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Some mental images



Potato Chips Analysis

Cut the yummiest French fries



Whale versus krill: this is you (credit: Allison Horst)

Eat the most krill (put on your 3D glasses)



Whale versus krill: this is your data (credit: Allison Horst)

Eat the most krill (put on your 3D glasses)

Artwork by @allison_horst

https://twitter.com/allison_horst


The tri-force of PCA
Screeplot

individual
map

circle of 
correlation



Example data

n <- 15
dat.ex <- tibble(
X1 = rnorm(n),
X2 = rnorm(n),
X3 = -X1,
X4 = 2 * X2  + 0.25 * rnorm(n),
X5 = X1 + X2 + 0.25 * rnorm(n),
X6 = X1 - X2 + 0.25 * rnorm(n),
X7 = rnorm(n)

)



Example screeplot
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Example individual map
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Example circle of correlation
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Vocabulary



French versus English

(Anonymous student, after 6 hours 
of teaching PCA in French)

English French
PCA = principal component 
analysis

ACP = analyse en 
composantes principales

SVD = singular value 
decomposition

SVD = décomposition en 
valeurs singulières

EVD = eigenvalue 
decomposition

décomposition en éléments 
propres

ICA = independent 
component analysis

ICA = analyse en 
composantes indépendantes

MDS = multidimensional 
scaling

MDS = multidimensional 
scaling

“Aaaaah, mais acépé en fait 
c’est la PCA !”



R vocabulary

Base methods:
● eigen for eigenvalue decomposition, svd for singular value decomposition,
● prcomp and princomp for PCA,
● biplot

Nice packages:
● FactoMineR: PCA, MFA, CA, MCA and associates. In earlier versions, the 

graphs were “crude”…
● factoextra: “helper” package to make beautiful plots, and much more!
● ade4: more than “one block” type of analyses. Made by ecologists so ⇒

PCOA, coinertia analysis, STATIS, etc.
● ExPosition: made for psychometricians (they like PLS)



And a few nice books and papers

MOOC analyse de données de François Husson : 
https://husson.github.io/MOOC_AnaDo/index.html
(also in English)
PCA paper(s) by Hervé Abdi: 
https://personal.utdallas.edu/~herve/abdi-awPCA2010.pdf

(more?)

https://husson.github.io/MOOC_AnaDo/index.html
https://personal.utdallas.edu/~herve/abdi-awPCA2010.pdf


A little bit of Math



Notations

(non-universal) Conventions: matrices and vectors are bold
● 𝑛 = number of observations, 𝑝 = number of variables (only quantitative)
● 𝑖 for an individual observation, and 𝑗 for a single variable
● 𝐗 = data matrix, with 𝑛 rows and 𝑝 columns, sometimes already centered, and 

scaled, to make our life easy
● 𝐗! = variable 𝑗, and 𝑗th column of 𝐗
● 𝐰 a set of weights



A little detour: matrix multiplication

Take a pen and paper, and do this multiplication:
1 −1
0 1
2 1

× 1 2 3 4
−1 0 0 1

Cool video: 5 ways to see matrix multiplication

https://www.youtube.com/watch?v=Zbj-nyJyP-Q


PCA

“Find a linear combination of the columns of the data that 
would capture the most information.”

In mathematical words, find
𝐗𝐰 = 𝑤"𝐗" +⋯+𝑤#𝐗#

that maximizes… wait a minute! What are the dimensions?
● 𝐗: 𝑛 rows and 𝑝 columns,
● 𝐰: 𝑝 rows and 1 columns,
● 𝐗𝐰: 𝑛 rows and 1 column.



The mathematical
translation of the 
intuitions behind PCA



Most popular intuition of PCA: how does it translate?

“PCA creates a linear combination of variables that maximizes 
variance.”

arg max
∥𝐰∥!!&"

var 𝐗𝐰

● Why ∥ 𝐰 ∥'= 1?
● Dirty trick: var 𝐗𝐰 = 𝐰(𝐗(𝐗𝐰



Least “well-known” intuition of PCA: how does it translate?

“PCA creates a linear combination of variables that maximizes 
correlation.”

argmax
𝐰

9
!&"

#

cor 𝐗𝐰, 𝐗!
'



Second least “well-known” intuition of PCA: how does it 
translate?

“PCA creates the best lower rank approximation of the 
covariance matrix.”

arg min
∥)∥!!&"

1
𝑛 𝐗

(𝐗 − 𝜆𝐰𝐰(
*

'

● "
+
𝐗(𝐗

● 𝜆: the [blank] of the covariance matrix
● 𝐰: the [blank] of the covariance matrix



A little image
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Rank 1 approximation



Rank-1 approximations



Increasing rank approximations



We can do the same kind of magic with the data itself

Singular value decomposition can be used to approximate a 
rectangular matrix with a lower ranked matrix of the same 
dimension

arg min
∥𝐮∥!!&∥𝐰∥!!&"

𝐗 − 𝛿𝐮𝐰(
*
'

● 𝛿: singular value
● 𝐮: left singular vector
● 𝐰: right singular vector



Rank 1 approximation
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Rank-1 approximations



Increasing rank approximations
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Un peu de code

library(dplyr)
library(FactoMineR)
library(factoextra)
library(ggplot2)

n <- 15
dat.ex <- tibble(
X1 = rnorm(n),
X2 = rnorm(n),
X3 = -X1,
X4 = 2 * X2 + 0.25 * rnorm(n),
X5 = X1 + X2 + 0.25 * rnorm(n),
X6 = X1 - X2 + 0.25 * rnorm(n),
X7 = rnorm(n)

)

res.pca.ex <- PCA(dat.ex, scale.unit = TRUE, graph = FALSE)
fviz_screeplot(res.pca.ex)
fviz_pca_ind(res.pca.ex, repel = TRUE)
fviz_pca_var(res.pca.ex, repel = TRUE)


