We saw our roots and plant organs being smaller, having morphology issues. Look at the plant!

However, we like numbers and statistics. Let's have fun!

Back to the data

To perform a Gene Set Enrichment Analysis (GSEA), we need to give "a list of weighted ranked genes in order to compute a running enrichment score."

```
print(colnames(deseq_genes))
```

[1]	"Id"	"WT
[4]	"WT3"	"KO
[7]	"KO3"	"no:
[10]	"norm.WT3"	"no:
[13]	"norm.KO3"	"ba
[16]	"KO"	"Fo
[19]	"stat"	"pva
[22]	"dispGeneEst"	"di:
[25]	"dispersion"	"be
[28]	"ENTREZID"	"SY

"WT1" "KO1" "norm.WT1" "baseMean" "FoldChange" "pvalue" "dispFit" "betaConv" "SYMBOL" "WT2" "KO2" "norm.WT2" "Norm.KO2" "WT" "log2FoldChange" "padj" "dispMAP" "maxCooks"

Using TAIR, ENTREZID or SYMBOL

We need a list of genes. What kind of name/identifier should we use ?

- 1. TAIR identifiers (<- Good)
- 2. ENTREZ identifiers (<- Good)
- **3.** Gene Symbols (<- not this one)

Using WT/KO as weights

We have to weight each genes. We could use the columns WT and KO, running twice the GSEA, and comparing the enrichment scores.

It works, it is used in current publications. Highly expressed genes have a very very very high impact on the enrichment score.

By doing so, we could conclude something like: *"Root morphogenesis has a higher/lower enrichment score in WT rather than in KO"*

Using FoldChange as weights

We have to weight each genes. We could use the column FoldChange, and look at the enrichment score.

It works, it is used in current publications. Highly differentially expressed genes have a very very very high impact on the enrichment score.

By doing so, we could conclude something like: "Root morphogenesis has up-/down regulated genes with an enrichment score of XXX" or "Genes in Root morphogenesis are usually up/down regulated in KO plants"

Using log2FoldChange as weights

The very same conclusions are being done with log2FoldChange or FoldChange, however there will be no bias related to the initial gene expression.

This is, imho, the most published way to do. I almost always see this in current publications.

Using pvalue as weights

NO ! NO ! USE ADJUSTED P-VALUES !

Using padj as weights

We have to weight each genes. We could use the column padj, and look at the enrichment score.

It works, but almose never published since it answers the very same questions as ORA: "Does Root morphogenesis contains differentially expressed genes in an unusual quantity"

Using stat as weights

To make short, stat is FoldChange weighted by adjusted pvalue.

It answers the very same question as log2FoldChange/FoldChange weights, but includes the confidence we have in the differential expression between KO and WT in addition to the change of expression between conditions.

This is almost never done, but fellow bio-statisticians tell me it is better than FoldChange.

We are going to use stat today, because we trust bio-statisticians.

Prepare data

```
# Get the weights
geneList <- as.numeric(de_genes$stat)
# Get genes identifiers
names(geneList) <- de_genes$ENTREZID
# Sort the list
geneList <- sort(geneList, decreasing=TRUE)</pre>
```

We now have a sorted list of weighted genes.

Run analysis

Dear statisticians, please look aside for a minute.

```
gsea <- gseGO(
 geneList = geneList,
 ont = "BP".
 OrgDb = org.At.tair.db, # Annotation
 keyType = "ENTREZID",
 pAdjustMethod = "BH",
 pvalueCutoff = 1
```

```
# Ranked gene list
```

```
# Biological Process
```

```
# Identifiers
```

```
# Pvalue Adjustment
```

```
# Significance Threshold
```

```
GSEA plot (1/6)
```

Let's see the top 8 of the over-represented genes sets:

GSEA plot (2/6)

Let's see the top 8 of the over-represented genes sets:

Description	enrichmentScore	p.adjust
response to stress	-0.1824687	0.0147129
response to chemical	-0.2084632	0.0147129
localization	-0.2263491	0.0147129
establishment of localization	-0.2376088	0.0147129
transport	-0.2477163	0.0147129
response to oxygen-containing compound	-0.2456208	0.0147129
carboxylic acid metabolic process	-0.2396659	0.0147129
organic acid metabolic process	-0.2459200	0.0147129

GSEA plot (3/6)

Finally, building the GSEA plot is being done with the function "gseaplot2" from "clusterProfiler":

```
# We need the number of the line
# Containing our pathway of interest
gsea_line <- match(
  "plant organ morphogenesis",
  gsea<sup>$</sup>Description
)
gseaplot2(
                                   # Our analysis
            = gsea,
  x
  geneSetID = gsea$ID[gsea_line], # Pathway ID
  title = "plant organ morphogenesis" # Its name
```

GSEA plot (4/6)

GSEA plot (5/6)

Finally, building the GSEA plot is being done with the function "gseaplot2" from "clusterProfiler":

```
# We need the number of the line
# Containing our pathway of interest
gsea line <- match(
  "root morphogenesis",
  gsea<sup>$</sup>Description
)
gseaplot2(
                                   # Our analysis
            = gsea,
  x
  geneSetID = gsea$ID[gsea_line], # Pathway ID
  title = "root morphogenesis" # Its name
```

GSEA plot (6/6)

Multiple GSEA on the same graph (1/2)

```
... because we can!
```

```
gseaplot2(
    x = gsea,
    geneSetID = 1:3,
    title = "Most enriched terms"
)
```

Multiple GSEA on the same graph (2/2)

Conclusion on GSEA

With GSEA, you dot not test if a pathway is up or down regulated.

A pathway contains both enhancers and suppressors genes. An up-regulation of enhancer genes and a down-regulation of suppressor genes will lead to a "bad" enrichment score. However, this will lead to a strong change in your pathway activity!

If your favorite pathway does not have a *"good enrichment score"*, it does not mean that pathway is not affected.

Sets

Heatmap (1/2)

Very common in publications

UpSet plot

upsetplot(x = ego) # From our enrichment analysis

Networks

Enrichment map

emapplot(ego) # From our enrichment analysis

GO plot

Relate enriched terms with each others:

goplot(ego) # From our enrichment analysis

Kegg (1/2)

The Kegg analysis is done with the "pathview" package and this eponymous function:

names(geneList) <- de_genes\$TAIR # Use TAIR id</pre>

```
pv.out <- pathview(
  gene.data = geneList,  # Our gene list
  pathway.id = "ath00630", # Our pathway
  species = "ath",  # Our organism
  # The color limits
  limit = list(gene=max(abs(geneList))),
  gene.idtype = "TAIR" # The genes identifiers</pre>
```


KEGG (2/2)

There is the representation of our pathway, with differentially expressed genes colored!

Thanks

Thanks to the rest of the team for their reviews and advises.