Second edition 2024 in Fréjus

Regularized Generalized Canonical Correlation Analysis (RGCCA)

Jimmy Vandel (Plateforme Lilloise en Biologie & Santé) Arnaud Gloaguen (CNRGH - CEA) Vincent Guillemot (Institut Pasteur)

lnserm

DOI version final

(CNrs)

INRA

- 1. Introduction of the case study
- 2. Unsupervised analysis with one-block: Principal Component Analysis (PCA)
- **3.** Unsupervised analysis with two-blocks: Partial Least Squares (PLS) and Canonical Correlation Analysis (CCA)
- 4. Unsupervised analysis with *L*-blocks: Regularized Generalized Canonical Correlation Analysis (RGCCA)
- 5. Supervised analysis with RGCCA
- 6. Variable selection in RGCCA: Sparse Generalized Canonical Correlation Analysis (SGCCA)
- 7. The flexible Optimization Framework of RGCCA
 - ✤ The general principal
 - Extension to multi-way analysis
 - From Sequential to Global

1. Introduction of the case study

- 2. Unsupervised analysis with one-block: Principal Component Analysis (PCA)
- **3. Unsupervised analysis with two-blocks:** Partial Least Squares (PLS) and Canonical Correlation Analysis (CCA)
- **4. Unsupervised analysis with** *L***-blocks:** Regularized Generalized Canonical Correlation Analysis (RGCCA)
- 5. Supervised analysis with RGCCA
- 6. Variable selection in RGCCA: Sparse Generalized Canonical Correlation Analysis (SGCCA)
- 7. The flexible Optimization Framework of RGCCA
 - The general principal
 - Extension to multi-way analysis
 - From Sequential to Global

Case Study: Major Depressive Disorder (MDD)

Data from this case study comes from Amazigh et. al 2024 <u>Sex-specific and multiomic integration enhance</u> <u>accuracy of peripheral blood biomarkers of major depressive disorder</u>.

Figure taken from Amazigh Mokhtari's PhD manuscript.

> summary(DNAm_covariates_explored_female)

Sample_Group	BMI	BMI.bin	Age	Age.bin	Age_bin Ar	ray	Slide
control:50	Min. :16.37	low :64	Min. :21.0	0 <20 : 0	2:21 R04C01	.:19 2046	568820053: 3
mdd :37	1st Qu.:21.42	medium:19	1st Qu.:32.0	0 20-30:21	3:11 R05C01	:18 2046	579630043: 3
	Median :23.23	high : 4	Median :45.0	0 30-40:11	4:20 R06C01	:12 204	564460100: 2
	Mean :23.83		Mean :43.5	2 40-50:20	5:26 R07C01	:12 204	564470040: 2
	3rd Qu.:25.24		3rd Qu.:53.5	0 50-60:26	6: 8 R03C01	:10 204	564470092: 2
	Max. :39.54		Max. :71.0	0 60-70: 8	7:1 R02C01	: 8 204	564470101: 2
				>70 : 1	(Other	·): 8 (Otł	ner) :73
CD4	CD8		MO	В	NK		GR
Min. :0.087	09 Min. :0.0)2919 Min.	:0.04979	Min. :0.00000	Min. :0.0	0000 Min.	. :0.3883
1st Qu.:0.152	02 1st Qu.:0.0)8095 1st Q	u.:0.07906	1st Qu.:0.01484	1st Qu.:0.()3505 1st	Qu.:0.5122
Median :0.191	10 Median :0.1	.0843 Media	n :0.08997	Median :0.02433	Median :0.0)5053 Med-	ian :0.5982
Mean :0.185	77 Mean :0.1	.0527 Mean	:0.09208	Mean :0.02922	Mean :0.0)5556 Mear	n :0.5862
3rd Qu.:0.214	39 3rd Qu.:0.1	.2263 3rd Q	u.:0.10495	3rd Qu.:0.03967	3rd Qu.:0.()7699 3rd	Qu.:0.6446
Max. :0.306	72 Max. :0.1	.9381 Max.	:0.14454	Max. :0.13657	Max. :0.1	.4684 Max	. :0.7691

Case Study: Covariates

		\rightarrow Low (\leq)	25), High (≥ 30).		
			· ·		
> summary(DNAm_co	variates explored	female)			
Sample Group	BMI BI	MI.bin Aae	Age.bin	Age bin Arrav	Slide
control:50 Mi	n. :16.37 low	:64 Min. :2	1.00 <20 : 0	2:21 R04C01 :19	204668820053: 3
mdd :37 1s	t Qu.:21.42 med	ium:19	2.00 20-30:21	3:11 R05C01 :18	204679630043: 3
Me	dian :23.23 hig	h : 4 Median :45	5.00 30-40:11	4:20 R06C01 :12	204564460100: 2
Me	an :23.83 -	Mean :43	3.52 40-50:20	5:26 R07C01 :12	204564470040: 2
3r	d Qu.:25.24	3rd Qu.:53	3.50 50-60:26	6: 8 R03C01 :10	204564470092: 2
Ma	x. :39.54	Max. :7:	1.00 60-70: 8	7:1 R02C01:8	204564470101: 2
			>70 : 1	(Other): 8	(Other) :73
CD4	CD8	MO	В	NK	GR
Min. :0.08709	Min. :0.02919	Min. :0.04979	Min. :0.00000) Min. :0.00000	Min. :0.3883
1st Qu.:0.15202	1st Qu.:0.08095	1st Qu.:0.07906	1st Qu.:0.01484	1st Qu.:0.03505	1st Qu.:0.5122
Median :0.19110	Median :0.10843	Median :0.08997	Median :0.02433	3 Median :0.05053	Median :0.5982
Mean :0.18577	Mean :0.10527	Mean :0.09208	Mean :0.02922	2 Mean :0.05556	Mean :0.5862
3rd Qu.:0.21439	3rd Qu.:0.12263	3rd Qu.:0.10495	3rd Qu.:0.03967	7 3rd Qu.:0.07699	3rd Qu.:0.6446
Max. :0.30672	Max. :0.19381	Max. :0.14454	Max. :0.13657	Max. :0.14684	Max. :0.7691

•

Case Study: Covariates

	Low (≤ 25), H	High (≥ 30).	Relative	e to position on the
> summary(DNAm covariates explored f	emale)		DNAIII	cmp.
Sample_Group BMI BMI	.bin Age	Age.bin	Age_bin Array	slide
control:50 Min. :16.37 low	:64 Min. :21.00	<20 : 0	2:21 R04C01 :19	204668820053: 3
mdd :37 1st Qu.:21.42 mediu	m:19 1st Qu.:32.00	20-30:21	3:11 R05C01 :18	204679630043: 3
Median :23.23 high	: 4 Median :45.00	30-40:11	4:20 R06C01 :12	204564460100: 2
Mean :23.83	Mean :43.52	40-50:20	5:26 R07C01 :12	204564470040: 2
3rd Qu.:25.24	3rd Qu.:53.50	50-60:26	6: 8 R03C01 :10	204564470092: 2
Max. :39.54	Max. :71.00	60-70: 8	7:1 R02C01:8	204564470101: 2
		>70 : 1	(Other): 8	(Other) :73
CD4 CD8	MO	В	NK	GR
Min. :0.08709 Min. :0.02919	Min. :0.04979 Mi	n. :0.00000	Min. :0.00000	Min. :0.3883
1st Qu.:0.15202 1st Qu.:0.08095	1st Qu.:0.07906 1s	t Qu.:0.01484	1st Qu.:0.03505	1st Qu.:0.5122
Median :0.19110 Median :0.10843	Median :0.08997 Me	dian :0.02433	Median :0.05053	Median :0.5982
Mean :0.18577 Mean :0.10527	Mean :0.09208 Mea	an :0.02922	Mean :0.05556	Mean :0.5862
3rd Qu.:0.21439 3rd Qu.:0.12263	3rd Qu.:0.10495 3rd	d Qu.:0.03967	3rd Qu.:0.07699	3rd Qu.:0.6446
Max. :0.30672 Max. :0.19381	Max. :0.14454 Max	x. :0.13657	Max. :0.14684	Max. :0.7691

Case Study: Covariates

FB

eli

FRANCE

	→ Low (≤ 25), H	igh (≥ 30).	Relative	to position on the
			DNAm c	hip.
<pre>> summary(DNAm_covariates_explor Sample_Group BMI control:50 Min. :16.37 1 mdd :37 1st Qu.:21.42 m Median :23.23 h</pre>	red female) BMI.bin Age ow :64 Min. :21.00 medium:19 1st Qu.:32.00 migh : 4 Median :45.00	Age.bin Age_k <20 : 0 2:21 20-30:21 3:11 30-40:11 4:20	oin Array R04C01 :19 R05C01 :18 R06C01 :12	Slide 204668820053: 3 204679630043: 3 204564460100: 2
Mean :23.83 3rd Qu.:25.24 Max. :39.54	Mean :43.52 3rd Qu.:53.50 Max. :71.00	40-50:20 5:26 50-60:26 6: 8 60-70: 8 7: 1 >70 : 1	R07C01 :12 R03C01 :10 R02C01 : 8 (Other): 8	204564470040: 2 204564470092: 2 204564470101: 2 (Other) :73
CD4 CD8 Min. :0.08709 Min. :0.029 1st Qu.:0.15202 1st Qu.:0.080 Median :0.19110 Median :0.108 Mean :0.18577 Mean :0.105 3rd Qu.:0.21439 3rd Qu.:0.122 Max. :0.30672 Max. :0.193	MO 919 Min. :0.04979 Min 95 1st Qu.:0.07906 1st 943 Median :0.08997 Med 927 Mean :0.09208 Mea 963 3rd Qu.:0.10495 3rd 981 Max. :0.14454 Max	B Qu.:0.01484 1s ian :0.02433 Me n :0.02922 Me Qu.:0.03967 3r . :0.13657 Ma	NK in. :0.00000 st Qu.:0.03505 edian :0.05053 ean :0.05556 rd Qu.:0.07699 ax. :0.14684	GR Min. :0.3883 1st Qu.:0.5122 Median :0.5982 Mean :0.5862 3rd Qu.:0.6446 Max. :0.7691

Relative to blood cell composition (T cells subsets, monocytes, B cells, NK cells and granulocytes) inferred from DNAm.

n	miRNA									

1. Remove miRNA with Nas.

- 1. Remove miRNA with Nas.
- 2. Log Counts Per Million (logCPM) normalization.

- 1. Remove miRNA with Nas.
- 2. Log Counts Per Million (logCPM) normalization.
- 3. Remove miRNA with a least one count below 0 (in the end 350 variables remain).

m	hil	R١	١Æ	١	

- 1. Remove miRNA with Nas.
- 2. Log Counts Per Million (logCPM) normalization.
- 3. Remove miRNA with a least one count below 0 (in the end 350 variables remain).

mRNA									

- 1. Remove miRNA with Nas.
- 2. Log Counts Per Million (logCPM) normalization.
- 3. Remove miRNA with a least one count below 0 (in the end 350 variables remain).
- Normalization with Variance Stabilizing Transformations (VST; package DESeq2).

miRNA										

m	mRNA									

- 1. Remove miRNA with Nas.
- 2. Log Counts Per Million (logCPM) normalization.
- 3. Remove miRNA with a least one count below 0 (in the end 350 variables remain).
- Normalization with Variance Stabilizing Transformations (VST; package DESeq2).
- 2. Keep only genes both present in males and females.

miRNA									

mRNA										

- 1. Remove miRNA with Nas.
- 2. Log Counts Per Million (logCPM) normalization.
- Remove miRNA with a least one count below 0 (in the end 350 variables remain).
- Normalization with Variance Stabilizing Transformations (VST; package DESeq2).
- 2. Keep only genes both present in males and females.
- 3. Keep 2000 most variable genes according to the Median Absolute Deviation (MAD).

miRNA									

mRNA											
-	-			-							
+	-		-								

- 1. Remove miRNA with Nas.
- 2. Log Counts Per Million (logCPM) normalization.
- Remove miRNA with a least one count below 0 (in the end 350 variables remain).
- Normalization with Variance Stabilizing Transformations (VST; package DESeq2).
- 2. Keep only genes both present in males and females.
- 3. Keep 2000 most variable genes according to the Median Absolute Deviation (MAD).

n	miRNA									

mRNA											
			-								

D	DNAm											

- 1. Remove miRNA with Nas.
- 2. Log Counts Per Million (logCPM) normalization.
- Remove miRNA with a least one count below 0 (in the end 350 variables remain).
- Normalization with Variance Stabilizing Transformations (VST; package DESeq2).
- Keep only genes both present in males and females.
- 3. Keep 2000 most variable genes according to the Median Absolute Deviation (MAD).
- Normalization with Beta-MIxture Quantile (BMIQ) Normalization method (package ChAMP).

n	miRNA									

mRNA											
			-								

D	DNAm											

- 1. Remove miRNA with Nas.
- 2. Log Counts Per Million (logCPM) normalization.
- Remove miRNA with a least one count below 0 (in the end 350 variables remain).
- Normalization with Variance Stabilizing Transformations (VST; package DESeq2).
- 2. Keep only genes both present in males and females.
- 3. Keep 2000 most variable genes according to the Median Absolute Deviation (MAD).
- Normalization with Beta-MIxture Quantile (BMIQ) Normalization method (package ChAMP).
- 2. Remove duplicated samples.

miRNA									
					_				

mRNA											
			-		_						

1	DNAm											

- 1. Remove miRNA with Nas.
- 2. Log Counts Per Million (logCPM) normalization.
- Remove miRNA with a least one count below 0 (in the end 350 variables remain).
- Normalization with Variance Stabilizing Transformations (VST; package DESeq2).
- Keep only genes both present in males and females.
- 3. Keep 2000 most variable genes according to the Median Absolute Deviation (MAD).
- Normalization with Beta-MIxture Quantile (BMIQ) Normalization method (package ChAMP).
- 2. Remove duplicated samples.
- 3. Keep 2000 most variable genes according to the Median Absolute Deviation (MAD).

miRNA									

mRNA

D	DNAm											
_		_										

- 1. Remove miRNA with Nas.
- 2. Log Counts Per Million (logCPM) normalization.
- Remove miRNA with a least one count below 0 (in the end 350 variables remain).
- Normalization with Variance Stabilizing Transformations (VST; package DESeq2).
- Keep only genes both present in males and females.
- 3. Keep 2000 most variable genes according to the Median Absolute Deviation (MAD).
- Normalization with Beta-MIxture Quantile (BMIQ) Normalization method (package ChAMP).
- 2. Remove duplicated samples.
- 3. Keep 2000 most variable genes according to the Median Absolute Deviation (MAD).

Finally: individuals common to ALL omics data are kept.

1. Introduction of the case study

2. Unsupervised analysis with one-block: Principal Component Analysis (PCA)

- **3. Unsupervised analysis with two-blocks:** Partial Least Squares (PLS) and Canonical Correlation Analysis (CCA)
- 4. Unsupervised analysis with L-blocks: Regularized Generalized Canonical Correlation Analysis (RGCCA)
- 5. Supervised analysis with RGCCA
- 6. Variable selection in RGCCA: Sparse Generalized Canonical Correlation Analysis (SGCCA)
- 7. The flexible Optimization Framework of RGCCA
 - The general principal
 - Extension to multi-way analysis
 - From Sequential to Global

The Kruskal-Wallis test is a generalization of the Wilcoxon-Man-Withney test that works for two samples.

ChAMP's representation: Kruskal-Wallis test

The Kruskal-Wallis test is a generalization of the Wilcoxon-Man-Withney test that works for two samples. They are both **non-parametric**.

The Wilcoxon-Man-Withney proposes to test the association between a continuous (ex: age) and a discrete variable (ex: sex).

The Wilcoxon-Man-Withney proposes to test the association between a continuous (ex: age) and a discrete variable (ex: sex).

Let us consider two samples $(x_1, ..., x_n)$ and $(y_1, ..., y_m)$. They both represent the same continuous variable but are separated by the value of the discrete one.

The Wilcoxon-Man-Withney proposes to test the association between a continuous (ex: age) and a discrete variable (ex: sex).

Let us consider two samples $(x_1, ..., x_n)$ and $(y_1, ..., y_m)$. They both represent the same continuous variable but are separated by the value of the discrete one.

The Wilcoxon-Man-Withney proposes to test the association between a continuous (ex: age) and a discrete variable (ex: sex).

Let us consider two samples $(x_1, ..., x_n)$ and $(y_1, ..., y_m)$. They both represent the same continuous variable but are separated by the value of the discrete one.

 $\begin{cases} H_0: (x_1, \dots, x_n) \text{ and } (y_1, \dots, y_m) \text{ comes from the same distribution.} \end{cases}$

The Wilcoxon-Man-Withney proposes to test the association between a continuous (ex: age) and a discrete variable (ex: sex).

Let us consider two samples $(x_1, ..., x_n)$ and $(y_1, ..., y_m)$. They both represent the same continuous variable but are separated by the value of the discrete one.

 $\begin{cases} H_0: (x_1, ..., x_n) \text{ and } (y_1, ..., y_m) \text{ comes from the same distribution.} \\ H_1: \text{ They do not.} \end{cases}$

The Wilcoxon-Man-Withney proposes to test the association between a continuous (ex: age) and a discrete variable (ex: sex).

Let us consider two samples $(x_1, ..., x_n)$ and $(y_1, ..., y_m)$. They both represent the same continuous variable but are separated by the value of the discrete one.

 $\begin{cases} H_0: (x_1, ..., x_n) \text{ and } (y_1, ..., y_m) \text{ comes from the same distribution.} \\ H_1: \text{ They do not.} \end{cases}$

The proposed statistic is: $U = \min(U_1, U_2) = \min\left(nm + \frac{n(n+1)}{2} - R_1, nm + \frac{m(m+1)}{2} - R_2\right)$,

where R_1 (resp. R_2) are the sum of the rank of the first (resp. second) sample when all samples are mixed and sorted.

The Wilcoxon-Man-Withney proposes to test the association between a continuous (ex: age) and a discrete variable (ex: sex).

Let us consider two samples $(x_1, ..., x_n)$ and $(y_1, ..., y_m)$. They both represent the same continuous variable but are separated by the value of the discrete one.

 $\begin{cases} H_0: (x_1, \dots, x_n) \text{ and } (y_1, \dots, y_m) \text{ comes from the same distribution.} \\ H_1: \text{ They do not.} \end{cases}$

The proposed statistic is: $U = \min(U_1, U_2) = \min\left(nm + \frac{n(n+1)}{2} - R_1, nm + \frac{m(m+1)}{2} - R_2\right)$, where R_1 (resp. R_2) are the sum of the rank of the first (resp. second) sample when all samples are mixed and sorted. If n and m are high enough, it is possible to show that U follows a Gaussian distribution centered in $\frac{nm+1}{2}$.

The Wilcoxon-Man-Withney proposes to test the association between a continuous (ex: age) and a discrete variable (ex: sex).

Let us consider two samples $(x_1, ..., x_n)$ and $(y_1, ..., y_m)$. They both represent the same continuous variable but are separated by the value of the discrete one.

 $\begin{cases} H_0: (x_1, ..., x_n) \text{ and } (y_1, ..., y_m) \text{ comes from the same distribution.} \\ H_1: \text{ They do not.} \end{cases}$

The proposed statistic is: $U = \min(U_1, U_2) = \min\left(nm + \frac{n(n+1)}{2} - R_1, nm + \frac{m(m+1)}{2} - R_2\right)$, where R_1 (resp. R_2) are the sum of the rank of the first (resp. second) sample when all samples are mixed and sorted. If n and m are high enough, it is possible to show that U follows a Gaussian distribution centered in $\frac{nm+1}{2}$.

