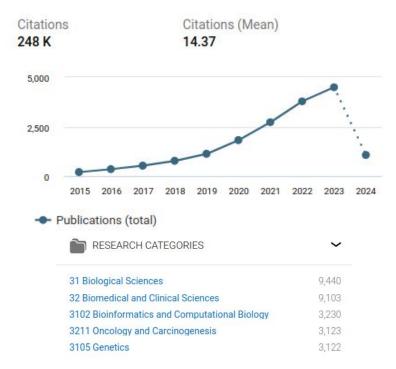


Omics integration - General aspects

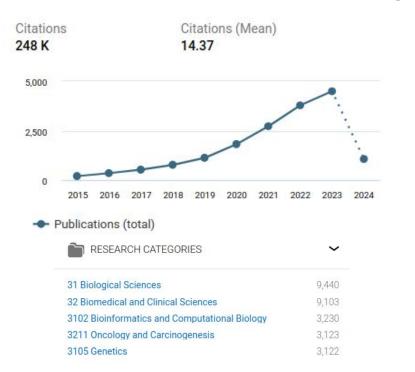
Jimmy Vandel (PLBS - Bilille)
Arnaud Gloaguen (CNRGH-CEA)
Vincent Guillemot (Institut Pasteur)

DOI final version



Rise in popularity

"Multi-omics" citations


https://app.dimensions.ai/discover/publication (15th Mar. 2024: 143,523,222 referenced publications)

"Multi-omics" citations

"Single-cell" citations

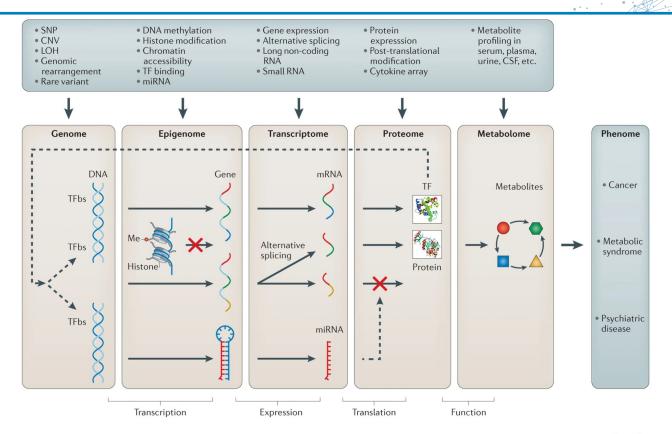
Citations (Mean)							
35.57							
	••.						
-							
2015 2016 2017 2018 2019 2020 2021	2022 2023	2024					
blications (total)							
RESEARCH CATEGORIES	~						
32 Biomedical and Clinical Sciences							
31 Biological Sciences	286,160						
	35.57 2015 2016 2017 2018 2019 2020 2021 blications (total) RESEARCH CATEGORIES	35.57 2015 2016 2017 2018 2019 2020 2021 2022 2023 Dications (total) RESEARCH CATEGORIES 32 Biomedical and Clinical Sciences 437,674					

3101 Biochemistry and Cell Biology

3211 Oncology and Carcinogenesis

40 Engineering

https://app.dimensions.ai/discover/publication (15th Mar. 2024: 143,523,222 referenced publications)


146,495

119,276

Omics... which ones?

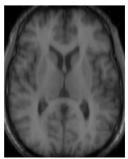
FRANCE

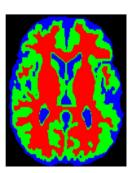
INSTITUT FRANÇAIS DE BIOINFORMATIQUE

Nature Reviews | Genetics

Ritchie, M., Holzinger, E., Li, R. et al. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet 16, 85–97 (2015).

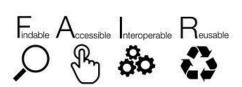
Other related data?


- clinical data
- imaging data (full data or extracted characteristics)
- new omics fields: fluxomics, ionomics, microbiomics, glycomics...
- biological knowledge : DNA/protein, protein/protein interactions, DNA recombination


IntAct.

