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Breast cancer TCGA from MixOmics

Human breast cancer is a heterogeneous disease in
terms of molecular alterations, cellular composition,
and clinical outcome. Breast tumours can be classified
into several subtypes, according to levels of mRNA
expression (Serlie et al., 2001).

Gene expression patterns of breast carcinomas
distinguish tumor subclasses with
clinical implications
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The mixOmics TCGA dataset is accessed via breast. TCGA' and
contains the following:

breast TCGASdata.trainSmirna (continuous matrix): 150 rows
and 184 columns. The expression levels of 184 different
sections of miRNA.

breast TCGASdata.trainSmrna (continuous matrix): 150 rows
and 200 columns. The expression levels of 200 different
sections of mRNA.

breast TCGASdata.trainSprotein (continuous matrix): 150
rows and 142 columns. The abundance of 142 different
proteins

breast TCGASdata.trainSsubtype (categorical vector): length
of 150. Indicates the breast cancer subtype of each subject.
Includes Basal, Her2 and LumA.



ProMetlS

The dataset provides unique molecular information about the physiological role of the Lat (involved in
neurodevelopmental diseases) and Mx2 (modelling Down syndrome in mice) genes in mice.
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(] ° All figures are taken from:
/ . Imbert A, Rompais M, Selloum M, Castelli F, Mouton-Barbosa E, Brandolini-Bunlon M, Chu-Van E, Joly C, Hirschler A, Roger P, Burger T, Leblanc S, Sorg T, Ouzia S,
é_ I F B EIM Vandenbrouck Y, Médigue C, Junot C, Ferro M, Pujos-Guillot E, de Peredo AG, Fenaille F, Carapito C, Herault Y, Thévenot EA. ProMetlS, deep phenotyping of mouse models
by combined proteomics and metabolomics analysis. Sci Data. 2021 Dec 3;8(1):311. doi: 10.1038/s41597-021-01095-3. PMID: 34862403; PMCID: PMC8642540.
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WallOmics

= Goal: Understand the mechanisms of plant adaptation to contrasted growth temperature.

flower

= The study focuses on the cell walls (CWs) that represent a dynamic extracellular
compartment that contributes to modify the cell and plant shapes at any time
during development.
= We will limit ourselves to the following omic modalities (n=30):
= CW Transcriptomic on the rosette (p=364) and the floral stem (p=414)
= CW Proteomic on the rosette (p=364) and the floral stem (p=414)
= Phenomics on the rosette (p=5) and the floral stem (p=4)
= Along with :

= Altitude Cluster: the environment height from which is originated a given plant (ref/low/high).

= Ecotype: the genotype specifically designed for a given ecosystem (Col, Grip, Hern, Hosp, Roc).

= Temperature: the temperature at which the studied sample was exposed all along its growth,
either 22°C (optimal condition) or 15°C (high altitude condition).

= Metadata: Bioinformatics Annotation and description of all the Cell Wall Proteins (CWPs)

') The R package WallOmicsData allows you to retrieve all the data.
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https://cran.r-project.org/web/packages/WallomicsData/WallomicsData.pdf

Tomato ﬁ
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Goal: study protein turnover at the global scale in developing tomato (Solanum lycopersicum) fruit.
Two omic modalities were acquired to achieve this goal:

= Transcriptomique (n=27 / p=2375)
=  Proteomic (n=27 / p=2375)
Along with two co-variables:
= Days Post Anthesis (DPA): the count of days that have elapsed since the opening of a flower,
serving as a marker to track the temporal progression of plant development.
= GRowth stages (GR): denote specific phases within the tomato plant’s lifecycle : germination, leaf
development, formation of side shoots, inflorescence emergency, flowering, fruit development,
maturity of fruit and senescence
Possible question: find sets of mMRNAs and proteins responsible for the discrimination between GR
groups or the prediction of the DPA
The dataset was kindly provided to us by the authors of: Isma Belouah and others, Modeling Protein
Destiny in Developing Fruit, Plant Physiology, Volume 180, Issue 3, July 2019, Pages 1709-1724,

https://doi.org/10.1104/pp.19.00086


https://doi.org/10.1104/pp.19.00086

Chronic Lymphocytic Leukemia (CLL)

= Goal: study ex-vivo response of 243 blood cancer samples (majority of
CLL) to 63 drugs with 5 concentrations (+ 3 healthy samples)
= Five modalities
= Copy number variants (n=169) + 6 structural variants (n=125-162)
= Genomic / WES (n=107) + targeted for 9 genes (n=188-231)
= Transcriptomic / NGS (n=123)
= Methylation (n=196)
= Drug response based on cell survival (n=243 patients + 3 controls)

= Stratification of CLL samples based on drug responses + association to
omics

= For CLL sample association between drug response and few
mutations/variants (IGHV, TP53, BRAF... and trisomy 12)

= In CLL dataset (n=200): Variants (p=69), Transcriptomic (p=5000) ,
Methylation (p=4248) , Drug response (p=310) + metadata (p=9)
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Dietrich S, et al.. Drug-perturbation-based
stratification of blood cancer. J Clin
Invest. 2018 Jan 2;128(1):427-445.



TARA OCEAN

=  Données métagénomiques

- NOGS: relative abundance of orthologous genes (OGs)
- Phylo: counts of S16 rRNA

= 8 points de collectes

- SPO: South Pacific Ocean

- NAO: North Atlantic Ocean
- 10: Indian Ocean

- RS: Red Sea

= 4 profondeurs

MS: Mediterranean Sea
NPO: North Pacific Ocean
SO: Southern Ocean

SAO: South Atlantic Ocean

- SRF: Surface Water Layer (0-5 meters)

A Tara Oceans sampling stations

South Pacific Ocean
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Southern Ocean

- DCM: Deep Chlorophyll Maximum (peak of chlorophyll, 0-600 meters)

- MIX: Subsurface epipelagic Mixed Layer
- MES(0): Mesopelagic zone (from 500/1000 meters)

= Stratification influencée plus par la température que par la géographie ou autres facteurs

environnementaux (Sunagawa et al., 2015)

= Source des données : gitlab MiBiOmics
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https://gitlab.univ-nantes.fr/combi-ls2n/mibiomics
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