Example: "Perfect" association; the *n* first elements are in the first sample and the *m* next are in the second one. Then:

The Wilcoxon-Man-Withney proposes to test the association between a continuous (ex: age) and a discrete variable (ex: sex).

Let us consider two samples $(x_1, ..., x_n)$ and $(y_1, ..., y_m)$. They both represent the same continuous variable but are separated by the value of the discrete one.

 $\begin{cases} H_0: (x_1, ..., x_n) \text{ and } (y_1, ..., y_m) \text{ comes from the same distribution.} \\ H_1: \text{ They do not.} \end{cases}$

The proposed statistic is: $U = \min(U_1, U_2) = \min\left(nm + \frac{n(n+1)}{2} - R_1, nm + \frac{m(m+1)}{2} - R_2\right)$, where R_1 (resp. R_2) are the sum of the rank of the first (resp. second) sample when all samples are mixed and sorted. If n and m are high enough, it is possible to show that U follows a Gaussian distribution centered in $\frac{nm+1}{2}$.

Example: "Perfect" association; the *n* first elements are in the first sample and the *m* next are in the second one. Then: $R_1 = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$

The Wilcoxon-Man-Withney proposes to test the association between a continuous (ex: age) and a discrete variable (ex: sex).

Let us consider two samples $(x_1, ..., x_n)$ and $(y_1, ..., y_m)$. They both represent the same continuous variable but are separated by the value of the discrete one.

 $\begin{cases} H_0: (x_1, \dots, x_n) \text{ and } (y_1, \dots, y_m) \text{ comes from the same distribution.} \\ H_1: \text{ They do not.} \end{cases}$

The proposed statistic is: $U = \min(U_1, U_2) = \min\left(nm + \frac{n(n+1)}{2} - R_1, nm + \frac{m(m+1)}{2} - R_2\right)$, where R_1 (resp. R_2) are the sum of the rank of the first (resp. second) sample when all samples are mixed and sorted. If n and m are high enough, it is possible to show that U follows a Gaussian distribution centered in $\frac{nm+1}{2}$.

Example: "Perfect" association; the *n* first elements are in the first sample and the *m* next are in the second one. Then: $R_1 = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$ $\Rightarrow U_1 = nm + \frac{n(n+1)}{2} - R_1 = nm$

The Kruskal-Wallis test is a generalization of the Wilcoxon-Man-Withney test that works for two samples. They are both **non-parametric**.

The Wilcoxon-Man-Withney proposes to test the association between a continuous (ex: age) and a discrete variable (ex: sex).

Let us consider two samples $(x_1, ..., x_n)$ and $(y_1, ..., y_m)$. They both represent the same continuous variable but are separated by the value of the discrete one.

 $\begin{cases} H_0: (x_1, ..., x_n) \text{ and } (y_1, ..., y_m) \text{ comes from the same distribution.} \\ H_1: \text{ They do not.} \end{cases}$

The proposed statistic is: $U = \min(U_1, U_2) = \min\left(nm + \frac{n(n+1)}{2} - R_1, nm + \frac{m(m+1)}{2} - R_2\right)$, where R_1 (resp. R_2) are the sum of the rank of the first (resp. second) sample when all samples are mixed and sorted. If n and m are high enough, it is possible to show that U follows a Gaussian distribution centered in $\frac{nm+1}{2}$.

$$R_{1} = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$R_{2} = (n+1) + (n+2) + \dots + (n+m) = \frac{m((n+1) + (n+m))}{2}$$

$$U_{1} = nm + \frac{n(n+1)}{2} - R_{1} = nm$$

7

The Kruskal-Wallis test is a generalization of the Wilcoxon-Man-Withney test that works for two samples. They are both **non-parametric**.

The Wilcoxon-Man-Withney proposes to test the association between a continuous (ex: age) and a discrete variable (ex: sex).

Let us consider two samples $(x_1, ..., x_n)$ and $(y_1, ..., y_m)$. They both represent the same continuous variable but are separated by the value of the discrete one.

 $\begin{cases} H_0: (x_1, ..., x_n) \text{ and } (y_1, ..., y_m) \text{ comes from the same distribution.} \\ H_1: \text{ They do not.} \end{cases}$

The proposed statistic is: $U = \min(U_1, U_2) = \min\left(nm + \frac{n(n+1)}{2} - R_1, nm + \frac{m(m+1)}{2} - R_2\right)$, where R_1 (resp. R_2) are the sum of the rank of the first (resp. second) sample when all samples are mixed and sorted. If n and m are high enough, it is possible to show that U follows a Gaussian distribution centered in $\frac{nm+1}{2}$.

$$R_{1} = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$R_{2} = (n+1) + (n+2) + \dots + (n+m) = \frac{m((n+1) + (n+m))}{2}$$

$$U_{1} = nm + \frac{n(n+1)}{2} - R_{1} = nm$$

$$U_{2} = nm + \frac{m(m+1)}{2} - R_{2} = 0$$

The Kruskal-Wallis test is a generalization of the Wilcoxon-Man-Withney test that works for two samples. They are both **non-parametric**.

The Wilcoxon-Man-Withney proposes to test the association between a continuous (ex: age) and a discrete variable (ex: sex).

Let us consider two samples $(x_1, ..., x_n)$ and $(y_1, ..., y_m)$. They both represent the same continuous variable but are separated by the value of the discrete one.

 $\begin{cases} H_0: (x_1, ..., x_n) \text{ and } (y_1, ..., y_m) \text{ comes from the same distribution.} \\ H_1: \text{ They do not.} \end{cases}$

The proposed statistic is: $U = \min(U_1, U_2) = \min\left(nm + \frac{n(n+1)}{2} - R_1, nm + \frac{m(m+1)}{2} - R_2\right)$, where R_1 (resp. R_2) are the sum of the rank of the first (resp. second) sample when all samples are mixed and sorted. If n and m are high enough, it is possible to show that U follows a Gaussian distribution centered in $\frac{nm+1}{2}$.

$$R_{1} = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$R_{2} = (n+1) + (n+2) + \dots + (n+m) = \frac{m((n+1) + (n+m))}{2}$$

$$U_{1} = nm + \frac{n(n+1)}{2} - R_{1} = nm$$

$$U_{2} = nm + \frac{m(m+1)}{2} - R_{2} = 0$$

7

The Kruskal-Wallis test is a generalization of the Wilcoxon-Man-Withney test that works for two samples. They are both **non-parametric**.

The Wilcoxon-Man-Withney proposes to test the association between a continuous (ex: age) and a discrete variable (ex: sex).

Let us consider two samples $(x_1, ..., x_n)$ and $(y_1, ..., y_m)$. They both represent the same continuous variable but are separated by the value of the discrete one.

 $\begin{cases} H_0: (x_1, ..., x_n) \text{ and } (y_1, ..., y_m) \text{ comes from the same distribution.} \\ H_1: \text{ They do not.} \end{cases}$

The proposed statistic is: $U = \min(U_1, U_2) = \min\left(nm + \frac{n(n+1)}{2} - R_1, nm + \frac{m(m+1)}{2} - R_2\right)$, where R_1 (resp. R_2) are the sum of the rank of the first (resp. second) sample when all samples are mixed and sorted. If n and m are high enough, it is possible to show that U follows a Gaussian distribution centered in $\frac{nm+1}{2}$.

$$R_{1} = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$R_{2} = (n+1) + (n+2) + \dots + (n+m) = \frac{m((n+1) + (n+m))}{2}$$

$$U_{1} = nm + \frac{n(n+1)}{2} - R_{1} = nm$$

$$U_{2} = nm + \frac{m(m+1)}{2} - R_{2} = 0$$

$$U_{2} = nm + \frac{m(m+1)}{2} - R_{2} = 0$$

The Kruskal-Wallis test is a generalization of the Wilcoxon-Man-Withney test that works for two samples. They are both **non-parametric**.

The Wilcoxon-Man-Withney proposes to test the association between a continuous (ex: age) and a discrete variable (ex: sex).

Let us consider two samples $(x_1, ..., x_n)$ and $(y_1, ..., y_m)$. They both represent the same continuous variable but are separated by the value of the discrete one.

 $\begin{cases} H_0: (x_1, \dots, x_n) \text{ and } (y_1, \dots, y_m) \text{ comes from the same distribution.} \\ H_1: \text{ They do not.} \end{cases}$

The proposed statistic is: $U = \min(U_1, U_2) = \min\left(nm + \frac{n(n+1)}{2} - R_1, nm + \frac{m(m+1)}{2} - R_2\right)$, where R_1 (resp. R_2) are the sum of the rank of the first (resp. second) sample when all samples are mixed and sorted. If n and m are high enough, it is possible to show that U follows a Gaussian distribution centered in $\frac{nm+1}{2}$.

$$R_{1} = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$R_{2} = (n+1) + (n+2) + \dots + (n+m) = \frac{m((n+1) + (n+m))}{2}$$

$$U_{1} = nm + \frac{n(n+1)}{2} - R_{1} = nm$$

$$U_{2} = nm + \frac{m(m+1)}{2} - R_{2} = 0$$

$$U_{2} = nm + \frac{m(m+1)}{2} - R_{2} = 0$$
The test is likely to be rejected to be

In order to evaluate the link between two continuous variables y_i and x_i , the following model is used:

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

In order to evaluate the link between two continuous variables y_i and x_i , the following model is used:

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Where β_0 is the intercept, β_1 is the coefficient associated with x_i and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

In order to evaluate the link between two continuous variables y_i and x_i , the following model is used:

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Where β_0 is the intercept, β_1 is the coefficient associated with x_i and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

The following test is used: $\begin{cases} H_0: \beta_1 = 0, \\ \end{cases}$

In order to evaluate the link between two continuous variables y_i and x_i , the following model is used:

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Where β_0 is the intercept, β_1 is the coefficient associated with x_i and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

The following test is used:

 $\begin{cases} \mathbf{H}_0: \boldsymbol{\beta}_1 = 0, \\ \mathbf{H}_1: \boldsymbol{\beta}_1 \neq 0 \end{cases}$

In order to evaluate the link between two continuous variables y_i and x_i , the following model is used:

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Where β_0 is the intercept, β_1 is the coefficient associated with x_i and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

The following test is used: $\int H$

$$\begin{cases} \mathbf{H}_0: \boldsymbol{\beta}_1 = \mathbf{0}, \\ \mathbf{H}_1: \boldsymbol{\beta}_1 \neq \mathbf{0} \end{cases}$$

With the statistic:

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Where β_0 is the intercept, β_1 is the coefficient associated with x_i and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

The following test is used: $\begin{cases} H_0: \beta_1 = 0, \\ H_1: \beta_1 \neq 0 \end{cases}$

With the statistic:

$$F = \frac{(RSS_0 - RSS_1)}{1} \times \frac{(n-2)}{RSS_1} = \frac{(\sum_i (y_i - \beta_0)^2 - \sum_i (y_i - \beta_0 - \beta_1 x_i)^2)}{1} \times \frac{(n-2)}{\sum_i (y_i - \beta_0 - \beta_1 x_i)^2}$$

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Where β_0 is the intercept, β_1 is the coefficient associated with x_i and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

The following test is used: $\begin{cases} H_0: \beta_1 = 0, \\ H_1: \beta_1 \neq 0 \end{cases}$

With the statistic:

$$F = \frac{(RSS_0 - RSS_1)}{1} \times \frac{(n-2)}{RSS_1} = \frac{(\sum_i (y_i - \beta_0)^2 - \sum_i (y_i - \beta_0 - \beta_1 x_i)^2)}{1} \times \frac{(n-2)}{\sum_i (y_i - \beta_0 - \beta_1 x_i)^2}$$

It is possible to show that F follows an F-distribution of 1 and n - 2 degrees of freedom.

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Where β_0 is the intercept, β_1 is the coefficient associated with x_i and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

The following test is used: $\begin{cases} H_0: \beta_1 = 0, \\ H_1: \beta_1 \neq 0 \end{cases}$

With the statistic:

$$F = \frac{(RSS_0 - RSS_1)}{1} \times \frac{(n-2)}{RSS_1} = \frac{(\sum_i (y_i - \beta_0)^2 - \sum_i (y_i - \beta_0 - \beta_1 x_i)^2)}{1} \times \frac{(n-2)}{\sum_i (y_i - \beta_0 - \beta_1 x_i)^2}$$

It is possible to show that F follows an F-distribution of 1 and n - 2 degrees of freedom.

If the variables are strongly linked

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Where β_0 is the intercept, β_1 is the coefficient associated with x_i and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

The following test is used: $\begin{cases} H_0: \beta_1 = 0, \\ H_1: \beta_1 \neq 0 \end{cases}$

With the statistic:

$$F = \frac{(RSS_0 - RSS_1)}{1} \times \frac{(n-2)}{RSS_1} = \frac{(\sum_i (y_i - \beta_0)^2 - \sum_i (y_i - \beta_0 - \beta_1 x_i)^2)}{1} \times \frac{(n-2)}{\sum_i (y_i - \beta_0 - \beta_1 x_i)^2}$$

It is possible to show that F follows an F-distribution of 1 and n - 2 degrees of freedom.

If the variables are strongly linked

 $\Rightarrow RSS_0 \gg RSS_1$

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Where β_0 is the intercept, β_1 is the coefficient associated with x_i and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

The following test is used: $\begin{cases} H_0: \beta_1 = 0, \\ H_1: \beta_1 \neq 0 \end{cases}$

With the statistic:

$$F = \frac{(RSS_0 - RSS_1)}{1} \times \frac{(n-2)}{RSS_1} = \frac{(\sum_i (y_i - \beta_0)^2 - \sum_i (y_i - \beta_0 - \beta_1 x_i)^2)}{1} \times \frac{(n-2)}{\sum_i (y_i - \beta_0 - \beta_1 x_i)^2}$$

It is possible to show that F follows an F-distribution of 1 and n - 2 degrees of freedom.

If the variables are strongly linked

$$\Rightarrow RSS_0 \gg RSS_1 \Rightarrow F \sim \frac{RSS_0}{RSS_1} \times (n-2) \gg n-2$$

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Where β_0 is the intercept, β_1 is the coefficient associated with x_i and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

The following test is used: $\begin{cases} H_0: \beta_1 = 0, \\ H_1: \beta_1 \neq 0 \end{cases}$

With the statistic:

$$F = \frac{(RSS_0 - RSS_1)}{1} \times \frac{(n-2)}{RSS_1} = \frac{(\sum_i (y_i - \beta_0)^2 - \sum_i (y_i - \beta_0 - \beta_1 x_i)^2)}{1} \times \frac{(n-2)}{\sum_i (y_i - \beta_0 - \beta_1 x_i)^2}$$

It is possible to show that F follows an F-distribution of 1 and n - 2 degrees of freedom.

If the variables are strongly linked

→
$$RSS_0 \gg RSS_1$$
 → $F \sim \frac{RSS_0}{RSS_1} \times (n-2) \gg n-2$ → The test is likely to be rejected.

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Where β_0 is the intercept, β_1 is the coefficient associated with x_i and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

The following test is used: $\begin{cases} H_0: \beta_1 = 0, \\ H_1: \beta_1 \neq 0 \end{cases}$

With the statistic:

$$F = \frac{(RSS_0 - RSS_1)}{1} \times \frac{(n-2)}{RSS_1} = \frac{(\sum_i (y_i - \beta_0)^2 - \sum_i (y_i - \beta_0 - \beta_1 x_i)^2)}{1} \times \frac{(n-2)}{\sum_i (y_i - \beta_0 - \beta_1 x_i)^2}$$

It is possible to show that F follows an F-distribution of 1 and n - 2 degrees of freedom.

If the variables are strongly linked $\Rightarrow RSS_0 \gg RSS_1 \Rightarrow F \sim \frac{RSS_0}{RSS_1} \times (n-2) \gg n-2 \Rightarrow$ The test is likely to be rejected.

If the variables are NOT strongly linked

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Where β_0 is the intercept, β_1 is the coefficient associated with x_i and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

The following test is used: $\begin{cases} H_0: \beta_1 = 0, \\ H_1: \beta_1 \neq 0 \end{cases}$

With the statistic:

$$F = \frac{(RSS_0 - RSS_1)}{1} \times \frac{(n-2)}{RSS_1} = \frac{(\sum_i (y_i - \beta_0)^2 - \sum_i (y_i - \beta_0 - \beta_1 x_i)^2)}{1} \times \frac{(n-2)}{\sum_i (y_i - \beta_0 - \beta_1 x_i)^2}$$

It is possible to show that F follows an F-distribution of 1 and n - 2 degrees of freedom.

If the variables are strongly linked $\Rightarrow RSS_0 \gg RSS_1 \Rightarrow F \sim \frac{RSS_0}{RSS_1} \times (n-2) \gg n-2 \Rightarrow$ The test is likely to be rejected. If the variables are NOT strongly linked $\Rightarrow RSS_0 \sim RSS_1$

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Where β_0 is the intercept, β_1 is the coefficient associated with x_i and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

The following test is used: $\begin{cases} H_0: \beta_1 = 0, \\ H_1: \beta_1 \neq 0 \end{cases}$

With the statistic:

$$F = \frac{(RSS_0 - RSS_1)}{1} \times \frac{(n-2)}{RSS_1} = \frac{(\sum_i (y_i - \beta_0)^2 - \sum_i (y_i - \beta_0 - \beta_1 x_i)^2)}{1} \times \frac{(n-2)}{\sum_i (y_i - \beta_0 - \beta_1 x_i)^2}$$

It is possible to show that F follows an F-distribution of 1 and n - 2 degrees of freedom.

If the variables are strongly linked $\Rightarrow RSS_0 \gg RSS_1 \Rightarrow F \sim \frac{RSS_0}{RSS_1} \times (n-2) \gg n-2 \Rightarrow$ The test is likely to be rejected. If the variables are NOT strongly linked $\Rightarrow RSS_0 \sim RSS_1 \Rightarrow F \sim 0$

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Where β_0 is the intercept, β_1 is the coefficient associated with x_i and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

The following test is used: $\begin{cases} H_0: \beta_1 = 0, \\ H_1: \beta_1 \neq 0 \end{cases}$

With the statistic:

$$F = \frac{(RSS_0 - RSS_1)}{1} \times \frac{(n-2)}{RSS_1} = \frac{(\sum_i (y_i - \beta_0)^2 - \sum_i (y_i - \beta_0 - \beta_1 x_i)^2)}{1} \times \frac{(n-2)}{\sum_i (y_i - \beta_0 - \beta_1 x_i)^2}$$

It is possible to show that F follows an F-distribution of 1 and n - 2 degrees of freedom.

If the variables are strongly linked $\Rightarrow RSS_0 \gg RSS_1 \Rightarrow F \sim \frac{RSS_0}{RSS_1} \times (n-2) \gg n-2 \Rightarrow$ The test is likely to be rejected. If the variables are NOT strongly linked $\Rightarrow RSS_0 \sim RSS_1 \Rightarrow F \sim 0$ \Rightarrow The test is likely to be accepted.