→ a priori in model definition/construction

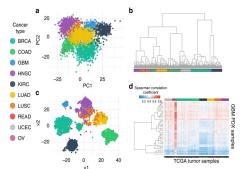
John Smith						Other Tests:					
						MCV	MCH	MCHC	RDW	MPV	Click on a ?
		HOME		CHARTS		?	?	?	7	?	Language Control Comment of the Control Comment of the Control
Company of the						80.100	211-32	32-36	11%-15%	7,5.11.5	for additional help information
CBC In	ormati			_			-	-	-		No.
						Percent	Absolute Lymphs	Percent Neuts	Absolute Neuts		
7	7	- 7	7	7	7	7	7	7	7	7	,
Range->	3.5.10.5	4.2-6.1	12.1.17.2	MITT	A	***	0.85-4.1	25.70%	1.5-7,8	1.2.0	
20-Jan-15	9.0	5.00	9.0	49 Heir	atocrit mea	oures the	5.4	60.0%	5.4		
20-Jun-15	10.0	4.00	9.5	42 amo	unt of volur	ne red	5.8	55.0%	5.5		
20-Jan-16	12.0	5.10	10.0		d cells occu d. The value	py in the	7.7	50.0%	6.0		
20-Jun-16	11.0	5.20	12.0				6.9	45.0%	5.0		
20-Jan-17	8.0	5.00	11.0	34 cells	in a volume	of blood.	5.2	40.0%	32	$\overline{}$	
20-Jun-17		5.30	13.0	.34			4.2	42.0%	2.9		
20-Jan-18	5.0	5.40	15.0	355	400	70.0%	3.5	45.0%	2.3		
20-Jun-18	45	5.80	13.8	40.0	250	50.0%	23	48.0%	22		
20-Jan-19 20-Jun-19	7.0	5.00	14.0	48.0 45.0	150	75.0%	3.0	50.0%	2.0		
20-Jun-19 20-Jun-20	9.0	450	10.0	47.0	130	68.0%	6.1	55.0%	5.0		
20-Jun-20	10.0	5.20	11.0	45.0	250	55,0%	5.5	60.0%	6.0	-	Ī.
	_				_	_		_			
	_				-	_					
	_										
	_										
-	_										
				-							
	_				-						
	-		_		_	_					
H HOME	cac / ci		Blood Chr		Immunoglo	sultra 7 P		=		-	Del.

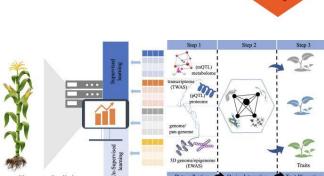

(b) Tissue segmentation

Integration: motivation and challenges

- Take advantage of the vast amount of available data
 - Data access (local/national regulation, infrastructures...)
 - Data representation (structuration, ontologies...)
 - -> Need of common representation framework

- Improve our understanding of biological phenomena
 - Data heterogeneity (technology, format, biological meaning, stat. distribution...)
 - Data complexity (dependances/independances, ad-hoc assumptions...)
 - Amount a data (time/memory consuming)
 - -> Need of new analysis methods/algorithms

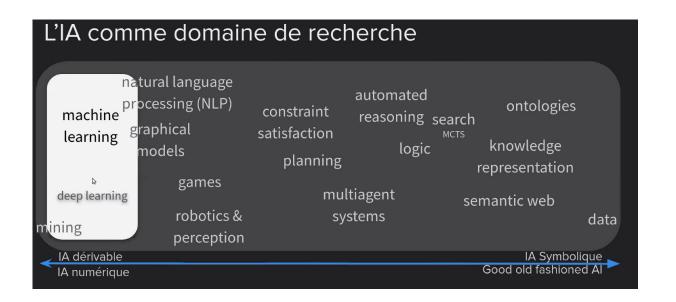


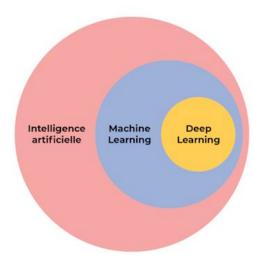

Integration: biological motivation

- Deep insights into biology phenomenon
- Subtyping and classification (disease, species, varieties)

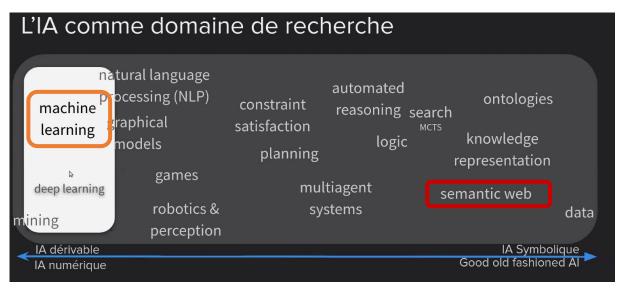
Biomarkers prediction: diagnostic, disease drivers, plant/animal selection...