Now with this 2 tests, let us see what are the results of PCA on the MDD case study

See section 1 on the Rmarkdown `MDD_case_study_RGCCA`

- 1. Introduction of the case study
- 2. Unsupervised analysis with one-block: Principal Component Analysis (PCA)
- **3.** Unsupervised analysis with two-blocks: Partial Least Squares (PLS) and Canonical Correlation Analysis (CCA)
- 4. Unsupervised analysis with L-blocks: Regularized Generalized Canonical Correlation Analysis (RGCCA)
- 5. Supervised analysis with RGCCA
- 6. Variable selection in RGCCA: Sparse Generalized Canonical Correlation Analysis (SGCCA)
- 7. The flexible Optimization Framework of RGCCA
 - The general principal
 - Extension to multi-way analysis
 - From Sequential to Global

Block components should verified two properties at the same time:

- 1. Block components well explain their own block.
- 1. Block components are as correlated as possible for connected blocks.

Courtesy to Arthur Tenenhaus.

Principal Component Analysis (PCA) $\max_{\mathbf{W}} Var(\mathbf{X}\mathbf{W})$ $\|\mathbf{w}\|_{2}^{2}=1$

 $Var(\mathbf{X}_i \mathbf{w}_i) = 1$

Partial Least Squares (PLS2) $\max_{\mathbf{w}_1,\mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1\mathbf{w}_1,\mathbf{X}_2\mathbf{w}_2)$ $\|\mathbf{w}_i\|_2^2 = 1$

Canonical Correlation Analysis (CCA)

 $\max_{\mathbf{w}_1,\mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1\mathbf{w}_1,\mathbf{X}_2\mathbf{w}_2)$ $\operatorname{Var}(\mathbf{X}_i\mathbf{w}_i)=1$

Partial Least Squares (PLS2) $\max_{\mathbf{w}_1,\mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1\mathbf{w}_1,\mathbf{X}_2\mathbf{w}_2)$ $\|\mathbf{w}_i\|_2^2 = 1$

 $[\mathbf{x}_1 \, \mathbf{x}_2] \sim \mathcal{N}\left((0,0), \begin{pmatrix} 1 & 0.5\\ 0.5 & 1 \end{pmatrix}\right)$

Let us see what are the results of PLS/CCA on the MDD case study

See section 2.2 & 2.3 on the Rmarkdown `MDD_case_study_RGCCA`

Overfitting

Overfitting

	X ₁	X2 X3		X4	У
	Intercept	Age	Nb_sisters	Neighbor'weight (kg)	Subject's Height (cm)
Subj1	1	5	1	1	90
Subj2	1	10	2	50	125
Subj3	1	15	1	80	160
Subj4	1	20	2	90	180

.

		х 1	х 2	X3	X4	У	
			Intercept	Age	Nb_sisters	Neighbor'weight (kg)	Subject's Height (cm)
TEST		Subj1	1	5	1	1	90
TRAIN		Subj2	1	10	2	50	125
		Subj3	1	15	1	80	160
	,	Subj4	1	20	2	90	180

		х 1	х ₂	X3	X4	У
		Intercept	Age	Nb_sisters	Neighbor'weight (kg)	Subject's Height (cm)
TEST	 Subj1	1	5	1	1	90
TRAIN	Subj2	1	10	2	50	125
	Subj3	1	15	1	80	160
	Subj4	1	20	2	90	180

		X ₁	x2	X ₃	X4	У
		Intercept	Age	Nb_sisters	Neighbor'weight (kg)	Subject's Height (cm)
TEST	Subj1	1	5	1	1	90
TRAIN	Subj2	1	10	2	50	125
	Subj3	1	15	1	80	160
	Subj4	1	20	2	90	180

Similarly, we can define $J_{TEST} = (y_1 - \beta_1 x_{11} - \beta_2 x_{12} - \beta_3 x_{13} - \beta_4 x_{14})^2$.

		х 1	х 2	X ₃	X4	У
		Intercept	Age	Nb_sisters	Neighbor'weight (kg)	Subject's Height (cm)
TEST	Subj1	1	5	1	11	90
TRAIN	Subj2	1	10	2	50	125
	Subj3	1	15	1	80	160
	Subj4	1	20	2	90	180

Similarly, we can define $J_{TEST} = (y_1 - \beta_1 x_{11} - \beta_2 x_{12} - \beta_3 x_{13} - \beta_4 x_{14})^2$.

Here, we are in "high-dimension" as n < p. The problem is ill-posed (more unknown parameters than equations).

			х 1	Х 2	Х 3	X4	У
			Intercept	Age	Nb_sisters	Neighbor'weight (kg)	Subject's Height (cm)
TEST		Subj1	1	5	1	11	90
TRAIN		Subj2	1	10	2	50	125
		Subj3	1	15	1	80	160
		Subj4	1	20	2	90	180

Similarly, we can define $J_{TEST} = (y_1 - \beta_1 x_{11} - \beta_2 x_{12} - \beta_3 x_{13} - \beta_4 x_{14})^2$.

Here, we are in "high-dimension" as n < p. The problem is ill-posed (more unknown parameters than equations).

→ It is possible to find an infinite number of solutions:

			X1 X2		Х 3	X 4	У	
			Intercept	Age	Nb_sisters	Neighbor'weight (kg)	Subject's Height (cm)	
TEST		Subj1	1	5	1	1	90	
TRAIN		Subj2	1	10	2	50	125	
		Subj3	1	15	1	80	160	
	,	Subj4	1	20	2	90	180	

Similarly, we can define $J_{TEST} = (y_1 - \beta_1 x_{11} - \beta_2 x_{12} - \beta_3 x_{13} - \beta_4 x_{14})^2$.

Here, we are in "high-dimension" as n < p. The problem is ill-posed (more unknown parameters than equations).

	β ₁	β_2	β ₃	β_4	J _{train}	J _{test}
Solution 1	43.75	0	1.375	6.25	8.4e-22	1491.891
Solution 2	-7456.25	-1000	251.375	2506.25	1.1e-19	95817179
:						

→ It is possible to find an infinite number of solutions:

			X 1	х 2	X3	X4	У
			Intercept	Age	Nb_sisters	Neighbor'weight (kg)	Subject's Height (cm)
TEST		Subj1	1	5	1	11	90
TRAIN		Subj2	1	10	2	50	125
		Subj3	1	15	1	80	160
	,	Subj4	1	20	2	90	180

Similarly, we can define $J_{TEST} = (y_1 - \beta_1 x_{11} - \beta_2 x_{12} - \beta_3 x_{13} - \beta_4 x_{14})^2$.

Here, we are in "high-dimension" as n < p. The problem is ill-posed (more unknown parameters than equations).

→ It is possible to find an infinite number of solutions:									
Coordinate the idea that ago is the		β_1	β_2	β ₃	β_4	J _{train}	J _{test}		
best explanatory variable.	Solution 1	43.75	0	1.375	6.25	8.4e-22	1491.891		
	Solution 2	-7456.25	-1000	251.375	2506.25	1.1e-19	95817179		
	:		\checkmark						

			X 1	х 2	X3	X 4	У
			Intercept	Age	Nb_sisters	Neighbor'weight (kg)	Subject's Height (cm)
TEST		Subj1	1	5	1	1	90
TRAIN		Subj2	1	10	2	50	125
		Subj3	1	15	1	80	160
		Subj4	1	20	2	90	180

Similarly, we can define $J_{TEST} = (y_1 - \beta_1 x_{11} - \beta_2 x_{12} - \beta_3 x_{13} - \beta_4 x_{14})^2$.

OVERFITTING

Here, we are in "high-dimension" as n < p. The problem is ill-posed (more unknown parameters than equations).

Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.

Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.

A lot of sampling possibilities are available to perform Cross-Validation (CV). The most well-known is K-fold CV:

Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.

A lot of sampling possibilities are available to perform Cross-Validation (CV). The most well-known is K-fold CV:

Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.

A lot of sampling possibilities are available to perform Cross-Validation (CV). The most well-known is K-fold CV:

One way to avoid overfitting is by preforming regularization.

Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.

A lot of sampling possibilities are available to perform Cross-Validation (CV). The most well-known is K-fold CV:

One way to avoid overfitting is by preforming regularization.

Regularization consists in adding more constraints to the model in order to reduce the space of solutions.

Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.

A lot of sampling possibilities are available to perform Cross-Validation (CV). The most well-known is K-fold CV:

One way to avoid overfitting is by preforming regularization.

Regularization consists in adding more constraints to the model in order to reduce the space of solutions.

Multiple regularizations are available such as Ridge or LASSO regularizations.

Cross-Validation & Regularization

Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.

A lot of sampling possibilities are available to perform Cross-Validation (CV). The most well-known is K-fold CV:

One way to avoid overfitting is by preforming regularization.

Regularization consists in adding more constraints to the model in order to reduce the space of solutions.

Multiple regularizations are available such as Ridge or LASSO regularizations.

Here, we choose to regularize the model by forcing it to have a low number of variables.

Application on the example

So let us consider all models with either 2 or 3 variables (with at least the intercept each time).

By doing so, we add respectively 2 (ex: $\beta_2 = 0$ and $\beta_4 = 0$) or 1 constraint (idem).

Application on the example

So let us consider all models with either 2 or 3 variables (with at least the intercept each time).

By doing so, we add respectively 2 (ex: $\beta_2 = 0$ and $\beta_4 = 0$) or 1 constraint (idem).

For all these possible models, let us compute J_{TRAIN} and J_{TEST} :

By doing so, we add respectively 2 (ex: $\beta_2 = 0$ and $\beta_4 = 0$) or 1 constraint (idem).

For all these possible models, let us compute J_{TRAIN} and J_{TEST} :

Variables considered	J _{train}	J _{test}
(x_1, x_2)	3.750000e+01	100
(x_1, x_3)	2.403846e+01	959.8081
(x_1, x_4)	1.512500e+03	4900
(x_1, x_2, x_3)	1.831567e-22	203.0625
(x_1, x_2, x_4)	6.464166e-24	225
(x_1, x_3, x_4)	8.664767e-22	1491.8906

By doing so, we add respectively 2 (ex: $\beta_2 = 0$ and $\beta_4 = 0$) or 1 constraint (idem).

For all these possible models, let us compute J_{TRAIN} and J_{TEST} :

Variables considered	J _{train}	J _{test}	
(x_1, x_2)	3.750000e+01	100	OVERFITTING
(x_1, x_3)	2.403846e+01	959.8081	
(x_1, x_4)	1 512500e+03	4900	
(x_1, x_2, x_3)	1.831567e-22	203.0625	
(x_1, x_2, x_4)	6.464166e-24	225)
(x_1, x_3, x_4)	8.664767e-22	1491.8906	

By doing so, we add respectively 2 (ex: $\beta_2 = 0$ and $\beta_4 = 0$) or 1 constraint (idem).

For all these possible models, let us compute J_{TRAIN} and J_{TEST} :

		/	
Variables considered	J _{train}	J _{test}	
(x_1, x_2)	3.750000e+01	100	, OVERFITTING
(x_1, x_3)	2.403846e+01	959.8081	
(x_1, x_4)	1 512500e+03	4900	
(x_1, x_2, x_3)	1.831567e-22	203.0625	
(x_1, x_2, x_4)	6.464166e-24	225)
(x_1, x_3, x_4)	8.664767e-22	1491. 89 06	

Best model

By doing so, we add respectively 2 (ex: $\beta_2 = 0$ and $\beta_4 = 0$) or 1 constraint (idem).

For all these possible models, let us compute J_{TRAIN} and J_{TEST} :

CV was also used here so set an hyper-parameter: «the number of variables to keep in the model».

Best model

By doing so, we add respectively 2 (ex: $\beta_2 = 0$ and $\beta_4 = 0$) or 1 constraint (idem).

For all these possible models, let us compute J_{TRAIN} and J_{TEST} :

CV was also used here so set an hyper-parameter: «the number of variables to keep in the model».

Here apparently, keeping only 2 variables leads to the best model with the variable «Age», which was expected.

Best model

Overfitting can be handled with regularization.

Overfitting can be handled with regularization.

Cross-Validation can both help to:

Cross-Validation can both help to:

1. realize if the model overfits or not

Cross-Validation can both help to:

- 1. realize if the model overfits or not
- 2. tune the hyper-parameters (associated with the regularization).

Cross-Validation can both help to:

- 1. realize if the model overfits or not
- 2. tune the hyper-parameters (associated with the regularization).

Cross-Validation can both help to:

- 1. realize if the model overfits or not
- 2. tune the hyper-parameters (associated with the regularization).

Classical mistake to avoid with Cross-Validation: «Double Dipping».

Figure taken from https://typeset.io/resources/top-reasons-for-research-paper-rejection/

Cross-Validation can both help to:

- 1. realize if the model overfits or not
- 2. tune the hyper-parameters (associated with the regularization).

Classical mistake to avoid with Cross-Validation: «Double Dipping».

→ The whole point of Cross-Validation is to keep the train and the test sets **independant** from each other.

Cross-Validation can both help to:

- 1. realize if the model overfits or not
- 2. tune the hyper-parameters (associated with the regularization).

Classical mistake to avoid with Cross-Validation: «Double Dipping».

→ The whole point of Cross-Validation is to keep the train and the test sets **independant** from each other.

This is no longer the case when for example:

Figure taken from https://typeset.io/resources/top-reasons-for-research-paper-rejection/

Cross-Validation can both help to:

- 1. realize if the model overfits or not
- 2. tune the hyper-parameters (associated with the regularization).

Classical mistake to avoid with Cross-Validation: «Double Dipping».

→ The whole point of Cross-Validation is to keep the train and the test sets **independant** from each other.

This is no longer the case when for example:

1. Normalization accross subjects is performed on the whole data-set.

Figure taken from https://typeset.io/resources/top-reasons-for-research-paper-rejection/

Cross-Validation can both help to:

- 1. realize if the model overfits or not
- 2. tune the hyper-parameters (associated with the regularization).

Classical mistake to avoid with Cross-Validation: «Double Dipping».

→ The whole point of Cross-Validation is to keep the train and the test sets **independant** from each other.

This is no longer the case when for example:

- 1. Normalization accross subjects is performed on the whole data-set.
- 2. Variable selection is performed on the whole data-set (ex: differentially expressed genes)

How do we regularize CCA ?

Canonical Correlation Analysis (CCA)

 $\max_{\mathbf{w}_1, \mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1 \mathbf{w}_1, \mathbf{X}_2 \mathbf{w}_2)$ $\operatorname{Var}(\mathbf{X}_i \mathbf{w}_i) = 1$

Partial Least Squares (PLS2) $\max_{\mathbf{w}_1,\mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1\mathbf{w}_1,\mathbf{X}_2\mathbf{w}_2)$ $\|\mathbf{w}_i\|_2^2 = 1$

Two-blocks special cases: PLS & CCA ... and Regularized-CCA

Canonical Correlation Analysis (CCA)

 $\max_{\mathbf{w}_1,\mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1\mathbf{w}_1,\mathbf{X}_2\mathbf{w}_2)$ $\operatorname{Var}(\mathbf{X}_i\mathbf{w}_i)=1$

Partial Least Squares (PLS2) $\max_{\mathbf{w}_1, \mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1 \mathbf{w}_1, \mathbf{X}_2 \mathbf{w}_2)$ $\|\mathbf{w}_i\|_2^2 = 1$

 $\frac{\text{Regularized-CCA}}{\max_{w_1,w_2}} \text{Cov}(X_1w_1, X_2w_2)$

s.t. $(1 - \tau_i)$ Var $(\mathbf{X}_i \mathbf{w}_i) + \tau_i \|\mathbf{w}_i\|_2^2 = 1$.

Two-blocks special cases: PLS & CCA ... and Regularized-CCA

Canonical Correlation Analysis (CCA) Partial Least Squares (PLS2) $\max_{\mathbf{w}_1,\mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1\mathbf{w}_1,\mathbf{X}_2\mathbf{w}_2)$ $Cov(\mathbf{X}_1\mathbf{w}_1, \mathbf{X}_2\mathbf{w}_2)$ $\max_{\mathbf{w}_1,\mathbf{w}_2}$ $Var(X_i w_i) = 1$ $\|\mathbf{w}_i\|_2^2 = 1$ PLS **Regularized-CCA** max $Cov(\mathbf{X}_1\mathbf{w}_1, \mathbf{X}_2\mathbf{w}_2)$ W_1, W_2 s.t. $(1 - \tau_i)$ Var $(\mathbf{X}_i \mathbf{w}_i) + \tau_i \|\mathbf{w}_i\|_2^2 = 1$.

Let us see how Regularize CCA performs on the MDD case study

See section 2.4 & 2.5 on the Rmarkdown `MDD_case_study_RGCCA`

1. Introduction of the case study

- 2. Unsupervised analysis with one-block: Principal Component Analysis (PCA)
- **3. Unsupervised analysis with two-blocks:** Partial Least Squares (PLS) and Canonical Correlation Analysis (CCA)
- 4. Unsupervised analysis with *L*-blocks: Regularized Generalized Canonical Correlation Analysis (RGCCA)
- 5. Supervised analysis with RGCCA
- 6. Variable selection in RGCCA: Sparse Generalized Canonical Correlation Analysis (SGCCA)
- 7. The flexible Optimization Framework of RGCCA
 - The general principal
 - Extension to multi-way analysis
 - From Sequential to Global

 $\max_{\mathbf{w}_1,\mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1\mathbf{w}_1,\mathbf{X}_2\mathbf{w}_2)$

 $\max_{\mathbf{w}_1,\mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1\mathbf{w}_1,\mathbf{X}_2\mathbf{w}_2)$

 $\max_{\mathbf{w}_1,\mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1\mathbf{w}_1,\mathbf{X}_2\mathbf{w}_2)$

s. t. $\mathbf{w}_l^{\mathsf{T}} \mathbf{X}_l^{\mathsf{T}} \mathbf{X}_l \mathbf{w}_l = I$, l = 1, 2.

 $\max_{\mathbf{w}_1,\mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1\mathbf{w}_1,\mathbf{X}_2\mathbf{w}_2)$

s. t.
$$\mathbf{w}_l^{\mathsf{T}} \mathbf{X}_l^{\mathsf{T}} \mathbf{X}_l \mathbf{w}_l = I, \qquad l = 1, 2.$$

Canonical Correlation Analysis

 $\max_{\mathbf{w}_1,\mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1\mathbf{w}_1,\mathbf{X}_2\mathbf{w}_2)$

s. t. $\mathbf{w}_l^{\mathsf{T}} \mathbf{X}_l^{\mathsf{T}} \mathbf{X}_l \mathbf{w}_l = I$, l = 1, 2.

 $\max_{\mathbf{w}_1,\mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1\mathbf{w}_1,\mathbf{X}_2\mathbf{w}_2)$

s. t. $\|\mathbf{w}_l\|_2^2 = 1$, l = 1, 2.

Partial Least Squares 2

 $\max_{\mathbf{w}_1,\mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1\mathbf{w}_1,\mathbf{X}_2\mathbf{w}_2)$

s. t. $\|\mathbf{w}_l\|_2^2 = 1$, l = 1, 2.

24

 $\max_{\mathbf{w}_1,\mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1\mathbf{w}_1,\mathbf{X}_2\mathbf{w}_2)$

s. t. $\|\mathbf{w}_l\|_2^2 = 1$, l = 1, 2.

 $\max_{\mathbf{w}_1,\mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1\mathbf{w}_1,\mathbf{X}_2\mathbf{w}_2)$

s. t. $\mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1$, l = 1, 2.

 $\max_{\mathbf{w}_1,\mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1\mathbf{w}_1,\mathbf{X}_2\mathbf{w}_2)$

s.t.
$$\mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1, \qquad l = 1, 2.$$

 $\max_{\mathbf{w}_1,\mathbf{w}_2} \operatorname{Cov}(\mathbf{X}_1\mathbf{w}_1,\mathbf{X}_2\mathbf{w}_2)$

s. t. $\mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1$, l = 1, 2.

if all blocks are connected and $\mathbf{M}_l = \mathbf{I}_l$ SUMCOV-2

if all blocks are connected and $\mathbf{M}_l = \mathbf{I}_l$ SSQCOV-2

if all blocks are connected and $\mathbf{M}_l = \mathbf{I}_l$ SABSCOV-2

with g a continuous, convex and derivable function.

The Regularized Generalized Canonical Correlation Analysis (RGCCA) Optimization criterion :

$$\max_{\mathbf{w}_{1},...,\mathbf{w}_{L}} \sum_{k,l=1}^{L} c_{kl} g(\operatorname{Cov}(\mathbf{X}_{k}\mathbf{w}_{k}, \mathbf{X}_{l}\mathbf{w}_{l}))$$

s.t. $\mathbf{w}_{l}^{\mathsf{T}} \mathbf{M}_{l} \mathbf{w}_{l} = 1, \ l = 1, ..., L.$

The Regularized Generalized Canonical Correlation Analysis (RGCCA) Optimization criterion :

$$\max_{\mathbf{w}_{1},...,\mathbf{w}_{L}} \sum_{k,l=1}^{L} c_{kl} g(\operatorname{Cov}(\mathbf{X}_{k}\mathbf{w}_{k},\mathbf{X}_{l}\mathbf{w}_{l}))$$

s. t.
$$\mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1, \ l = 1, \dots, L.$$

With "g" a continuous, convex and derivable function.

The Regularized Generalized Canonical Correlation Analysis (RGCCA) Optimization criterion :

$$\max_{\mathbf{w}_{1},\ldots,\mathbf{w}_{L}}\sum_{k,l=1}^{L}c_{kl}g(\operatorname{Cov}(\mathbf{X}_{k}\mathbf{w}_{k},\mathbf{X}_{l}\mathbf{w}_{l}))$$

s.t.
$$\mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1, \ l = 1, \dots, L.$$

With "g" a continuous, convex and derivable function. $c_{lk} = 1$ for two connected blocks and 0 otherwise.

The Regularized Generalized Canonical Correlation Analysis (RGCCA) Optimization criterion :

$$\max_{\mathbf{w}_1,\ldots,\mathbf{w}_L} \sum_{k,l=1}^L c_{kl} g(\operatorname{Cov}(\mathbf{X}_k \mathbf{w}_k, \mathbf{X}_l \mathbf{w}_l))$$

s.t.
$$\mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1, \ l = 1, \dots, L.$$

The Regularized Generalized Canonical Correlation Analysis (RGCCA) Optimization criterion :

$$\max_{\mathbf{w}_{1},\ldots,\mathbf{w}_{L}}\sum_{k,l=1}^{L}c_{kl} g(\operatorname{Cov}(\mathbf{X}_{k}\mathbf{w}_{k},\mathbf{X}_{l}\mathbf{w}_{l}))$$

s.t.
$$\mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1, \ l = 1, \dots, L.$$

Most of the time (this is the case today !) \mathbf{M}_l is chosen such that:

The Regularized Generalized Canonical Correlation Analysis (RGCCA) Optimization criterion :

$$\max_{\mathbf{w}_{1},...,\mathbf{w}_{L}}\sum_{k,l=1}^{L}c_{kl} g(\operatorname{Cov}(\mathbf{X}_{k}\mathbf{w}_{k},\mathbf{X}_{l}\mathbf{w}_{l}))$$

s.t.
$$\mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1, \ l = 1, \dots, L.$$

Most of the time (this is the case today !) \mathbf{M}_l is chosen such that:

$$\mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = (1 - \tau_l) \operatorname{Var}(\mathbf{X}_l \mathbf{w}_l) + \tau_l \|\mathbf{w}_l\|_2^2 = 1.$$

The Regularized Generalized Canonical Correlation Analysis (RGCCA) Optimization criterion :

$$\max_{\mathbf{w}_1,\ldots,\mathbf{w}_L} \sum_{k,l=1}^L c_{kl} g(\operatorname{Cov}(\mathbf{X}_k \mathbf{w}_k, \mathbf{X}_l \mathbf{w}_l))$$

s.t.
$$\mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1, \ l = 1, \dots, L.$$

Most of the time (this is the case today !) \mathbf{M}_l is chosen such that:

$$\mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = \mathbf{w}_l^{\mathsf{T}} \left((1 - \tau_l) I^{-1} \mathbf{X}_l^{\mathsf{T}} \mathbf{X}_l + \tau_l \mathbf{I}_{J_l} \right) \mathbf{w}_l = 1.$$

The Regularized Generalized Canonical Correlation Analysis (RGCCA) Optimization criterion :

$$\max_{\mathbf{w}_{1},...,\mathbf{w}_{L}}\sum_{k,l=1}^{L}c_{kl} g(\operatorname{Cov}(\mathbf{X}_{k}\mathbf{w}_{k},\mathbf{X}_{l}\mathbf{w}_{l}))$$

s.t.
$$\mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1, \ l = 1, \dots, L.$$

Most of the time (this is the case today !) \mathbf{M}_l is chosen such that:

$$\mathbf{w}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{w}_{l} = \mathbf{w}_{l}^{\mathsf{T}}\left((1-\tau_{l})I^{-1}\mathbf{X}_{l}^{\mathsf{T}}\mathbf{X}_{l} + \tau_{l}\mathbf{I}_{J_{l}}\right)\mathbf{w}_{l} = 1$$

Regularized version of the sample covariance matrix

SABSCOR (Wold, 1982)

			_
ALL	BLOCKSARE INTERCONNECTED	\mathbf{X}_{1} \mathbf{X}_{2} \mathbf{X}_{3} \mathbf{X}_{J}	
SUMCOR (Horst, 1961)	$\max_{\mathbf{w}_j} \sum_{j,k} \operatorname{cor}(\mathbf{X}_j \mathbf{w}_j, \mathbf{X}_k \mathbf{w}_k)$		
SSQCOR (Kettenring, 1961)	$\max_{\mathbf{w}_j} \sum_{j,k} \operatorname{cor}^2(\mathbf{X}_j \mathbf{w}_j, \mathbf{X}_k \mathbf{w}_k)$		

 $\max_{\mathbf{w}_j} \sum_{j,k} \left| \operatorname{cor}(\mathbf{X}_j \mathbf{w}_j, \mathbf{X}_k \mathbf{w}_k) \right|$

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

ALL BLOCKS ARE INTERCONNECTED X_1 X_2 X_3 X_4			
SUMCOR (Horst, 1961)	$\max_{\mathbf{w}_j} \sum_{j,k} \operatorname{cor}(\mathbf{X}_j \mathbf{w}_j, \mathbf{X}_k \mathbf{w}_k)$		
SSQCOR (Kettenring, 1961)	$\max_{\mathbf{w}_j} \sum_{j,k} \operatorname{cor}^2(\mathbf{X}_j \mathbf{w}_j, \mathbf{X}_k \mathbf{w}_k)$		
SABSCOR (Wold, 1982)	$\max_{\mathbf{w}_j} \sum_{j,k} \left \operatorname{cor}(\mathbf{X}_j \mathbf{w}_j, \mathbf{X}_k \mathbf{w}_k) \right $		
SUMCOV (Van de Geer, 1984)	$\max_{\ \mathbf{w}_j\ =1}\sum_{j,k}\operatorname{cov}(\mathbf{X}_j\mathbf{w}_j,\mathbf{X}_k\mathbf{w}_k)$		
SSQCOV (Hanafi & Kiers, 2006)	$\max_{\ \mathbf{w}_j\ =1} \sum_{j,k} \operatorname{cov}^2(\mathbf{X}_j \mathbf{w}_j, \mathbf{X}_k \mathbf{w}_k)$		
SABSCOV (Krämer, 2007)	$\max_{\ \mathbf{w}_j\ =1} \sum_{j,k} \operatorname{cov}(\mathbf{X}_j \mathbf{w}_j, \mathbf{X}_k \mathbf{w}_k) $		

BLOCKS ARE PARTIALLY CONNECTED $c_{jk} = 1 \text{ if } \mathbf{X}_j \leftrightarrow \mathbf{X}_k, 0 \text{ otherwise}$ $\mathbf{X}_j = \mathbf{X}_j$		
SUMCOR	$\max_{\mathbf{w}_j} \sum_{j,k} c_{jk} \operatorname{cor}(\mathbf{X}_j \mathbf{w}_j, \mathbf{X}_k \mathbf{w}_k)$	
SSQCOR	$\max_{\mathbf{w}_j} \sum_{j,k} \frac{c_{jk}}{\cos^2(\mathbf{X}_j \mathbf{w}_j, \mathbf{X}_k \mathbf{w}_k)}$	
SABSCOR	$\max_{\mathbf{w}_j} \sum_{j,k} \frac{c_{jk}}{ \operatorname{cor}(\mathbf{X}_j \mathbf{w}_j, \mathbf{X}_k \mathbf{w}_k) }$	
SUMCOV	$\max_{\ \mathbf{w}_j\ =1} \sum_{j,k} c_{jk} \operatorname{cov}(\mathbf{X}_j \mathbf{w}_j, \mathbf{X}_k \mathbf{w}_k)$	
SSQCOV	$\max_{\ \mathbf{w}_j\ =1} \sum_{j,k} c_{jk} \operatorname{cov}^2(\mathbf{X}_j \mathbf{w}_j, \mathbf{X}_k \mathbf{w}_k)$	
SABSCOV	$\max_{\ \mathbf{w}_j\ =1} \sum_{j,k} c_{jk} \operatorname{cov}(\mathbf{X}_j \mathbf{w}_j, \mathbf{X}_k \mathbf{w}_k) $	

BLOCKS ARE PARTIALLY CONNECTED $c_{jk} = 1 \text{ if } \mathbf{X}_j \leftrightarrow \mathbf{X}_k, 0 \text{ otherwise}$ $\mathbf{X}_j = \mathbf{X}_j \mathbf{X}_j$				
SUMCOR	$\max_{\operatorname{var}(\mathbf{X}_{j}\mathbf{w}_{j})=1}\sum_{j,k}\frac{c_{jk}}{\sum_{j,k}\operatorname{cov}(\mathbf{X}_{j}\mathbf{w}_{j},\mathbf{X}_{k}\mathbf{w}_{k})}$			
SSQCOR	$\max_{\operatorname{var}(\mathbf{X}_{j}\mathbf{w}_{j})=1}\sum_{j,k}^{c_{jk}}\operatorname{cov}^{2}(\mathbf{X}_{j}\mathbf{w}_{j},\mathbf{X}_{k}\mathbf{w}_{k})$			
SABSCOR	$\max_{\operatorname{var}(\mathbf{X}_{j}\mathbf{w}_{j})=1}\sum_{j,k}\frac{c_{jk}}{ \operatorname{cov}(\mathbf{X}_{j}\mathbf{w}_{j},\mathbf{X}_{k}\mathbf{w}_{k}) }$			
SUMCOV	$\max_{\ \mathbf{w}_j\ =1} \sum_{j,k} c_{jk} \operatorname{cov}(\mathbf{X}_j \mathbf{w}_j, \mathbf{X}_k \mathbf{w}_k)$			
SSQCOV	$\max_{\ \mathbf{w}_j\ =1} \sum_{j,k} c_{jk} \operatorname{cov}^2(\mathbf{X}_j \mathbf{w}_j, \mathbf{X}_k \mathbf{w}_k)$			
SABSCOV	$\max_{\ \mathbf{w}_j\ =1} \sum_{j,k} c_{jk} \operatorname{cov}(\mathbf{X}_j \mathbf{w}_j, \mathbf{X}_k \mathbf{w}_k) $			

Courtesy to Arthur Tenenhaus.

Let us see how RGCCA performs on the MDD case study

→ See section 3.2 on the Rmarkdown `MDD_case_study_RGCCA`

Permutation n°1

Permutation n°1

Parameter set n°1

Parameter set n°1

Parameter set n°1

Ξ

Parameter set n°K

FRANCE

BIOINFORMATIOL

Parameter set n°1 : Parameter set n°*K* Parameter set n°*K*

FRANCE

BIOINFORMATIOL

Parameter set n°1 : Parameter set n°*K* Parameter set n°*K* Mo PermutationRGCCA's criterion:RGCCA's criterionRGCCA's criterion

FRANCE

BIOINFORMATIOL

FRANCE

 \rightarrow The set of parameters is likely to be selected.

FRANCE

 \rightarrow The set of parameters is likely to be selected.

RGCCA's criterion

 \rightarrow The set of parameters is unlikely to be selected.

Parameter set n°K

Let us apply this permutation procedure on the MDD case study

→ See section 3.3 on the Rmarkdown `MDD_case_study_RGCCA`

Bootstrap sample n°1

.

Bootstrap sample n°1

Weight for $mRNA_1$

Weight for mRNA₁

Weight for $miRNA_{J_3}$

÷

INSTITUT FRANCAIS

BIOINFORMATIOL

FRANCE

FRANCE

BIOINFORMATIO

INISTITI IT FRANIC

FRANCI

The weight is likely to be considered as
It is significantly different from 0.

Let us apply this permutation procedure on the MDD case study

→ See section 3.4 on the Rmarkdown `MDD_case_study_RGCCA`

1. Introduction of the case study

- 2. Unsupervised analysis with one-block: Principal Component Analysis (PCA)
- **3. Unsupervised analysis with two-blocks:** Partial Least Squares (PLS) and Canonical Correlation Analysis (CCA)
- Unsupervised analysis with L-blocks: Regularized Generalized Canonical Correlation Analysis (RGCCA)

5. Supervised analysis with RGCCA

- 6. Variable selection in RGCCA: Sparse Generalized Canonical Correlation Analysis (SGCCA)
- 7. The flexible Optimization Framework of RGCCA
 - The general principal
 - Extension to multi-way analysis
 - From Sequential to Global

Supervising with RGCCA

INSTITUT FRANCA!

BIOINFORMATIOL

FRANCE

The model sequentially learn block-weight vectors to compute components and a classifier.

BIOINFORMATIOL

The model sequentially learn block-weight vectors to compute components and a classifier.

Standard Cross-Validation can be performed.

F1-score

Confusion Matrix:		True labels		
			Positive	Negative
	Predicted labels	Positive	True Positive (TP)	False Positive (FP)
		Negative	False Negative (FN)	True Negative (TN)

•

. . .

Confusion Matrix:		True labels		
			Positive	Negative
P	Predicted	Positive	True Positive (TP)	False Positive (FP)
	labels	Negative	False Negative (FN)	True Negative (TN)

 $precision = \frac{TP}{TP + FP}$ How many positive predicted labels are true ?

Confusion Matrix:		True labels		
			Positive	Negative
	Predicted	Positive	True Positive (TP)	False Positive (FP)
	labels	Negative	False Negative (FN)	True Negative (TN)

 $precision = \frac{TP}{TP + FP}$ → How many positive predicted labels are true ?

$$recall = \frac{TP}{TP + FN}$$

→ How many true positive labels are retrieved ?

Confusion Matrix:		True labels		
			Positive	Negative
Ρ	Predicted	Positive	True Positive (TP)	False Positive (FP)
	labels	Negative	False Negative (FN)	True Negative (TN)

 $precision = \frac{TP}{TP + FP}$ → How many positive predicted labels are true ?

$$recall = \frac{TP}{TP + FN}$$

How many true, positive labels are retrieved.

→ How many true positive labels are retrieved ?

$$F = \frac{2}{\frac{1}{recall} + \frac{1}{precision}} = \frac{2precision.recall}{recall + precision}$$

Let us apply a supervised version of RGCCA on the MDD case study

See section 4 on the Rmarkdown `MDD_case_study_RGCCA`

1. Introduction of the case study

- 2. Unsupervised analysis with one-block: Principal Component Analysis (PCA)
- **3.** Unsupervised analysis with two-blocks: Partial Least Squares (PLS) and Canonical Correlation Analysis (CCA)
- **4. Unsupervised analysis with** *L***-blocks:** Regularized Generalized Canonical Correlation Analysis (RGCCA)
- 5. Supervised analysis with RGCCA
- 6. Variable selection in RGCCA: Sparse Generalized Canonical Correlation Analysis (SGCCA)
- 7. The flexible Optimization Framework of RGCCA
 - The general principal
 - Extension to multi-way analysis
 - From Sequential to Global

The LASSO regularization allows to perform variable selection.

Controls the level of sparsity (has to be tuned).

The LASSO regularization allows to perform variable selection.

37

$$\operatorname{VIP}\left(\mathbf{x}_{lj}\right) = \frac{1}{R} \sum_{r=1}^{R} \left(w_{lj}^{(r)^{2}} \operatorname{AVE}\left(\mathbf{X}_{l}^{(r)}\right) \right)$$

$$\operatorname{VIP}\left(\mathbf{x}_{lj}\right) = \frac{1}{R} \sum_{r=1}^{R} \left(w_{lj}^{(r)^{2}} \operatorname{AVE}\left(\mathbf{X}_{l}^{(r)}\right) \right)$$

Where:

$$\operatorname{VIP}\left(\mathbf{x}_{lj}\right) = \frac{1}{R} \sum_{r=1}^{R} \left(w_{lj}^{(r)^{2}} \operatorname{AVE}\left(\mathbf{X}_{l}^{(r)}\right) \right)$$

Where:

 \clubsuit *R* is the number of extracted components.

$$\operatorname{VIP}\left(\mathbf{x}_{lj}\right) = \frac{1}{R} \sum_{r=1}^{R} \left(w_{lj}^{(r)^{2}} \operatorname{AVE}\left(\mathbf{X}_{l}^{(r)}\right) \right)$$

Where:

 \clubsuit *R* is the number of extracted components.

 $\bigstar \mathbf{X}_{l} = \left[\mathbf{x}_{l1}, \dots, \mathbf{x}_{lJ_{l}}\right] \text{ and } \mathbf{w}_{l} = \left[w_{l1}, \dots, w_{lJ_{l}}\right]^{\mathsf{T}}.$

$$\operatorname{VIP}\left(\mathbf{x}_{lj}\right) = \frac{1}{R} \sum_{r=1}^{R} \left(w_{lj}^{(r)^{2}} \operatorname{AVE}\left(\mathbf{X}_{l}^{(r)}\right) \right)$$

Where:

 \clubsuit *R* is the number of extracted components.

$$\mathbf{\mathbf{\hat{x}}}_{l} = \left[\mathbf{x}_{l1}, \dots, \mathbf{x}_{lJ_{l}}\right] \text{ and } \mathbf{w}_{l} = \left[w_{l1}, \dots, w_{lJ_{l}}\right]^{\mathsf{T}}$$

✤ RGCCA uses a deflation procedure to extract the following components.