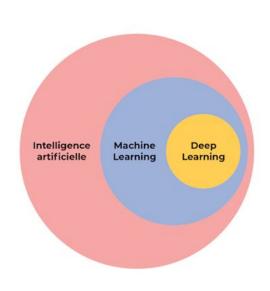
Vasileios et al (2018). Drug and disease signature integration identifies synergistic combinations in glioblastoma. Nature Communications. 9.



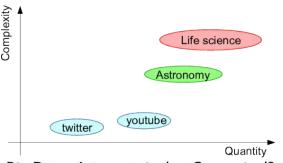

Mahmood et al (2022). Multi-omics revolution to promote plant breeding efficiency. Front Plant Sci.

Artificial intelligence of course ... and so ?





Artificial intelligence of course ... and so ?


Improve our understanding of biological phenomena

Take advantage of the vast amount of available data

Take advantage of the vast amount of available data

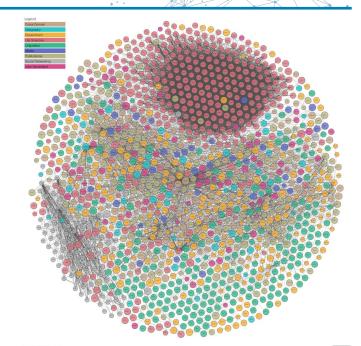
Big Data: Astronomical or Genomical?

Zachary D. Stephens¹, Skylar Y. Lee¹, Faraz Faghri², Roy H. Campbell², Chengxiang Zhai³, Miles J. Efron⁴, Ravishankar Iver¹, Michael C. Schatz⁵*, Saurabh Sinha³*, Gene E. Robinson6*

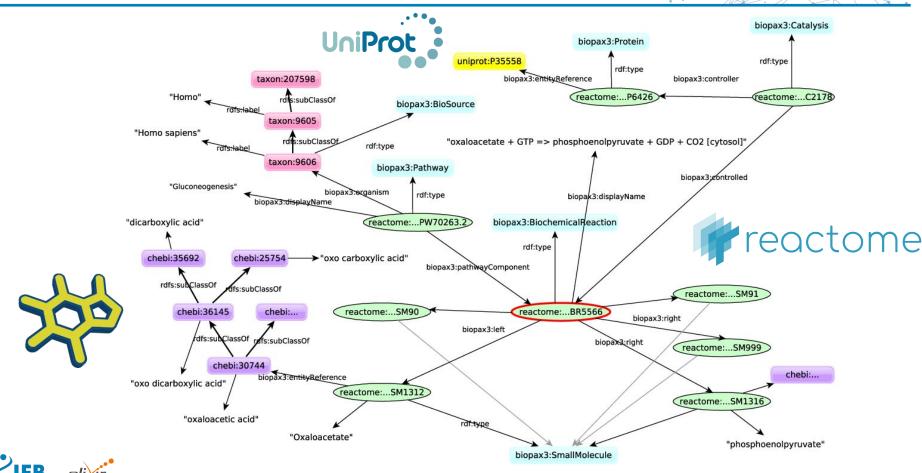
Life science: 1600+ reference databases

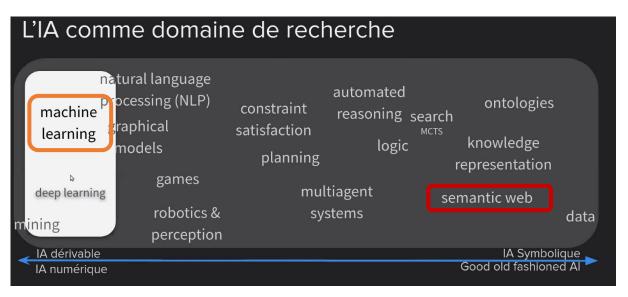
→ integrating heterogeneous data and knowledge is (badly) needed!

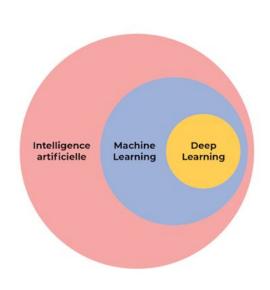
Editorial > Nucleic Acids Res. 2022 Jan 7;50(D1):D1-D10. doi: 10.1093/nar/gkab1195.