Thus, $\mathbf{X}_{l}^{(r)}$ correspond to the projection of $\mathbf{X}_{l}^{(r-1)}$ onto the space orthogonal to $\mathbf{y}_{l}^{(r)}$:

$$\operatorname{VIP}\left(\mathbf{x}_{lj}\right) = \frac{1}{R} \sum_{r=1}^{R} \left(w_{lj}^{(r)^{2}} \operatorname{AVE}\left(\mathbf{X}_{l}^{(r)}\right) \right)$$

Where:

 \clubsuit *R* is the number of extracted components.

$$\bigstar \mathbf{X}_{l} = \begin{bmatrix} \mathbf{x}_{l1}, \dots, \mathbf{x}_{lJ_{l}} \end{bmatrix} \text{ and } \mathbf{w}_{l} = \begin{bmatrix} w_{l1}, \dots, w_{lJ_{l}} \end{bmatrix}^{\mathsf{T}}$$

✤ RGCCA uses a deflation procedure to extract the following components.

Thus, $\mathbf{X}_{l}^{(r)}$ correspond to the projection of $\mathbf{X}_{l}^{(r-1)}$ onto the space orthogonal to $\mathbf{y}_{l}^{(r)}$:

$$\mathbf{X}_{l}^{(r)} = \left(\mathbf{I}_{J_{l}} - \frac{\mathbf{y}_{l}^{(r)} \mathbf{y}_{l}^{(r)^{\mathsf{T}}}}{\left\|\mathbf{y}_{l}^{(r)}\right\|_{2}^{2}}\right) \mathbf{X}_{l}^{(r-1)}$$

$$\operatorname{VIP}\left(\mathbf{x}_{lj}\right) = \frac{1}{R} \sum_{r=1}^{R} \left(w_{lj}^{(r)^{2}} \operatorname{AVE}\left(\mathbf{X}_{l}^{(r)}\right) \right)$$

Where:

 \clubsuit *R* is the number of extracted components.

$$\mathbf{X}_{l} = [\mathbf{x}_{l1}, \dots, \mathbf{x}_{lJ_{l}}]$$
 and $\mathbf{w}_{l} = [w_{l1}, \dots, w_{lJ_{l}}]^{\mathsf{T}}$

RGCCA uses a deflation procedure to extract the following components.

Thus, $\mathbf{X}_{l}^{(r)}$ correspond to the projection of $\mathbf{X}_{l}^{(r-1)}$ onto the space orthogonal to $\mathbf{y}_{l}^{(r)}$:

$$\mathbf{X}_{l}^{(r)} = \left(\mathbf{I}_{J_{l}} - \frac{\mathbf{y}_{l}^{(r)} \mathbf{y}_{l}^{(r)^{\mathsf{T}}}}{\left\|\mathbf{y}_{l}^{(r)}\right\|_{2}^{2}}\right) \mathbf{X}_{l}^{(r-1)}$$

• Furthermore $\mathbf{X}_{l}^{(0)} = \mathbf{X}_{l}$

$$\operatorname{VIP}\left(\mathbf{x}_{lj}\right) = \frac{1}{R} \sum_{r=1}^{R} \left(w_{lj}^{(r)^{2}} \operatorname{AVE}\left(\mathbf{X}_{l}^{(r)}\right) \right)$$

Where:

 \clubsuit *R* is the number of extracted components.

$$\mathbf{X}_{l} = [\mathbf{x}_{l1}, \dots, \mathbf{x}_{lJ_{l}}]$$
 and $\mathbf{w}_{l} = [w_{l1}, \dots, w_{lJ_{l}}]^{\mathsf{T}}$.

RGCCA uses a deflation procedure to extract the following components.

Thus, $\mathbf{X}_{l}^{(r)}$ correspond to the projection of $\mathbf{X}_{l}^{(r-1)}$ onto the space orthogonal to $\mathbf{y}_{l}^{(r)}$:

$$\mathbf{X}_{l}^{(r)} = \left(\mathbf{I}_{J_{l}} - \frac{\mathbf{y}_{l}^{(r)} \mathbf{y}_{l}^{(r)^{\mathsf{T}}}}{\left\|\mathbf{y}_{l}^{(r)}\right\|_{2}^{2}}\right) \mathbf{X}_{l}^{(r-1)}$$

• Furthermore $\mathbf{X}_{l}^{(0)} = \mathbf{X}_{l}$

• The Average Variance Explained (AVE) associated with $y_l^{(r)}$ is:

$$\operatorname{VIP}\left(\mathbf{x}_{lj}\right) = \frac{1}{R} \sum_{r=1}^{R} \left(w_{lj}^{(r)^{2}} \operatorname{AVE}\left(\mathbf{X}_{l}^{(r)}\right) \right)$$

Where:

 \clubsuit *R* is the number of extracted components.

$$\mathbf{X}_{l} = [\mathbf{x}_{l1}, \dots, \mathbf{x}_{lJ_{l}}]$$
 and $\mathbf{w}_{l} = [w_{l1}, \dots, w_{lJ_{l}}]^{\mathsf{T}}$

RGCCA uses a deflation procedure to extract the following components.

Thus, $\mathbf{X}_{l}^{(r)}$ correspond to the projection of $\mathbf{X}_{l}^{(r-1)}$ onto the space orthogonal to $\mathbf{y}_{l}^{(r)}$:

$$\mathbf{X}_{l}^{(r)} = \left(\mathbf{I}_{J_{l}} - \frac{\mathbf{y}_{l}^{(r)} \mathbf{y}_{l}^{(r)^{\mathsf{T}}}}{\left\|\mathbf{y}_{l}^{(r)}\right\|_{2}^{2}}\right) \mathbf{X}_{l}^{(r-1)}$$

• Furthermore $\mathbf{X}_{l}^{(0)} = \mathbf{X}_{l}$

• The Average Variance Explained (AVE) associated with $y_l^{(r)}$ is:

$$AVE\left(\mathbf{X}_{l}^{(r)}\right) = \frac{1}{\left\|\mathbf{X}_{l}^{(r)}\right\|_{F}^{2}} \sum_{j=1}^{J_{l}} \left(\operatorname{var}\left(\mathbf{x}_{lj}^{(r)}\right) \times \operatorname{cor}^{2}\left(\mathbf{x}_{lj}^{(r)}, \mathbf{y}_{l}^{(r+1)}\right)\right)$$

Let us apply both an unsupervised/supervised version of SGCCA on the MDD case study

→ See section 5 & 6 on the Rmarkdown `MDD_case_study_RGCCA`

1. Introduction of the case study

- 2. Unsupervised analysis with one-block: Principal Component Analysis (PCA)
- **3.** Unsupervised analysis with two-blocks: Partial Least Squares (PLS) and Canonical Correlation Analysis (CCA)
- **4. Unsupervised analysis with** *L***-blocks:** Regularized Generalized Canonical Correlation Analysis (RGCCA)
- 5. Supervised analysis with RGCCA
- 6. Variable selection in RGCCA: Sparse Generalized Canonical Correlation Analysis (SGCCA)
- 7. The flexible Optimization Framework of RGCCA
 - The general principal
 - Extension to multi-way analysis
 - From Sequential to Global

In order to maximize the multi-convex function $f(\mathbf{w}_1, ..., \mathbf{w}_L)$, two key ingredients are used:

$$\mathbf{w}^{s} = (\mathbf{w}_{1}^{s}, \mathbf{w}_{2}^{s}, \dots, \mathbf{w}_{L}^{s})$$

$$\mathbf{w}^{s} = (\mathbf{w}_{1}^{s}, \mathbf{w}_{2}^{s}, \dots, \mathbf{w}_{L}^{s})$$

$$\underset{\mathbf{w}_{1},\mathbf{w}_{1}^{\mathsf{T}}\mathsf{M}_{1}\mathbf{w}_{1}=1}{\operatorname{argmax}} f(\mathbf{w}_{1},\mathbf{w}_{2}^{s},\ldots,\mathbf{w}_{L}^{s})$$

$$\mathbf{w}^{s} = (\mathbf{w}_{1}^{s}, \mathbf{w}_{2}^{s}, \dots, \mathbf{w}_{L}^{s})$$

$$\operatorname{argmax}_{\mathbf{w}_{1},\mathbf{w}_{1}^{\mathsf{T}}\mathbf{M}_{1}\mathbf{w}_{1}=1} f(\mathbf{w}_{1},\mathbf{w}_{2}^{s},\ldots,\mathbf{w}_{L}^{s})$$

$$\mathbf{w}^{s} = (\mathbf{w}_{1}^{s}, \mathbf{w}_{2}^{s}, \dots, \mathbf{w}_{L}^{s})$$

$$\underset{\mathbf{w}_{1},\mathbf{w}_{1}^{\mathsf{T}}\mathsf{M}_{1}\mathbf{w}_{1}=1}{\operatorname{argmax}} f(\mathbf{w}_{1},\mathbf{w}_{2}^{s},\ldots,\mathbf{w}_{L}^{s}) \qquad \longrightarrow \qquad \mathbf{w}_{1}^{s+1}$$
$$\underset{\mathbf{w}_{2},\mathbf{w}_{2}^{\mathsf{T}}\mathsf{M}_{2}\mathbf{w}_{2}=1}{\operatorname{argmax}} f(\mathbf{w}_{1}^{s+1},\mathbf{w}_{2},\ldots,\mathbf{w}_{L}^{s})$$

•

$$\mathbf{w}^{s} = (\mathbf{w}_{1}^{s}, \mathbf{w}_{2}^{s}, \dots, \mathbf{w}_{L}^{s})$$

.

$$\mathbf{w}^{s} = (\mathbf{w}_{1}^{s}, \mathbf{w}_{2}^{s}, \dots, \mathbf{w}_{L}^{s}) \qquad \underset{\mathbf{w}_{1}, \mathbf{w}_{1}^{T} \mathbf{M}_{1} \mathbf{w}_{1} = 1}{\operatorname{argmax}} f(\mathbf{w}_{1}, \mathbf{w}_{2}^{s}, \dots, \mathbf{w}_{L}^{s}) \qquad \longleftrightarrow \qquad \mathbf{w}_{1}^{s+1}$$

$$\underset{\mathbf{w}_{2}, \mathbf{w}_{2}^{T} \mathbf{M}_{2} \mathbf{w}_{2} = 1}{\operatorname{argmax}} f(\mathbf{w}_{1}^{s+1}, \mathbf{w}_{2}, \dots, \mathbf{w}_{L}^{s}) \qquad \longleftrightarrow \qquad \mathbf{w}_{2}^{s+1}$$

$$\vdots$$

$$\underset{\mathbf{w}_{L}, \mathbf{w}_{L}^{T} \mathbf{M}_{L} \mathbf{w}_{L} = 1}{\operatorname{argmax}} f(\mathbf{w}_{1}^{s+1}, \dots, \mathbf{w}_{L-1}^{s+1}, \mathbf{w}_{L}, \mathbf{w}_{L}^{s+1}, \dots, \mathbf{w}_{L}^{s}) \qquad \longleftrightarrow \qquad \mathbf{w}_{L}^{s+1}$$

$$\underset{\mathbf{w}_{l},\mathbf{w}_{l}^{\mathsf{T}}\mathsf{M}_{l}\mathbf{w}_{l}=1}{\operatorname{argmax}} f(\mathbf{w}_{1}^{s+1}, \dots, \mathbf{w}_{l-1}^{s+1}, \mathbf{w}_{l}, \mathbf{w}_{l+1}^{s}, \dots, \mathbf{w}_{L}^{s})$$

$$\underset{\mathbf{w}_{l},\mathbf{w}_{l}^{\mathsf{T}}\mathsf{M}_{l}\mathbf{w}_{l}=1}{\operatorname{argmax}} f(\mathbf{w}_{1}^{s+1}, \dots, \mathbf{w}_{l-1}^{s+1}, \mathbf{w}_{l}, \mathbf{w}_{l+1}^{s}, \dots, \mathbf{w}_{L}^{s})$$

$$\underset{\mathbf{w}_{l},\mathbf{w}_{l}^{\mathsf{T}}\mathsf{M}_{l}\mathbf{w}_{l}=1}{\operatorname{argmax}} f(\mathbf{w}_{1}^{s+1}, \dots, \mathbf{w}_{l-1}^{s+1}, \mathbf{w}_{l}, \mathbf{w}_{l+1}^{s}, \dots, \mathbf{w}_{L}^{s})$$

Let us introduce:
$$\mathbf{w}^{s,l \to L} = (\mathbf{w}_1^{s+1}, ..., \mathbf{w}_{l-1}^{s+1}, \mathbf{w}_l^s, \mathbf{w}_{l+1}^s, ..., \mathbf{w}_L^s)$$

$$\underset{\mathbf{w}_{l},\mathbf{w}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{w}_{l}=1}{\operatorname{argmax}} f(\mathbf{w}_{1}^{s+1}, \dots, \mathbf{w}_{l-1}^{s+1}, \mathbf{w}_{l}, \mathbf{w}_{l+1}^{s}, \dots, \mathbf{w}_{L}^{s})$$

Let us introduce:
$$\mathbf{w}^{s,l \to L} = (\mathbf{w}_1^{s+1}, ..., \mathbf{w}_{l-1}^{s+1}, \mathbf{w}_l^s, \mathbf{w}_{l+1}^s, ..., \mathbf{w}_L^s)$$

$$\underset{\mathbf{w}_{l},\mathbf{w}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{w}_{l}=1}{\operatorname{argmax}} f(\mathbf{w}_{1}^{s+1}, \dots, \mathbf{w}_{l-1}^{s+1}, \mathbf{w}_{l}, \mathbf{w}_{l+1}^{s}, \dots, \mathbf{w}_{L}^{s})$$

Let us introduce:
$$\mathbf{w}^{s,l \to L} = (\mathbf{w}_1^{s+1}, ..., \mathbf{w}_{l-1}^{s+1}, \mathbf{w}_l^s, \mathbf{w}_{l+1}^s, ..., \mathbf{w}_L^s)$$

 $\mathbf{w}_{l}^{s+1} = \underset{\mathbf{w}_{l}, \mathbf{w}_{l}^{\top} \mathbf{M}_{l} \mathbf{w}_{l}=1}{\operatorname{argmax}} \nabla_{l} f\left(\mathbf{w}^{s, l \to L}\right)^{\top} \mathbf{w}_{l}$

$$\underset{\mathbf{w}_{l},\mathbf{w}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{w}_{l}=1}{\operatorname{argmax}} f(\mathbf{w}_{1}^{s+1}, \dots, \mathbf{w}_{l-1}^{s+1}, \mathbf{w}_{l}, \mathbf{w}_{l+1}^{s}, \dots, \mathbf{w}_{L}^{s})$$

Let us introduce:
$$\mathbf{w}^{s,l \to L} = (\mathbf{w}_1^{s+1}, ..., \mathbf{w}_{l-1}^{s+1}, \mathbf{w}_l^s, \mathbf{w}_{l+1}^s, ..., \mathbf{w}_L^s)$$

 $\mathbf{w}_{l}^{s+1} = \underset{\mathbf{w}_{l}, \mathbf{w}_{l}^{\top} \mathbf{M}_{l} \mathbf{w}_{l}=1}{\operatorname{argmax}} \nabla_{l} f\left(\mathbf{w}^{s, l \to L}\right)^{\top} \mathbf{w}_{l}$

$$\underset{\mathbf{w}_{l},\mathbf{w}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{w}_{l}=1}{\operatorname{argmax}} f(\mathbf{w}_{1}^{s+1}, \dots, \mathbf{w}_{l-1}^{s+1}, \mathbf{w}_{l}, \mathbf{w}_{l+1}^{s}, \dots, \mathbf{w}_{L}^{s})$$

Let us introduce:
$$\mathbf{w}^{s,l \to L} = (\mathbf{w}_1^{s+1}, ..., \mathbf{w}_{l-1}^{s+1}, \mathbf{w}_l^s, \mathbf{w}_{l+1}^s, ..., \mathbf{w}_L^s)$$

$$\mathbf{w}_{l}^{s+1} = \operatorname*{argmax}_{\mathbf{w}_{l},\mathbf{w}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{w}_{l}=1} \nabla_{l} f(\mathbf{w}^{s,l\to L})^{\mathsf{T}} \mathbf{w}_{l}$$

$$f(\mathbf{w}^{\mathbf{s},\mathbf{l}\to\mathbf{L}}) = f(\mathbf{w}^{\mathbf{s},\mathbf{l}\to\mathbf{L}}) + \nabla_l f(\mathbf{w}^{\mathbf{s},\mathbf{l}\to\mathbf{L}})^{\mathsf{T}}(\mathbf{w}_l^{\mathbf{s}} - \mathbf{w}_l^{\mathbf{s}})$$

$$argmax_{w_{l},w_{l}^{T}M_{l}w_{l}=1} f(\mathbf{w}_{1}^{s+1},...,\mathbf{w}_{l-1}^{s+1},\mathbf{w}_{l},\mathbf{w}_{l}^{s},...,\mathbf{w}_{l}^{s})$$
Let us introduce: $\mathbf{w}^{s,l\to L} = (\mathbf{w}_{1}^{s+1},...,\mathbf{w}_{l-1}^{s+1},\mathbf{w}_{l}^{s},\mathbf{w}_{l+1}^{s},...,\mathbf{w}_{L}^{s})$

$$\mathbf{w}_{l}^{s+1} = \arg_{w_{l},w_{l}^{T}M_{l}w_{l}=1} \nabla_{l}f(\mathbf{w}^{s,l\to L})^{T}\mathbf{w}_{l}$$

$$f(\mathbf{w}^{s,l\to L}) = f(\mathbf{w}^{s,l\to L}) + \nabla_{l}f(\mathbf{w}^{s,l\to L})^{T}(\mathbf{w}_{l}^{s} - \mathbf{w}_{l}^{s})$$

$$\mathbf{w}_{l}^{s+1} = w_{l}^{s} f(\mathbf{w}^{s,l\to L}) + \nabla_{l}f(\mathbf{w}^{s,l\to L})^{T}(\mathbf{w}_{l}^{s} - \mathbf{w}_{l}^{s})$$

$$\begin{aligned} \underset{w_{l},w_{l}^{T}M_{l}w_{l}=1}{\operatorname{argmax}} f(\mathbf{w}_{1}^{s+1},\ldots,\mathbf{w}_{l-1}^{s+1},\mathbf{w}_{l},\mathbf{w}_{l}^{s},\ldots,\mathbf{w}_{L}^{s}) \\ \text{Let us introduce: } \mathbf{w}^{s,l \to L} = (\mathbf{w}_{1}^{s+1},\ldots,\mathbf{w}_{l-1}^{s+1},\mathbf{w}_{l}^{s},\mathbf{w}_{l+1}^{s},\ldots,\mathbf{w}_{L}^{s}) \\ \hline \mathbf{w}_{l}^{s+1} = \underset{w_{l},w_{l}^{T}M_{l}w_{l}=1}{\operatorname{argmax}} \nabla_{l}f(\mathbf{w}^{s,l \to L})^{T}\mathbf{w}_{l} \\ f(\mathbf{w}^{s,l \to L}) = f(\mathbf{w}^{s,l \to L}) + \nabla_{l}f(\mathbf{w}^{s,l \to L})^{T}(\mathbf{w}_{l}^{s} - \mathbf{w}_{l}^{s}) \\ \leq f(\mathbf{w}^{s,l \to L}) + \nabla_{l}f(\mathbf{w}^{s,l \to L})^{T}(\mathbf{w}_{l}^{s+1} - \mathbf{w}_{l}^{s}) \\ \hline \mathbf{w}_{l}^{s+1} \mathbf{w}_{l}^{s} f(\mathbf{w}^{s,l \to L}) + \nabla_{l}f(\mathbf{w}^{s,l \to L})^{T}(\mathbf{w}_{l}^{s+1} - \mathbf{w}_{l}^{s}) \end{aligned}$$

$$\begin{aligned} \underset{w_{l},w_{l}^{\top}M_{l}w_{l}=1}{\operatorname{argmax}} f(w_{1}^{s+1},...,w_{l-1}^{s+1},w_{l},w_{l+1}^{s},...,w_{L}^{s}) \\ \text{Let us introduce: } w^{s,l \to L} = (w_{1}^{s+1},...,w_{l-1}^{s+1},w_{l}^{s},w_{l+1}^{s},...,w_{L}^{s}) \\ f(w_{1}^{s+1} = \underset{w_{l},w_{l}^{\top}M_{l}w_{l}=1}{\operatorname{argmax}} \nabla_{l}f(w^{s,l \to L})^{\top}w_{l} \\ f(w^{s,l \to L}) = f(w^{s,l \to L}) + \nabla_{l}f(w^{s,l \to L})^{\top}(w_{l}^{s} - w_{l}^{s}) \\ \leq f(w^{s,l \to L}) + \nabla_{l}f(w^{s,l \to L})^{\top}(w_{l}^{s+1} - w_{l}^{s}) \\ \hline w_{l}^{s+1} w_{l}^{s} f(w^{s,l \to L}) + \nabla_{l}f(w^{s,l \to L})^{\top}(w_{l} - w_{l}^{s}) \end{aligned}$$

$$\begin{aligned} \underset{w_{l}w_{l}^{l}M_{l}w_{l}=1}{\operatorname{argmax}} f(\mathbf{w}_{1}^{s+1}, \dots, \mathbf{w}_{l-1}^{s+1}, \mathbf{w}_{l}, \mathbf{w}_{l+1}^{s}, \dots, \mathbf{w}_{L}^{s}) \\ \text{Let us introduce: } \mathbf{w}^{s,l \rightarrow L} = \left(\mathbf{w}_{1}^{s+1}, \dots, \mathbf{w}_{l-1}^{s+1}, \mathbf{w}_{l}^{s}, \mathbf{w}_{l+1}^{s}, \dots, \mathbf{w}_{L}^{s}\right) \\ \mathbf{w}_{l}^{s+1} = \underset{w_{l},w_{l}^{\top}M_{l}w_{l}=1}{\operatorname{argmax}} \nabla_{l}f\left(\mathbf{w}^{s,l \rightarrow L}\right)^{\top}\mathbf{w}_{l} \\ f\left(\mathbf{w}^{s,l \rightarrow L}\right) = f\left(\mathbf{w}^{s,l \rightarrow L}\right) + \nabla_{l}f\left(\mathbf{w}^{s,l \rightarrow L}\right)^{\top}\left(\mathbf{w}_{l}^{s} - \mathbf{w}_{l}^{s}\right) \\ \leq f\left(\mathbf{w}^{s,l \rightarrow L}\right) + \nabla_{l}f\left(\mathbf{w}^{s,l \rightarrow L}\right)^{\top}\left(\mathbf{w}_{l}^{s+1} - \mathbf{w}_{l}^{s}\right) \\ \leq f\left(\mathbf{w}_{1}^{s+1}, \dots, \mathbf{w}_{l-1}^{s+1}, \mathbf{w}_{l}^{s+1}, \mathbf{w}_{l}^{s+1}, \mathbf{w}_{l}^{s}\right) \\ \text{Comes from the multi-convexity of f and so the convexity of} \\ f\left(\mathbf{w}_{1}^{s+1}, \dots, \mathbf{w}_{l-1}^{s+1}, \mathbf{w}_{l}, \mathbf{w}_{l+1}^{s}, \dots, \mathbf{w}_{L}^{s}\right) \\ \end{array}$$

Monotone convergence of the algorithm:

$$f(\mathbf{w}_1^s, \dots, \mathbf{w}_L^s) \le f(\mathbf{w}_1^{s+1}, \dots, \mathbf{w}_L^{s+1})$$

✤ Monotone convergence of the algorithm: $f(\mathbf{w}_1^s, \dots, \mathbf{w}_L^s) \leq f(\mathbf{w}_1^{s+1}, \dots, \mathbf{w}_L^{s+1})$

In addition, assuming uniqueness of the solution of the MM step, the following properties hold:

✤ Monotone convergence of the algorithm: $f(\mathbf{w}_1^s, \dots, \mathbf{w}_L^s) \leq f(\mathbf{w}_1^{s+1}, \dots, \mathbf{w}_L^{s+1})$

In addition, assuming uniqueness of the solution of the MM step, the following properties hold:

• The sequence $\{\mathbf{w}^s\}$ is asymptotically regular:

 $\lim_{s \to +\infty} \|\mathbf{w}^{s+1} - \mathbf{w}^s\|_2 = 0$

♦ Monotone convergence of the algorithm: $f(\mathbf{w}_1^s, ..., \mathbf{w}_L^s) \le f(\mathbf{w}_1^{s+1}, ..., \mathbf{w}_L^{s+1})$

In addition, assuming uniqueness of the solution of the MM step, the following properties hold:

• The sequence $\{\mathbf{w}^s\}$ is asymptotically regular:

 $\lim_{s \to +\infty} \|\mathbf{w}^{s+1} - \mathbf{w}^s\|_2 = 0$

✤ At convergence, a stationnary point is obtained.

RGCCA framework - State of the Art of the **package**

	Core Optimization Problem		
Constraints			
			Cor
			nstra
			lints

	Core Optimization Problem		
	$\max \nabla_l f(\mathbf{w^s})^\top \mathbf{w}_l$		
nstraints			
			Co
			nstrai
Col			nts

		Core Optimization Problem		
		$\max \nabla_l f(\mathbf{w^s})^\top \mathbf{w}_l$		
	$\mathbf{w}_l \in \omega_l$			
onstraints				
				Co
				nstraint
Ŭ				ts

$$\omega_l = \left\{ \mathbf{w}_l \in \mathbb{R}^{J_l}; \ \mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1 \right\}$$

		Core Optimization Problem		
		$\max \nabla_l f(\mathbf{w^s})^\top \mathbf{w}_l$		
Constraints	$\mathbf{w}_l \in \omega_l$	RGCCA ^{1,2}		
				Cor
				nstra
				aints
				-

$$\omega_l = \left\{ \mathbf{w}_l \in \mathbb{R}^{J_l}; \ \mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1 \right\}$$

1. (Tenenhaus and Tenenhaus, 2011) 2. (Tenenhaus, Tenenhaus and Groenen, 2017)

		Core Optimization Problem		
		$\max \nabla_l f(\mathbf{w^s})^\top \mathbf{w}_l$		
Constraints	$\mathbf{w}_l \in \omega_l$	RGCCA ^{1,2}		
	$\begin{cases} \ \mathbf{w}_l\ _2^2 = 1\\ \ \mathbf{w}_l\ _1 \le s_l \end{cases}$			Cor
				nstraints

$$\omega_l = \left\{ \mathbf{w}_l \in \mathbb{R}^{J_l}; \ \mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1 \right\}$$

1. (Tenenhaus and Tenenhaus, 2011) 2. (Tenenhaus, Tenenhaus and Groenen, 2017)

		Core Optimization Problem		
		$\max \nabla_l f(\mathbf{w^s})^\top \mathbf{w}_l$		
Constraints	$\mathbf{w}_l \in \omega_l$	RGCCA ^{1,2}		
	$\begin{cases} \ \mathbf{w}_l\ _2^2 = 1\\ \ \mathbf{w}_l\ _1 \le s_l \end{cases}$	SGCCA ³		Cor
				nstraints

$$\omega_l = \left\{ \mathbf{w}_l \in \mathbb{R}^{J_l}; \ \mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1 \right\}$$

1. (Tenenhaus and Tenenhaus, 2011) 2. (Tenenhaus, Tenenhaus and Groenen, 2017) 3. (Tenenhaus et al., 2014)

1. Introduction of the case study

- 2. Unsupervised analysis with one-block: Principal Component Analysis (PCA)
- **3.** Unsupervised analysis with two-blocks: Partial Least Squares (PLS) and Canonical Correlation Analysis (CCA)
- **4. Unsupervised analysis with** *L***-blocks:** Regularized Generalized Canonical Correlation Analysis (RGCCA)
- 5. Supervised analysis with RGCCA
- 6. Variable selection in RGCCA: Sparse Generalized Canonical Correlation Analysis (SGCCA)
- 7. The flexible Optimization Framework of RGCCA
 - The general principal
 - Extension to multi-way analysis
 - From Sequential to Global

From RGCCA to Multiway GCCA

From RGCCA to Multiway GCCA

From RGCCA to Multiway GCCA

From RGCCA to Multiway GCCA

$$\mathbf{y} = \sum_{j=1}^{J} \sum_{k=1}^{K} w_k^K w_j^J \mathbf{x}_{.jk}$$
$$\mathbf{\downarrow}$$
$$\mathbf{y} = \mathbf{X} (\mathbf{w}^K \otimes \mathbf{w}^J)$$

Interest in taking into account 3-way structure with the Kronecker product:
Gain in interpretability thanks to vector weights specific to each dimension.

- ✤ Gain in interpretability thanks to vector weights specific to each dimension.
- ♦ Less weights to estimate: from $J \times K$ to J + K.

- ✤ Gain in interpretability thanks to vector weights specific to each dimension.
- ♦ Less weights to estimate: from $J \times K$ to J + K.

- ✤ Gain in interpretability thanks to vector weights specific to each dimension.
- ♦ Less weights to estimate: from $J \times K$ to J + K.

$$I \xrightarrow{K_{L}} J_{1} \xrightarrow{Y_{1}} V_{1} \xrightarrow{C_{1L}} V_{L} \xrightarrow{K_{L}} J_{L} \xrightarrow{W_{1},...,W_{L}} \sum_{k,l=1}^{L} c_{kl} g(\operatorname{Cov}(\mathbf{X}_{k}\mathbf{w}_{k},\mathbf{X}_{l}\mathbf{w}_{l}))$$

$$K_{l} \xrightarrow{U_{1}} V_{l} \xrightarrow{U_{1}} V_{l} \xrightarrow{U_{1}} V_{l} \xrightarrow{V_{L}} X_{L} \xrightarrow{W_{1},...,W_{L}} \sum_{k,l=1}^{L} c_{kl} g(\operatorname{Cov}(\mathbf{X}_{k}\mathbf{w}_{k},\mathbf{X}_{l}\mathbf{w}_{l}))$$

$$K_{l} \xrightarrow{V_{1}} \xrightarrow{V_{1}} V_{l} \xrightarrow{V_{1}} \xrightarrow{V_{1}} X_{L} \xrightarrow{V_{1}} X_{L} \xrightarrow{W_{1},...,W_{L}} \sum_{k,l=1}^{L} c_{kl} g(\operatorname{Cov}(\mathbf{X}_{k}\mathbf{w}_{k},\mathbf{X}_{l}\mathbf{w}_{l}))$$

$$K_{l} \xrightarrow{V_{1}} \xrightarrow{V_{1}} \xrightarrow{V_{1}} \xrightarrow{V_{1}} X_{L} \xrightarrow{V_{1}} \xrightarrow{V_{1}} X_{L} \xrightarrow{V_{1}} \xrightarrow{V_{1}} X_{L} \xrightarrow{V_{1}} \xrightarrow{V_$$

•

Example of such data: Electro-EncephaloGrams.

Example of such data: Electro-EncephaloGrams. Idea of the Algorithm:

$$\mathbf{X}_{l}$$

$$\mathbf{X}_{1}$$

$$\mathbf{Y}_{1}$$

$$\mathbf{Y}_{1}$$

$$\mathbf{Y}_{1}$$

$$\mathbf{Y}_{l}$$

Example of such data: Electro-EncephaloGrams. Idea of the Algorithm:

1. Block Coordinate Ascent (BCA).

$$\mathbf{\underline{X}}_{l}$$

Example of such data: Electro-EncephaloGrams. Idea of the Algorithm:

- 1. Block Coordinate Ascent (BCA).
- 2. MM principle: each update is a SVD of a specic matrix of size $K_l \times J_l$.

$$\mathbf{\underline{X}}_{l}$$

Example of such data: Electro-EncephaloGrams. Idea of the Algorithm:

1. Block Coordinate Ascent (BCA).

eli

FRANCE

2. MM principle: each update is a SVD of a specic matrix of size $K_l \times J_l$.

Global convergence of this algorithm was shown.

$$\mathbf{\underline{X}}_{l}$$

Example of such data: Electro-EncephaloGrams. Idea of the Algorithm:

1. Block Coordinate Ascent (BCA).

eli

FRANCI

2. MM principle: each update is a SVD of a specic matrix of size $K_l \times J_l$.

Global convergence of this algorithm was shown.

	Core Optimization Problem			
		$\max \nabla_l f(\mathbf{w^s})^\top \mathbf{w}_l$		
Constraints	$\mathbf{w}_l \in \omega_l$	RGCCA ^{1,2}		
	$\begin{cases} \ \mathbf{w}_l\ _2^2 = 1\\ \ \mathbf{w}_l\ _1 \le s_l \end{cases}$	SGCCA ³		Cor
				nstraints

 $\omega_l = \left\{ \mathbf{w}_l \in \mathbb{R}^{J_l}; \; \mathbf{w}_l^\top \mathbf{M}_l \mathbf{w}_l = 1 \right\}$

1. (Tenenhaus and Tenenhaus, 2011) 2. (Tenenhaus, Tenenhaus and Groenen, 2017) 3. (Tenenhaus et al., 2014)

		Core Optimization Problem		
		$\max \nabla_l f(\mathbf{w}^s)^\top \mathbf{w}_l$		
Constraints	$\mathbf{w}_l \in \omega_l$	RGCCA ^{1,2}		
	$\begin{cases} \ \mathbf{w}_l\ _2^2 = 1\\ \ \mathbf{w}_l\ _1 \le s_l \end{cases}$	SGCCA ³		Cor
	$\begin{cases} \mathbf{w}_l = \mathbf{w}_l^K \otimes \mathbf{w}_l^J \\ \mathbf{w}_l \in \omega_l \end{cases}$			nstraints

 $\omega_l = \left\{ \mathbf{w}_l \in \mathbb{R}^{J_l}; \; \mathbf{w}_l^\top \mathbf{M}_l \mathbf{w}_l = 1 \right\}$

1. (Tenenhaus and Tenenhaus, 2011) 2. (Tenenhaus, Tenenhaus and Groenen, 2017) 3. (Tenenhaus et al., 2014)

		Core Optimization	Problem	
		$\max \nabla_l f(\mathbf{w^s})^\top \mathbf{w}_l$		
	$\mathbf{w}_l \in \omega_l$	RGCCA ^{1,2}		
Constraints	$\begin{cases} \ \mathbf{w}_l\ _2^2 = 1\\ \ \mathbf{w}_l\ _1 \le s_l \end{cases}$	SGCCA ³		Co
	$\begin{cases} \mathbf{w}_l = \mathbf{w}_l^K \otimes \mathbf{w}_l^J \\ \mathbf{w}_l \in \omega_l \end{cases}$	MGCCA ⁴ /TGCCA ⁵		nstraints

$$\omega_l = \left\{ \mathbf{w}_l \in \mathbb{R}^{J_l}; \ \mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1 \right\}$$

1. Introduction of the case study

- 2. Unsupervised analysis with one-block: Principal Component Analysis (PCA)
- **3.** Unsupervised analysis with two-blocks: Partial Least Squares (PLS) and Canonical Correlation Analysis (CCA)
- **4. Unsupervised analysis with** *L***-blocks:** Regularized Generalized Canonical Correlation Analysis (RGCCA)
- 5. Supervised analysis with RGCCA
- 6. Variable selection in RGCCA: Sparse Generalized Canonical Correlation Analysis (SGCCA)
- 7. The flexible Optimization Framework of RGCCA
 - The general principal
 - Extension to multi-way analysis
 - From Sequential to Global

$$\operatorname{argmax}_{\mathbf{w}_{1},\ldots,\mathbf{w}_{L}} \sum_{k,l=1}^{L} c_{kl} \qquad g\left(\operatorname{Cov}\left(\mathbf{X}_{k}\mathbf{w}_{k}, \mathbf{X}_{l}\mathbf{w}_{l}\right)\right)$$

s.t.
$$\left\{\mathbf{w}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{w}_{l} = 1$$
, l = 1, ..., L.

Where:

♦ $\mathbf{w}_l \in \mathbb{R}^{J_l}$ is a block-weight vector.

$$\operatorname{argmax}_{\mathbf{w}_{1}^{(1)},\ldots,\mathbf{w}_{L}^{(1)}} \sum_{k,l=1}^{L} c_{kl} \qquad g\left(\operatorname{Cov}\left(\mathbf{X}_{k}\mathbf{w}_{k}^{(1)},\mathbf{X}_{l}\mathbf{w}_{l}^{(1)}\right)\right)$$
$$\operatorname{s.t.}\left\{\mathbf{w}_{l}^{(1)^{\mathsf{T}}}\mathbf{M}_{l}\mathbf{w}_{l}^{(1)}=1 \qquad , l=1,\ldots,L.\right\}$$

Where: • $\mathbf{w}_{l}^{(1)} \in \mathbb{R}^{J_{l}}$ is a the first block-weight vector.

$$\operatorname{argmax}_{\mathbf{w}_{1}^{(2)},...,\mathbf{w}_{L}^{(2)}} \sum_{k,l=1}^{L} c_{kl} \qquad g\left(\operatorname{Cov}\left(\mathbf{X}_{k}\mathbf{w}_{k}^{(2)},\mathbf{X}_{l}\mathbf{w}_{l}^{(2)}\right)\right)$$

s.t.
$$\begin{cases} \mathbf{w}_{l}^{(2)^{\mathsf{T}}}\mathbf{M}_{l}\mathbf{w}_{l}^{(2)} = 1 \\ \mathbf{y}_{l}^{(1)^{\mathsf{T}}}\mathbf{X}_{l}\mathbf{w}_{l}^{(2)} = 0 \end{cases}, l = 1, ..., L.$$

Where:

★ w_l⁽¹⁾ ∈ ℝ^{J_l} is a the first block-weight vector.
 ★ w_l⁽²⁾ ∈ ℝ^{J_l} is a the second block-weight vector.

$$\operatorname{argmax}_{\mathbf{w}_{1}^{(2)},...,\mathbf{w}_{L}^{(2)}} \sum_{k,l=1}^{L} c_{kl} \qquad g\left(\operatorname{Cov}\left(\mathbf{X}_{k}\mathbf{w}_{k}^{(2)},\mathbf{X}_{l}\mathbf{w}_{l}^{(2)}\right)\right)$$

s.t.
$$\begin{cases} \mathbf{w}_{l}^{(2)^{\mathsf{T}}}\mathbf{M}_{l}\mathbf{w}_{l}^{(2)} = 1 \\ \mathbf{y}_{l}^{(1)^{\mathsf{T}}}\mathbf{X}_{l}\mathbf{w}_{l}^{(2)} = 0 \end{cases}, l = 1, ..., L.$$

Where: $\mathbf{v}_{l}^{(1)} \in \mathbb{R}^{J_{l}}$ is a the first block-weight vector. $\mathbf{v}_{l}^{(2)} \in \mathbb{R}^{J_{l}}$ is a the second block-weight vector. \mathbf{v}_{l} ...

$$\underset{\mathbf{w}_{1}^{(1)},\ldots,\mathbf{w}_{L}^{(1)}}{\operatorname{argmax}} \sum_{k,l=1}^{L} c_{kl} \qquad g\left(\operatorname{Cov}\left(\mathbf{X}_{k}\mathbf{w}_{k}^{(1)},\mathbf{X}_{l}\mathbf{w}_{l}^{(1)}\right)\right)$$

Where: $\mathbf{w}_{l}^{(1)} \in \mathbb{R}^{J_{l}}$ is a the first block-weight vector.

$$\underset{\mathbf{w}_{1}^{(r)},\ldots,\mathbf{w}_{L}^{(r)}}{\operatorname{argmax}} \sum_{k,l=1}^{L} c_{kl} \sum_{r=1}^{R} g\left(\operatorname{Cov}\left(\mathbf{X}_{k} \mathbf{w}_{k}^{(r)}, \mathbf{X}_{l} \mathbf{w}_{l}^{(r)}\right)\right)$$

Where: $\mathbf{w}_{l}^{(\mathbf{r})} \in \mathbb{R}^{J_{l}}$ is a the r^{th} block-weight vector.

$$\operatorname{argmax}_{\mathbf{W}_{1},...,\mathbf{W}_{L}} \sum_{k,l=1}^{L} c_{kl} \operatorname{Trace} \left(g \left(\operatorname{Cov}(\mathbf{X}_{k} \mathbf{W}_{k}, \mathbf{X}_{l} \mathbf{W}_{l}) \right) \right)$$

Where: • $\mathbf{w}_{l}^{(r)} \in \mathbb{R}^{J_{l}}$ is a the r^{th} block-weight vector. • $\mathbf{W}_{l} = \left[\mathbf{w}_{l}^{(1)}, ..., \mathbf{w}_{l}^{(R)}\right] \in \mathbb{R}^{J_{l} \times R}$ is a block-weight matrix.

$$\underset{\mathbf{W}_{1},...,\mathbf{W}_{L}}{\operatorname{argmax}} \sum_{k,l=1}^{L} c_{kl} \operatorname{Trace} \left(g \left(\operatorname{Cov}(\mathbf{X}_{k} \mathbf{W}_{k}, \mathbf{X}_{l} \mathbf{W}_{l}) \right) \right)$$

s.t.
$$\mathbf{W}_l^{\top} \mathbf{M}_l \mathbf{W}_l = \mathbf{I}_R$$
, $l = 1, ..., L$.