The 2022 Nucleic Acids Research database issue and the online molecular biology database collection

Daniel J Rigden 1, Xosé M Fernández 2


PMID: 34986604 PMCID: PMC8728296 DOI: 10.1093/nar/gkab1195


Semantic Web = framework for:


- integrating data and knowledge
- querying
- reasoning

Take advantage of the vast amount of available data

Artificial intelligence of course ... and so ?

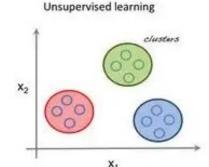
Improve our understanding of biological phenomena

Take advantage of the vast amount of available data

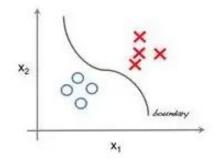
Supervised/unsupervised learning

Unsupervised learning

find hidden patterns, analyze and organize unlabelled datasets.

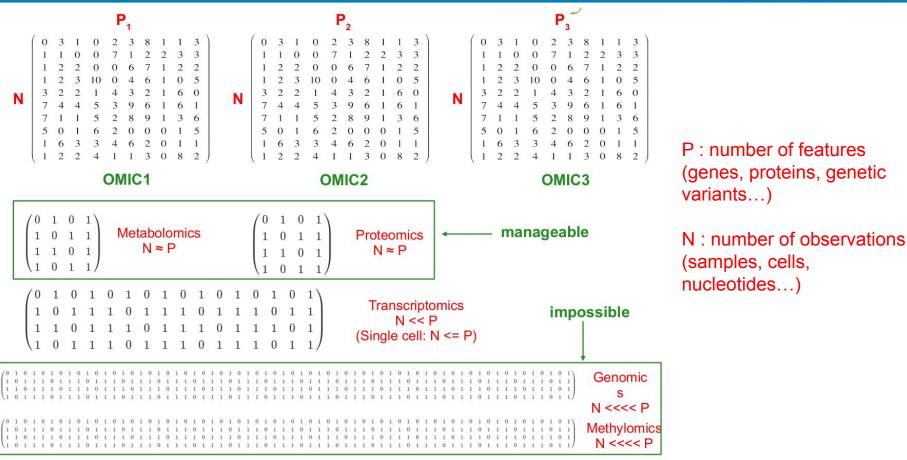

ex : clustering, dimension reduction, density estimation

Supervised learning

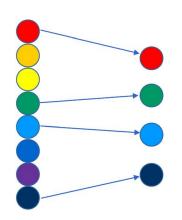

use labeled datasets and previous outputs to guess outcomes in advance (predictive model).

ex: classification task (categorical/numerical), regression (numerical)

Semi-supervised


Supervised learning

Curse of dimensionality



Dimensionality reduction

Feature selection

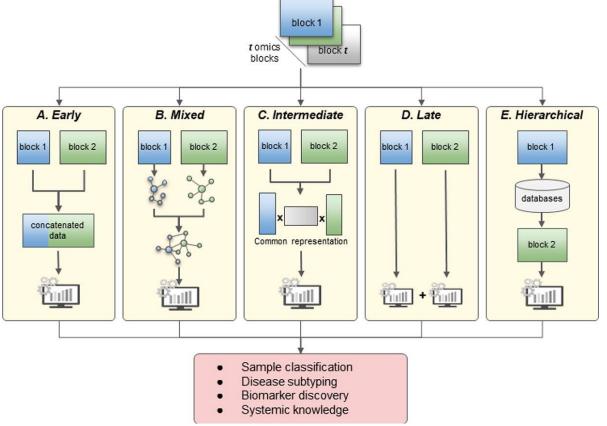
→ determine a smaller set of features minimizing (relevant) information loss

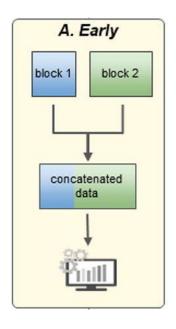
ex : filtering methods (correlation), recursive elimination, regularization

Feature extraction

→ combine the input features into another set of variables in a linear or non-linear fashion

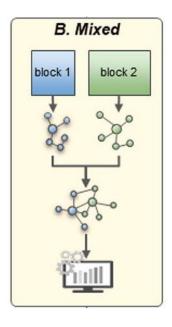
ex : PCA, PCoA, ICA...


+ regularization for sparse methods : sPCA, sNMF



Integration strategies

Concatenate every omics datasets into a single large matrix.