Where: • $\mathbf{w}_{l}^{(r)} \in \mathbb{R}^{J_{l}}$ is a the r^{th} block-weight vector. • $\mathbf{W}_{l} = \left[\mathbf{w}_{l}^{(1)}, \dots, \mathbf{w}_{l}^{(R)}\right] \in \mathbb{R}^{J_{l} \times R}$ is a block-weight matrix.

$$\operatorname{argmax}_{W_1,\ldots,W_L} \sum_{k,l=1}^{L} c_{kl} \operatorname{Trace} \left(g \left(\operatorname{Cov}(\mathbf{X}_k \mathbf{W}_k, \mathbf{X}_l \mathbf{W}_l) \right) \right) \quad f(\mathbf{W}_1, \ldots, \mathbf{W}_L)$$

s.t. $\mathbf{W}_l^{\top} \mathbf{M}_l \mathbf{W}_l = \mathbf{I}_R$, l = 1, ..., L.

Where: • $\mathbf{w}_{l}^{(r)} \in \mathbb{R}^{J_{l}}$ is a the r^{th} block-weight vector. • $\mathbf{W}_{l} = \left[\mathbf{w}_{l}^{(1)}, \dots, \mathbf{w}_{l}^{(R)}\right] \in \mathbb{R}^{J_{l} \times R}$ is a block-weight matrix.

Where: • $\mathbf{w}_{l}^{(r)} \in \mathbb{R}^{J_{l}}$ is a the r^{th} block-weight vector. • $\mathbf{W}_{l} = \left[\mathbf{w}_{l}^{(1)}, ..., \mathbf{w}_{l}^{(R)}\right] \in \mathbb{R}^{J_{l} \times R}$ is a block-weight matrix.

 $\underset{\mathbf{W}_{l},\mathbf{W}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{W}_{l}=\mathbf{I}_{R}}{\operatorname{argmax}}\operatorname{Trace}(\mathbf{\nabla}_{l}f(\mathbf{W}^{s})^{\mathsf{T}}\mathbf{W}_{l})$

 $\underset{\mathbf{W}_{l},\mathbf{W}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{W}_{l}=\mathbf{I}_{R}}{\operatorname{argmax}}\operatorname{Trace}(\mathbf{\nabla}_{l}f(\mathbf{W}^{s})^{\mathsf{T}}\mathbf{W}_{l})$

Where:

• $\nabla_l f$ is the partial derivate of f with respect to \mathbf{W}_l .

 $\underset{\mathbf{W}_{l},\mathbf{W}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{W}_{l}=\mathbf{I}_{R}}{\operatorname{argmax}}\operatorname{Trace}(\mathbf{\nabla}_{l}f(\mathbf{W}^{s})^{\mathsf{T}}\mathbf{W}_{l})$

Where:

• $\nabla_l f$ is the partial derivate of f with respect to \mathbf{W}_l .

 $\mathbf{\bullet} \mathbf{W}_{l} = \left[\mathbf{w}_{l}^{(1)}, \dots, \mathbf{w}_{l}^{(R)}\right] \in \mathbb{R}^{J_{l} \times R}.$

 $\underset{\mathbf{W}_{l},\mathbf{W}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{W}_{l}=\mathbf{I}_{R}}{\operatorname{argmax}}\operatorname{Trace}(\mathbf{\nabla}_{l}f(\mathbf{W}^{s})^{\mathsf{T}}\mathbf{W}_{l})$

Where:

• $\nabla_l f$ is the partial derivate of f with respect to \mathbf{W}_l .

 $\mathbf{\bullet} \mathbf{W}_{l} = \left[\mathbf{w}_{l}^{(1)}, \dots, \mathbf{w}_{l}^{(R)}\right] \in \mathbb{R}^{J_{l} \times R}.$

 \clubsuit *R* the number of components to extract.

 $\underset{\mathbf{W}_{l},\mathbf{W}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{W}_{l}=\mathbf{I}_{R} }{\operatorname{argmax}} \operatorname{Trace}(\mathbf{\nabla}_{l}f(\mathbf{W}^{s})^{\mathsf{T}}\mathbf{W}_{l})$

Where:

• $\nabla_l f$ is the partial derivate of f with respect to \mathbf{W}_l .

 $\mathbf{\bullet} \mathbf{W}_{l} = \left[\mathbf{w}_{l}^{(1)}, \dots, \mathbf{w}_{l}^{(R)}\right] \in \mathbb{R}^{J_{l} \times R}.$

 \clubsuit *R* the number of components to extract.

<u>Closed form solution</u>: the rank-R Singular Value Decomposition (SVD) of a specic matrix of dimension $J_l \times R$.

 $\underset{\mathbf{W}_{l},\mathbf{W}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{W}_{l}=\mathbf{I}_{R} }{\operatorname{argmax}} \operatorname{Trace}(\mathbf{\nabla}_{l}f(\mathbf{W}^{s})^{\mathsf{T}}\mathbf{W}_{l})$

Where:

• $\nabla_l f$ is the partial derivate of f with respect to \mathbf{W}_l .

 $\mathbf{\bullet} \ \mathbf{W}_{l} = \left[\mathbf{w}_{l}^{(1)}, \dots, \mathbf{w}_{l}^{(R)}\right] \in \mathbb{R}^{J_{l} \times R}.$

 \clubsuit *R* the number of components to extract.

<u>Closed form solution</u>: the rank-R Singular Value Decomposition (SVD) of a specic matrix of dimension $J_l \times R$.

Pros:

 $\underset{\mathbf{W}_{l},\mathbf{W}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{W}_{l}=\mathbf{I}_{R}}{\operatorname{argmax}}\operatorname{Trace}(\mathbf{\nabla}_{l}f(\mathbf{W}^{s})^{\mathsf{T}}\mathbf{W}_{l})$

Where:

• $\nabla_l f$ is the partial derivate of f with respect to \mathbf{W}_l .

 $\mathbf{\bullet} \ \mathbf{W}_{l} = \left[\mathbf{w}_{l}^{(1)}, \dots, \mathbf{w}_{l}^{(R)}\right] \in \mathbb{R}^{J_{l} \times R}.$

 \clubsuit *R* the number of components to extract.

<u>Closed form solution</u>: the rank-R Singular Value Decomposition (SVD) of a specic matrix of dimension $J_l \times R$.

Pros:

✤ A single optimization problem allows to extract all components simultaneously.

 $\underset{\mathbf{W}_{l},\mathbf{W}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{W}_{l}=\mathbf{I}_{R}}{\operatorname{argmax}}\operatorname{Trace}(\mathbf{\nabla}_{l}f(\mathbf{W}^{s})^{\mathsf{T}}\mathbf{W}_{l})$

Where:

• $\nabla_l f$ is the partial derivate of f with respect to \mathbf{W}_l .

 $\mathbf{\bullet} \ \mathbf{W}_{l} = \left[\mathbf{w}_{l}^{(1)}, \dots, \mathbf{w}_{l}^{(R)}\right] \in \mathbb{R}^{J_{l} \times R}.$

 \clubsuit *R* the number of components to extract.

<u>Closed form solution</u>: the rank-R Singular Value Decomposition (SVD) of a specic matrix of dimension $J_l \times R$.

<u>Pros</u>:

- ✤ A single optimization problem allows to extract all components simultaneously.
- ✤ The obtain algorithm is rather simple (simple update) and is globally convergent.

 $\underset{\mathbf{W}_{l},\mathbf{W}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{W}_{l}=\mathbf{I}_{R} }{\operatorname{argmax}} \operatorname{Trace}(\mathbf{\nabla}_{l}f(\mathbf{W}^{s})^{\mathsf{T}}\mathbf{W}_{l})$

Where:

• $\nabla_l f$ is the partial derivate of f with respect to \mathbf{W}_l .

 $\mathbf{\bullet} \ \mathbf{W}_{l} = \left[\mathbf{w}_{l}^{(1)}, \dots, \mathbf{w}_{l}^{(R)}\right] \in \mathbb{R}^{J_{l} \times R}.$

 \clubsuit *R* the number of components to extract.

<u>Closed form solution</u>: the rank-R Singular Value Decomposition (SVD) of a specic matrix of dimension $J_l \times R$.

<u>Pros</u>:

- ✤ A single optimization problem allows to extract all components simultaneously.
- The obtain algorithm is rather simple (simple update) and is globally convergent.
- It is possible now to add constraints across components.

 $\underset{\mathbf{W}_{l},\mathbf{W}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{W}_{l}=\mathbf{I}_{R}}{\operatorname{argmax}}\operatorname{Trace}(\mathbf{\nabla}_{l}f(\mathbf{W}^{s})^{\mathsf{T}}\mathbf{W}_{l})$

Where:

• $\nabla_l f$ is the partial derivate of f with respect to \mathbf{W}_l .

 $\mathbf{\bullet} \ \mathbf{W}_{l} = \left[\mathbf{w}_{l}^{(1)}, \dots, \mathbf{w}_{l}^{(R)}\right] \in \mathbb{R}^{J_{l} \times R}.$

 \clubsuit *R* the number of components to extract.

<u>Closed form solution</u>: the rank-R Singular Value Decomposition (SVD) of a specic matrix of dimension $J_l \times R$.

<u>Pros</u>:

- ✤ A single optimization problem allows to extract all components simultaneously.
- ✤ The obtain algorithm is rather simple (simple update) and is globally convergent.
- It is possible now to add constraints across components.
- <u>Cons:</u>

 $\underset{\mathbf{W}_{l},\mathbf{W}_{l}^{\mathsf{T}}\mathbf{M}_{l}\mathbf{W}_{l}=\mathbf{I}_{R}}{\operatorname{argmax}}\operatorname{Trace}(\mathbf{\nabla}_{l}f(\mathbf{W}^{s})^{\mathsf{T}}\mathbf{W}_{l})$

Where:

• $\nabla_l f$ is the partial derivate of f with respect to \mathbf{W}_l .

 $\mathbf{\bullet} \mathbf{W}_{l} = \left[\mathbf{w}_{l}^{(1)}, \dots, \mathbf{w}_{l}^{(R)}\right] \in \mathbb{R}^{J_{l} \times R}.$

 \clubsuit *R* the number of components to extract.

<u>Closed form solution</u>: the rank-R Singular Value Decomposition (SVD) of a specic matrix of dimension $J_l \times R$.

<u>Pros</u>:

- ✤ A single optimization problem allows to extract all components simultaneously.
- ✤ The obtain algorithm is rather simple (simple update) and is globally convergent.
- It is possible now to add constraints across components.

<u>Cons:</u>

✤ In this form, we have to extract the same number of component per block.

		Core Optimization	Problem	
		$\max \nabla_l f(\mathbf{w^s})^\top \mathbf{w}_l$		
	$\mathbf{w}_l \in \omega_l$	RGCCA ^{1,2}		
Constraints	$\begin{cases} \ \mathbf{w}_l\ _2^2 = 1\\ \ \mathbf{w}_l\ _1 \le s_l \end{cases}$	SGCCA ³		Cor
	$\begin{cases} \mathbf{w}_l = \mathbf{w}_l^K \otimes \mathbf{w}_l^J \\ \mathbf{w}_l \in \omega_l \end{cases}$	MGCCA ⁴ /TGCCA ⁵		nstraints

$$\omega_l = \left\{ \mathbf{w}_l \in \mathbb{R}^{J_l}; \ \mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1 \right\}$$

		Core Optimization Problem		
		Sequential	Global	
		$\max \nabla_l f(\mathbf{w^s})^\top \mathbf{w}_l$		
	$\mathbf{w}_l \in \omega_l$	RGCCA ^{1,2}		
Constraints	$\begin{cases} \ \mathbf{w}_l\ _2^2 = 1\\ \ \mathbf{w}_l\ _1 \le s_l \end{cases}$	SGCCA ³		Cor
	$\begin{cases} \mathbf{w}_l = \mathbf{w}_l^K \otimes \mathbf{w}_l^J \\ \mathbf{w}_l \in \omega_l \end{cases}$	MGCCA ⁴ /TGCCA ⁵		nstraints

$$\omega_l = \left\{ \mathbf{w}_l \in \mathbb{R}^{J_l}; \ \mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1 \right\}$$

		Core Optimization Problem		
		Sequential	Global	
		$\max \nabla_l f(\mathbf{w^s})^\top \mathbf{w}_l$	$\max \mathbf{Tr}(\mathbf{\nabla}_l f(\mathbf{W}^{\mathbf{s}})^{T} \mathbf{W}_l)$	
	$\mathbf{w}_l \in \omega_l$	RGCCA ^{1,2}		
Constraints	$\begin{cases} \ \mathbf{w}_l\ _2^2 = 1\\ \ \mathbf{w}_l\ _1 \le s_l \end{cases}$	SGCCA ³		Cor
	$\begin{cases} \mathbf{w}_l = \mathbf{w}_l^K \otimes \mathbf{w}_l^J \\ \mathbf{w}_l \in \omega_l \end{cases}$	MGCCA ⁴ /TGCCA ⁵		nstraints

$$\omega_l = \left\{ \mathbf{w}_l \in \mathbb{R}^{J_l}; \ \mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1 \right\}$$

		Core Optimization Problem			
		Sequential	Global		
		$\max \nabla_l f(\mathbf{w}^s)^\top \mathbf{w}_l$	$\max \mathbf{Tr}(\mathbf{\nabla}_l f(\mathbf{W}^s)^{T} \mathbf{W}_l)$		
	$\mathbf{w}_l \in \omega_l$	RGCCA ^{1,2}		$\mathbf{W}_l \in \Omega_l$	
Constraints	$\begin{cases} \ \mathbf{w}_l\ _2^2 = 1\\ \ \mathbf{w}_l\ _1 \le s_l \end{cases}$	SGCCA ³			Cor
	$\begin{cases} \mathbf{w}_l = \mathbf{w}_l^K \otimes \mathbf{w}_l^J \\ \mathbf{w}_l \in \omega_l \end{cases}$	MGCCA ⁴ /TGCCA ⁵			nstraints

$$\omega_l = \left\{ \mathbf{w}_l \in \mathbb{R}^{J_l}; \ \mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1 \right\}$$

 $\Omega_l = \left\{ \mathbf{W}_l \in \mathbb{R}^{J_l \times R}; \mathbf{W}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{W}_l = \mathbf{I}_R \right\}$

1. (Tenenhaus and Tenenhaus, 2011)2. (Tenenhaus, Tenenhaus and Groenen, 2017)3. (Tenenhaus et al., 2014)4. (Gloaguen et al., 2022)

5. (Girka et al., 2024)

		Core Optimization Problem			
		Sequential	Global		
		$\max \nabla_l f(\mathbf{w^s})^\top \mathbf{w}_l$	$\max \mathbf{Tr}(\mathbf{\nabla}_l f(\mathbf{W}^{\mathbf{s}})^{T} \mathbf{W}_l)$		
Constraints	$\mathbf{w}_l \in \omega_l$	RGCCA ^{1,2}	Global RGCCA ^{6,7}	$\mathbf{W}_l \in \Omega_l$	
	$\begin{cases} \ \mathbf{w}_l\ _2^2 = 1\\ \ \mathbf{w}_l\ _1 \le s_l \end{cases}$	SGCCA ³			Cor
	$\begin{cases} \mathbf{w}_l = \mathbf{w}_l^K \otimes \mathbf{w}_l^J \\ \mathbf{w}_l \in \omega_l \end{cases}$	MGCCA ⁴ /TGCCA ⁵			nstraints

$$\omega_l = \left\{ \mathbf{w}_l \in \mathbb{R}^{J_l}; \ \mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1 \right\}$$

1. (Tenenhaus and Tenenhaus, 2011)

5. (Girka et al., 2024)

2. (Tenenhaus, Tenenhaus and Groenen, 2017)

 $\Omega_l = \left\{ \mathbf{W}_l \in \mathbb{R}^{J_l \times R}; \mathbf{W}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{W}_l = \mathbf{I}_R \right\}$

6. (Gloaguen, 2020)

		Core Optimization Problem			
		Sequential	Global		
		$\max \nabla_l f(\mathbf{w^s})^\top \mathbf{w}_l$	$\max \mathbf{Tr}(\nabla_l f(\mathbf{W}^s)^\top \mathbf{W}_l)$		
Constraints	$\mathbf{w}_l \in \omega_l$	RGCCA ^{1,2}	Global RGCCA ^{6,7}	$\mathbf{W}_l \in \Omega_l$	
	$\begin{cases} \ \mathbf{w}_l\ _2^2 = 1\\ \ \mathbf{w}_l\ _1 \le s_l \end{cases}$	SGCCA ³			Cor
	$\begin{cases} \mathbf{w}_l = \mathbf{w}_l^K \otimes \mathbf{w}_l^J \\ \mathbf{w}_l \in \omega_l \end{cases}$	MGCCA ⁴ /TGCCA ⁵		$\begin{cases} \mathbf{W}_{l} = \mathbf{W}_{l}^{K} \odot \mathbf{W}_{l}^{J} \\ \mathbf{W}_{l} \in \Omega_{l} \end{cases}$	nstraints

$$\omega_l = \left\{ \mathbf{w}_l \in \mathbb{R}^{J_l}; \; \mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1 \right\}$$