Pros:

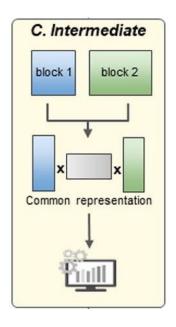
- conceptually simple
- easy implementation
- directly uncovers interactions between omics

Cons:

- technically complicated (noisy and high dimensional concatenated matrix)
- imbalanced omics datasets
- ignores the specific data distribution of each omics
- common definition space (rows or columns → samples or features)

Transform independently each omics dataset into a simpler representation before integration.

Pros:

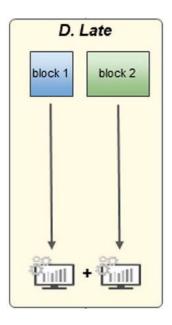

- new representation is less dimensional and less noisy
- less heterogeneity between omics
- classical approaches can be used on combined representation

Cons:

- choice of the transformation method is not trivial
- information loss during transformation
- correspondence between omics in the new representation space

Jointly integrate the multi-omics datasets without prior transformation.

Pros:

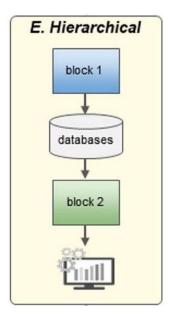

- reduce information loss
- discover the joint inter-omics structure
- highlight the complementary information in each omics

Cons:

- could require robust pre-processing step to reduce heterogeneity
- common latent space assumption

Apply machine learning models separately on each omics dataset and then combine results.

Pros:


- avoid (numerous) challenges of direct omics integration
- use tools designed specifically for each omics
- classical approaches can be used to combine results

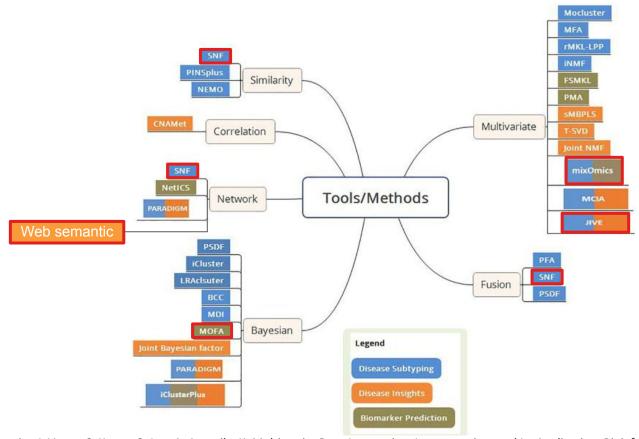
Cons:

- cannot capture inter-omics interactions
- complementarity information between omics is not exploited

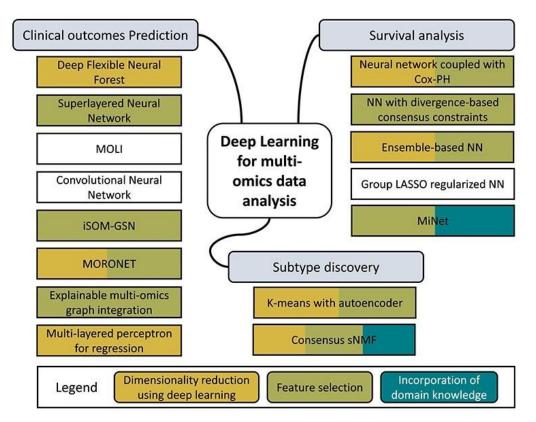
Include prior knowledge of omics relationships.

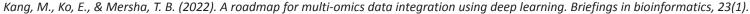
Pros:

- reduced complexity (sequential integration)
- integrate external knowledge


Cons:

less generic than previous strategies


Integration approaches



Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics Data Integration, Interpretation, and Its Application. Bioinform Biol Insights. 2020

Integration approaches: neural networks

sad

Integration methods are not unique

- comparisons exist... for a given application
- parametrization need expertise
- make your own comparisons/expertise
- keep an eye open

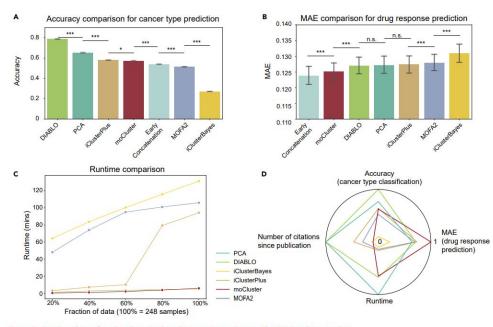


Figure 5. Benchmarking of machine learning-based integration tools using the CCLE multi-omics data

Cai Z, Poulos RC, Liu J, Zhong Q. Machine learning for multi-omics data integration in cancer. iScience. 2022

Integration methods are not magic!

You will still need to:

- carefully check design and confounding factors
- perform specific data pre-processing for each omic
- impute missing values* (different meaning → different strategy)
- choose your integration strategy based on your objective and your data (ex. matching between omics) → still no standard pipelines
- some omics bring more noise than answers

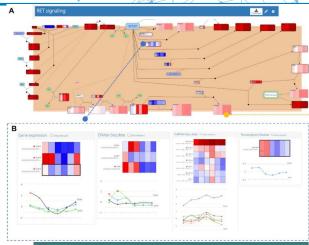
Multi-omics data portal

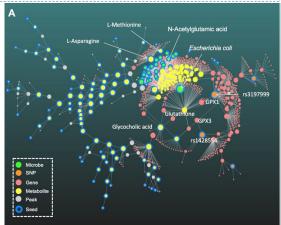
Name	URL	Omic and other data types	Notes	
TCGA (Campbell et al., 2020)	https://portal.gdc.cancer.gov/	Genomics Epigenomics Transcriptomics	Tumor data Large coverage of tumors	
ICGC (Campbell et al., 2020)	https://dcc.icgc.org/	GenomicsTranscriptomics	Tumor data Powerful online analytics tools	
CPTAC	https://cptac-data-portal. georgetown.edu/cptacPublic/	Proteomics	Tumor data The largest proteomic data portal	
COSMIC Cell Lines (lorio et al., 2016)	https://cancer.sanger.ac.uk/cell_lines	 Genomics Epigenomics Transcriptomics Drug response CRISPR-Cas9 screen 	 Cancer cell line data Manually curated Large coverage of cell lines 	
DepMap (Broad, 2020)	https://depmap.org/portal/	 Genomics Epigenomics Transcriptomics Proteomics Drug response CRISPR-Cas9 screen 	 Cancer cell line data Large coverage of omic types Powerful online tools 	
COSMIC (Tate et al., 2019)	https://cancer.sanger.ac.uk/cosmic	GenomicsEpigenomicsTranscriptomics	 Tumor data Manually curated Focus on genomics Overlap with other portals 	

Web-applications

PaintOmics (T. Liu et al. PaintOmics 4: new tools for the integrative analysis of multi-omics datasets supported by multiple pathway databases, Nucleic Acids Research, Volume 50, Issue W1, 2022.)

30mics (K. Tien-Chueh et al. 30mics: A web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data. BMC systems biology. 7. 64, 2013)

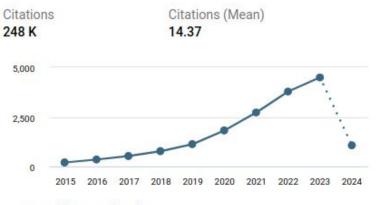

XCMSOnline (EM. Forsberg et al. Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online. Nat Protoc. 13(4):633-651, 2018)


Galaxy-P project (Galaxy-P Project. galaxyp.org.)

OmicsNet (G. Zhou et al., OmicsNet 2.0: a web-based platform for multi-omics integration and network visual analytics, Nucleic Acids Research, Volume 50, Issue W1, 5, 2022.)

References

Misra BB, Langefeld CD, Olivier M, Cox LA. Integrated Omics: Tools, Advances, and Future Approaches. J Mol Endocrinol, 2018.


Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics Data Integration, Interpretation, and Its Application. Bioinform Biol Insights, 2020.

Picard M, Scott-Boyer MP, Bodein A, Périn O, Droit A. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J., 2021.

Benfeitas R, Viklund J, Ash706, Robinson J, Manoharan L, Fasterius E, Oskolkov N, Francis R, Anton M. (2020). NBISweden/workshop_omics_integration: Lund, 2020/10/05 (Version course2010). Zenodo. https://doi.org/10.5281/zenodo.4084627

Bersanelli M, Mosca E, Remondini D, Giampieri E, Sala C, Castellani G, Milanesi L. Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinformatics, 17 Suppl 2(Suppl 2):15, 2016.

Ritchie, M., Holzinger, E., Li, R. et al. Methods of integrating data to uncover genotype—phenotype interactions. Nat Rev Genet 16, 85–97, 2015.