1. (Tenenhaus and Tenenhaus, 2011)

5. (Girka et al., 2024)

FRANCE

INISTITUT FRANCAIS D

BIOINFORMATION

2. (Tenenhaus, Tenenhaus and Groenen, 2017) 6. (Gloaguen, 2020)

 $\Omega_l = \left\{ \mathbf{W}_l \in \mathbb{R}^{J_l \times R}; \mathbf{W}_l^\top \mathbf{M}_l \mathbf{W}_l = \mathbf{I}_R \right\}$

		Core Optimization Problem			
		Sequential	Global		
		$\max \nabla_l f(\mathbf{w^s})^\top \mathbf{w}_l$	$\max \mathbf{Tr}(\nabla_l f(\mathbf{W}^s)^\top \mathbf{W}_l)$		
Constraints	$\mathbf{w}_l \in \omega_l$	RGCCA ^{1,2}	Global RGCCA ^{6,7}	$\mathbf{W}_l \in \Omega_l$	
	$\begin{cases} \ \mathbf{w}_l\ _2^2 = 1\\ \ \mathbf{w}_l\ _1 \le s_l \end{cases}$	SGCCA ³			Cor
	$\begin{cases} \mathbf{w}_l = \mathbf{w}_l^K \otimes \mathbf{w}_l^J \\ \mathbf{w}_l \in \omega_l \end{cases}$	MGCCA ⁴ /TGCCA ⁵	Global MGCCA ^{6,7}	$\begin{cases} \mathbf{W}_{l} = \mathbf{W}_{l}^{K} \odot \mathbf{W}_{l}^{J} \\ \mathbf{W}_{l} \in \Omega_{l} \end{cases}$	nstraints

$$\omega_l = \left\{ \mathbf{w}_l \in \mathbb{R}^{J_l}; \; \mathbf{w}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{w}_l = 1 \right\}$$

(Tenenhaus and Tenenhaus, 2011)
 (Girka et al., 2024)

(Tenenhaus, Tenenhaus and Groenen, 2017)
 (Gloaguen, 2020)

 $\Omega_l = \left\{ \mathbf{W}_l \in \mathbb{R}^{J_l \times R}; \mathbf{W}_l^\top \mathbf{M}_l \mathbf{W}_l = \mathbf{I}_R \right\}$

		Core Optimization Problem			
		Sequential	Global		
		$\max \nabla_l f(\mathbf{w^s})^\top \mathbf{w}_l$	$\max \mathbf{Tr}(\nabla_l f(\mathbf{W}^{\mathbf{s}})^\top \mathbf{W}_l)$		
	$\mathbf{w}_l \in \omega_l$	RGCCA ^{1,2}	Global RGCCA ^{6,7}	$\mathbf{W}_l \in \Omega_l$	
Constraints	$\begin{cases} \ \mathbf{w}_l\ _2^2 = 1\\ \ \mathbf{w}_l\ _1 \le s_l \end{cases}$	SGCCA ³			Cor
	$\begin{cases} \mathbf{w}_l = \mathbf{w}_l^K \otimes \mathbf{w}_l^J \\ \mathbf{w}_l \in \omega_l \end{cases}$	MGCCA ⁴ /TGCCA ⁵	Global MGCCA ^{6,7}	$\begin{cases} \mathbf{W}_{l} = \mathbf{W}_{l}^{K} \odot \mathbf{W}_{l}^{J} \\ \mathbf{W}_{l} \in \Omega_{l} \end{cases}$	nstraints
	Structured Sparsity				

 $\omega_l = \left\{ \mathbf{w}_l \in \mathbb{R}^{J_l}; \; \mathbf{w}_l^\top \mathbf{M}_l \mathbf{w}_l = 1 \right\}$

(Tenenhaus and Tenenhaus, 2011)
 (Girka et al., 2024)

FRANCE

BIOINFORMATIOL

(Tenenhaus, Tenenhaus and Groenen, 2017)
 (Gloaguen, 2020)

 $\Omega_l = \left\{ \mathbf{W}_l \in \mathbb{R}^{J_l \times R}; \mathbf{W}_l^{\mathsf{T}} \mathbf{M}_l \mathbf{W}_l = \mathbf{I}_R \right\}$

		Core Optimization Problem			
		Sequential	Global		
		$\max \nabla_l f(\mathbf{w^s})^\top \mathbf{w}_l$	$\max \mathbf{Tr}(\mathbf{\nabla}_l f(\mathbf{W}^{\mathbf{s}})^{T} \mathbf{W}_l)$		
Constraints	$\mathbf{w}_l \in \omega_l$	RGCCA ^{1,2}	Global RGCCA ^{6,7}	$\mathbf{W}_l \in \Omega_l$	
	$\begin{cases} \ \mathbf{w}_l\ _2^2 = 1\\ \ \mathbf{w}_l\ _1 \le s_l \end{cases}$	SGCCA ³			Cor
	$\begin{cases} \mathbf{w}_l = \mathbf{w}_l^K \otimes \mathbf{w}_l^J \\ \mathbf{w}_l \in \omega_l \end{cases}$	MGCCA ⁴ /TGCCA ⁵	Global MGCCA ^{6,7}	$\begin{cases} \mathbf{W}_{l} = \mathbf{W}_{l}^{K} \odot \mathbf{W}_{l}^{J} \\ \mathbf{W}_{l} \in \Omega_{l} \end{cases}$	nstraints
	Structured Sparsity	 (i). Group-Lasso in the same framework⁸ (ii). Other structured sparse penalties in other frameworks^{6,9,10,11} 			

 $\omega_l = \{ \mathbf{w}_l \in \mathbb{R}^{J_l}; \ \mathbf{w}_l^\top \mathbf{M}_l \mathbf{w}_l = 1 \}$

1. (Tenenhaus and Tenenhaus, 2011) 2. (Tenenhaus, Tenenhaus and Groenen, 2017) 5. (Girka et al., 2024)

9. (Guigui et al., 2019)

FRANCE

BIOINFORMATIO

6. (Gloaguen, 2020) 10. (Chegraoui et al., 2023)

$$\Omega_l = \left\{ \mathbf{W}_l \in \mathbb{R}^{J_l \times R}; \mathbf{W}_l^\top \mathbf{M}_l \mathbf{W}_l = \mathbf{I}_R \right\}$$

3. (Tenenhaus et al., 2014) 4. (Gloaguen et al., 2022) 7. (Girka, 2023) 8. (Guillemot et al., 2021) 11. (Löfstedt et al., 2016)

		Core Optimization Problem			
		Sequential	Global		
		$\max \nabla_l f(\mathbf{w^s})^\top \mathbf{w}_l$	$\max \mathbf{Tr}(\nabla_l f(\mathbf{W}^s)^\top \mathbf{W}_l)$		
	$\mathbf{w}_l \in \omega_l$	RGCCA ^{1,2}	Global RGCCA ^{6,7}	$\mathbf{W}_l \in \Omega_l$	
Constraints	$\begin{cases} \ \mathbf{w}_l\ _2^2 = 1\\ \ \mathbf{w}_l\ _1 \le s_l \end{cases}$	SGCCA ³	In progress ⁷	In progress ⁷	Cor
	$\begin{cases} \mathbf{w}_l = \mathbf{w}_l^K \otimes \mathbf{w}_l^J \\ \mathbf{w}_l \in \omega_l \end{cases}$	MGCCA ⁴ /TGCCA ⁵	Global MGCCA ^{6,7}	$\begin{cases} \mathbf{W}_{l} = \mathbf{W}_{l}^{K} \odot \mathbf{W}_{l}^{J} \\ \mathbf{W}_{l} \in \Omega_{l} \end{cases}$	nstraints
	Structured Sparsity	 (i). Group-Lasso in the same framework⁸ (ii). Other structured sparse penalties in other frameworks^{6,9,10,11} 	In progress ⁷	In progress ⁷	

 $\omega_l = \left\{ \mathbf{w}_l \in \mathbb{R}^{J_l}; \; \mathbf{w}_l^\top \mathbf{M}_l \mathbf{w}_l = 1 \right\}$

FRANCE

(Tenenhaus and Tenenhaus, 2011)
 (Girka et al., 2024)
 (Guigui et al., 2019)
 (Chegraoui et al., 2023)

 $\Omega_l = \{ \mathbf{W}_l \in \mathbb{R}^{J_l \times R}; \mathbf{W}_l^\top \mathbf{M}_l \mathbf{W}_l = \mathbf{I}_R \}$

3. (Tenenhaus et al., 2014)
 4. (Gloaguen et al., 2022)
 7. (Girka, 2023)
 8. (Guillemot et al., 2021)
 11. (Löfstedt et al., 2016)

<u>Kernel GCCA (Tenenhaus, Philippe and Frouin, 2015):</u> In order to take estimate non-linear links between blocks.

Kernel GCCA (Tenenhaus, Philippe and Frouin, 2015): In order to take estimate non-linear links between blocks.

<u>Functional GCCA (Sort, Brusquet and Tenenhaus, 2023)</u>: In order to handle longitudinal blocks.

<u>Kernel GCCA (Tenenhaus, Philippe and Frouin, 2015):</u> In order to take estimate non-linear links between blocks.

<u>Functional GCCA (Sort, Brusquet and Tenenhaus, 2023)</u>: In order to handle longitudinal blocks.

<u>Multi-group (Tenenhaus and Tenenhaus, 2014; Goujon, In progress):</u> Find relationships between variables within each group that are common to all groups.

<u>Kernel GCCA (Tenenhaus, Philippe and Frouin, 2015):</u> In order to take estimate non-linear links between blocks.

<u>Functional GCCA (Sort, Brusquet and Tenenhaus, 2023)</u>: In order to handle longitudinal blocks.

<u>Multi-group (Tenenhaus and Tenenhaus, 2014; Goujon, In progress):</u> Find relationships between variables within each group that are common to all groups.

Missing Values in RGCCA (Peltier et al., 2023).

✤ General as in encompasses a large number of methods in the multi-block literature.

- General as in encompasses a large number of methods in the multi-block literature.
- Very flexible thanks to its optimization framework that easily allows to develop many extensions...

- General as in encompasses a large number of methods in the multi-block literature.
- Very flexible thanks to its optimization framework that easily allows to develop many extensions...
- ✤ ... and that also allows to combine these extensions.

- General as in encompasses a large number of methods in the multi-block literature.
- Very flexible thanks to its optimization framework that easily allows to develop many extensions...
- ✤ ... and that also allows to combine these extensions.

A new version of the original RGCCA package (with sequential RGCCA/SGCCA) was, not so long ago, submitted to the CRAN.

- General as in encompasses a large number of methods in the multi-block literature.
- Very flexible thanks to its optimization framework that easily allows to develop many extensions...
- ✤ ... and that also allows to combine these extensions.

A new version of the original RGCCA package (with sequential RGCCA/SGCCA) was, not so long ago, submitted to the CRAN.

It came with a submission to the Journal of Statistical Software (Girka et al., submitted).

- General as in encompasses a large number of methods in the multi-block literature.
- Very flexible thanks to its optimization framework that easily allows to develop many extensions...
- ✤ ... and that also allows to combine these extensions.

A new version of the original RGCCA package (with sequential RGCCA/SGCCA) was, not so long ago, submitted to the CRAN.

It came with a submission to the Journal of Statistical Software (Girka et al., submitted).

For extensions mentioned in this presentation and that are in development, you can find them one of the many branches of the github repository: https://github.com/rgcca-factory/RGCCA

Arthur TENENHAUS The RGCCA framework is: Laboratoire Des Signaux Et Systèmes, CentraleSupélec

Fabien GIRKA Laboratoire Des Signaux Et Systèmes, CentraleSupélec

- General as in encompasses a large number of methods in the multi-block literature.
- Very flexible thanks to its optimization framework that easily allows to develop many extensions.
- ... and that also allows to combine these extensions.

A new version of the original RGCCA package (with sequential RGCCA/SGCCA) was, not so long ago, submitted to the CRAN.

It came with a submission to the Journal of Statistical Software (Girka et al., submitted).

For extensions mentioned in this presentation and that are in development, you can find them one of the many branches of the github repository: https://github.com/rgcca-factory/RGCCA

Here are the contributors of the actual version of the package !

Vincent GUILLEMOT

INSERM, Hôpital Saint-Louis AP-HP

Laurent LE BRUSQUET

Laboratoire Des Signaux Et Systèmes, CentraleSupélec

Vary the combination of omics data from which components are built.

Vary the combination of omics data from which components are built.

Improve the interpretaion of components.

Vary the combination of omics data from which components are built.

Improve the interpretaion of components.

Axe 2: Include the appartenance of each variable to a biological pathway.

Divide each omic matrix by biological pathways.

Allow to identify most important pathways (With L1 norm).

distinc

local

E C C C C

Vary the combination of omics data from which components are built.

Improve the interpretaion of components.

Axe 2: Include the appartenance of each variable to a biological pathway.

Divide each omic matrix by biological pathways.

Allow to identify most important pathways (With L1 norm).

Axe 3: Link variables across different omics

Courtesy to Vincent Le Goff.

BIOINFORMATION

INISTITUT FRANCAIS D

P

FRANCE

Regroup omic matrices along the third dimension (ex: by genes) to create a tensor.

Permet d'ajouter une notion biologique dans la définition du modèle

distinc[.]

ocal

Other perpectives ?

PhD of Vincent LE GOFF

- Supervised by:
- Edith Le Floch
- Vincent Guillemot
- Arnaud Gloaguen

Axe 1: Use comon and specific information

Vary the combination of omics data from which components are built.

Improve the interpretaion of components.

Axe 2: Include the appartenance of each variable to a biological pathway.

Divide each omic matrix by biological pathways.

Allow to identify most important pathways (With L1 norm).

Axe 3: Link variables across different omics

Courtesy to Vincent Le Goff.

BIOINFORMATIQU

INISTITUT FRANCAIS DE

<u>o</u>ŀ

FRANCE

Regroup omic matrices along the third dimension (ex: by genes) to create a tensor.

Permet d'ajouter une notion biologique dans la définition du modèle

distinc[.]

ocal

Acknowledgment

Data (CT-ScarBip Project)	Summer School SIB/IFB:	<u>Statomique:</u>	<u>Slides:</u>
Andrée Delahaye-Duriez	Florence Mehl	Guillemette Marot (again !)	Arthur Tenenhaus
Pierre-Eric Lutz	Olivier Sand	Christelle Hennequet-Antier	Laurent Le Brusquet
Amazigh Mokhtari	Grégoire Rossier	Julie Aubert	Julien Bect
David Cohen	Jimmy Vandel	Marie-Agnès Dillies	Vincent Le Goff
Bruno Etain	Guillemette Marot	Helene Touzet	Edith Le Eloch
Cynthia Marie-Clair	Marie-Galadriel Briere	Justine Merlan	
El Chérif Ibrahim	Lucie Khamvongsa-		
Rolzonux Proul	Charbonnier	ETBII:	
	Morgane Terezol	Lucie Khamvongsa-Charbonnier	Morgane Terezol
Gascon Gonzalo	Anaïs Baudot	Hélène Chiapello	Alban Caignard
Isabelle Mansuy	Maximo Dolmac		Alban Galghard
	Maxime Delinas	Olivier Sand	Olivier Dameron
	Jean-Clément Gallardo	Jimmy Vandel	Pierre Larmande
	_	1	

Vincent Guillemot

Marie-Galadriel Briere

Marco Pagni

58

•

Chegraoui, H. et al. (2023) 'Integrating multiomics and prior knowledge: a study of the Graphnet penalty impact', Bioinformatics, 39(8), p. btad454. Available at: https://doi.org/10.1093/bioinformatics/btad454.

Girka, F. (2023) Développement de méthodes statistiques/ML pour l'identification de biomarqueurs longitudinaux multimodaux. Application à la compréhension des mécanismes d'évolution de la sclérose en plaques. These en préparation. université Paris-Saclay. Available at: https://www.theses.fr/s251361 (Accessed: 20 November 2023).

Girka, F. et al. (2024) 'Tensor generalized canonical correlation analysis', Information Fusion, 102, p. 102045. Available at: https://doi.org/10.1016/j.inffus.2023.102045.

Girka, F. et al. (submitted to JSS) 'Multiblock data analysis with the RGCCA package', Journal of Statistical Software [Preprint].

Gloaguen, A. (2020) A statistical and computational framework for multiblock and multiway data analysis. phdthesis. Université Paris-Saclay. Available at: https://theses.hal.science/tel-03044035 (Accessed: 20 November 2023).

Gloaguen, A. et al. (2022) 'Multiway generalized canonical correlation analysis', Biostatistics (Oxford, England), 23(1), pp. 240–256. Available at: https://doi.org/10.1093/biostatistics/kxaa010.

Goujon, E. (In progress) Identification de marqueurs moléculaires de la radiation à faibles doses à partir de données multi-omiques. These en préparation. université Paris-Saclay. Available at: https://www.theses.fr/s357653 (Accessed: 20 November 2023).

Guigui, N. et al. (2019) 'Network Regularization in Imaging Genetics Improves Prediction Performances and Model Interpretability on Alzheimer's Disease', in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI), Venice, Italy: IEEE, pp. 1403–1406. Available at: https://doi.org/10.1109/ISBI.2019.8759593.

Guillemot, V. et al. (2021) 'Introducing group-sparsity and orthogonality constraints in RGCCA'.

Löfstedt, T. et al. (2016) 'A general multiblock method for structured variable selection'. arXiv. Available at: http://arxiv.org/abs/1610.09490 (Accessed: 10 April 2023).

Peltier, C. et al. (2023) 'Missing Values in RGCCA: Algorithms and Comparisons', in L. Radomir et al. (eds) State of the Art in Partial Least Squares Structural Equation Modeling (PLS-SEM): Methodological Extensions and Applications in the Social Sciences and Beyond. Cham: Springer International Publishing (Springer Proceedings in Business and Economics), pp. 9–14. Available at: https://doi.org/10.1007/978-3-031-34589-0_2.

Sort, L., Brusquet, L.L. and Tenenhaus, A. (2023) 'Functional Generalized Canonical Correlation Analysis for studying multiple longitudinal variables'. arXiv. Available at: https://doi.org/10.48550/arXiv.2310.07330.

Tenenhaus, A. and Tenenhaus, M. (2011) 'Regularized Generalized Canonical Correlation Analysis', Psychometrika, 76(2), pp. 257–284. Available at: https://doi.org/10.1007/s11336-011-9206-8.

Tenenhaus, A. and Tenenhaus, M. (2014) 'Regularized generalized canonical correlation analysis for multiblock or multigroup data analysis', European Journal of Operational Research, 238(2), pp. 391–403. Available at: https://doi.org/10.1016/j.ejor.2014.01.008.

Tenenhaus, A. et al. (2014) 'Variable selection for generalized canonical correlation analysis', Biostatistics, 15(3), pp. 569–583. Available at: https://doi.org/10.1093/biostatistics/kxu001.

Tenenhaus, A., Philippe, C. and Frouin, V. (2015) 'Kernel Generalized Canonical Correlation Analysis', Computational Statistics & Data Analysis, 90, pp. 114–131. Available at: https://doi.org/10.1016/j.csda.2015.04.004.

Tenenhaus, M., Tenenhaus, A. and Groenen, P.J.F. (2017) 'Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods', Psychometrika, 82(3), pp. 737–777. Available at: https://doi.org/10.1007/s11336-017-9573-x.

Thank you for your attention !

