Enrichment analysis:

Determining [over|under]-representation

How do we know that what we are looking at is interesting?

Olivier Dameron, Alban Gaignard, Pierre Larmande
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@ What are we trying to do? The big picture
@ Annotations describe elements
@ Ontologies reveal a cascade of new connections
@ Which annotations are relevant?
@ Where does over-representation starts?

© How does it work? Formalizing over/under-representation
@ The good questions
@ Choice of a reference set
@ Choice of a distribution
@ Hypergeometric test

© How to do it? Analyzing a set of proteins
@ Method
@ Example
@ Correcting multiple testings: Bonferroni

@ Synthesis
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Annotations are useful for describing elements
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@ some elements are not annotated (e.g. EOQ)
@ some elements have multiple annotations (e.g. E3)
@ some annotations describe multiple elements (e.g. A0)

Now we can find new relations between some elements
e E7 and E8 (and E9) share A4

o E7 and E6 share A3
@ note that E6 and E8 have nothing in common
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Ontologies reveal a cascade of new connection
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@ ontology: explicit hierarchy of (dependent) classes
@ the elements associated to an annotation are also implicitely
associated to all the ancestors of this annotation
e some direct annotations (A5) are also indirectly associated to
other elements (those of A4 and A6)
e some new annotations (A7-A11) should also be considered
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Ontologies reveal a cascade of new connection
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Using ontologies, new connections become explicit

@ between annotations (e.g. A0 — Al)
@ between annotations and elements (E1 — A1)

@ between elements (in fact, E6 and E8 share A9 and A1l)
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Which annotations are relevant?
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@ A1-A1l1 describe the elements, not the set
@ not all the annotations are relevant
e too precise and only annotate a few elements (e.g. A2, A3)
e too broad, annotate most of the elements but
are not informative (e.g. A10, All)

Over-representation analysis (ORA)

idenfies the annotation that are associated to more elements than
we would expect in a random set of the same size

Olivier Dameron, Alban Gaignard, Pierre Larn



Intuition of over-representation

A species has 20.000 proteins

@ 2.000 proteins annotated by A (10%)
@ 15.000 proteins annotated by B (75%)

The study S1 identified 12 proteins of interest

@ 6 proteins annotated by A (50%)
@ 9 proteins annotated by B (75%)

@ the proportion of proteins annotated by B corresponds (+/-)
to the proportion of proteins observed in the reference

@ the proportion of proteins annotated by A is “obviously”
superior to what we would expect
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Where is the difference between normal variation and

over-representation?

@ A species has 20.000 proteins (background or reference)

e 2.000 proteins annotated by A (10%)
e 15.000 proteins annotated by B (75%)

@ The study S1 identified 12 proteins of interest

e 6 proteins annotated by A (50%)
e 9 proteins annotated by B (75%)

The study S2 identified 50 proteins of interest

@ 6 proteins annotated by A (12%)
@ 36 proteins annotated by B (72%)

Is 12% really different from 10% (annotation A)?
and 72% compared to 75% (annotation B)?

Where do we draw the line? )
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How does it work? Formalizing

over /under-representation

© How does it work? Formalizing over/under-representation
@ The good questions
@ Choice of a reference set
@ Choice of a distribution
@ Hypergeometric test
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The good questions...

@ for each annotation, is its frequency in the study similar to its
background frequency in the species? (x??, Student's test?)

o if we find a difference, how likely is this difference to happen
by random?

e probability: if we randomly pick a set of N proteins among M,
how likely are we to observe n proteins with the characteristics
of interest?

e p-value: if we randomly pick a set of N proteins among M,
how likely are we to observe at least n proteins with the
characteristics of interest?

@ obviously, the choice of the reference set (M) is critical
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Reference set
@ M items total

@ m items having the characteristics of interest

Set of interest (C set of reference)
@ N items total
@ n items having the characteristics of interest

If I randomly select N proteins among M, what is the probability
(p-value) of encountering at least n proteins having the
characteristics of interest?
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Choosing a reference set

What is your reference set?
@ all the species’ proteins?
@ all the proteins of the study?

@ all the proteins known to be involved in the disease, the
pathway,... of interest?

° ..
It really depends on what you are doing
Your choice will affect the value of M and m J
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oosing the correct reference set

All genes
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“In 2021, ~9k journal articles used enrichment tests and we
estimate only 5% used a background list correctly and describe it

in the methods”
https://twitter.com/mdziemann/status/1532132417188012032
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Choosing the correct reference set

» PLoS Comput Biol. 2022 Mar 9;18(3):e1009935. doi: 10.1371/journal.pcbi. 1009935,
eCollection 2022 Mar.

Urgent need for consistent standards in functional
enrichment analysis

Kaumadi Wijesooriya 1, Sameer A Jadaan 2, Kaushalya L Perera ', Tanuveer Kaur T,
Mark Ziemann '

Affiliations 4 expand
PMID: 35263338 PMCID: PMC8936487 DOI: 10.1371/journal.pchi.1009935
Free PMC article

Abstract

Gene set enrichment tests (a.k.a. functional enrichment analysis) are among the most frequently
used methods in computational biology. Despite this popularity, there are concerns that these
methods are being applied incorrectly and the results of some peer-reviewed publications are
unreliable. These problems include the use of inappropriate background gene lists, lack of false
discovery rate correction and lack of methodological detail. To ascertain the frequency of these
issues in the literature, we performed a screen of 186 open-access research articles describing
functional enrichment results. We find that 95% of analyses using over-representation tests did not
implement an appropriate background gene list or did not describe this in the methods. Failure to
perform p-value correction for multiple tests was identified in 43% of analyses. Many studies lacked
detail in the methods section about the tools and gene sets used. An extension of this survey showed
that these problems are not associated with journal or article level bibliometrics. Using seven
independent RNA-seq datasets, we show misuse of enrichment tools alters results substantially. In
conclusion, most published functional enrichment studies suffered from one or more major flaws,
highlighting the need for stronger standards for enrichment analysis.
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Choosing a distribution

Binomial distribution

@ assumes that the probability of picking an item with the
characteristics of interest is fixed (m/M)

@ OK for large reference sets

v

Hypergeometric distribution

@ picking an item with the characteristics of interest affects the
probability of doing so again in the following picks

@ discrete probability distribution that describes the number of
successes in a sequence of draws without replacement from a

finite population
@ OK for small reference sets |

Yield similar results, in practice go for hypergeometric

N
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Hypergeometric test

Probability of randomly picking n proteins with the

characteristics of interest among N

m).(N=)
@)

Probability: nb of favorable events / nb of events

P(n) =

@ Number of favorable events
o (™) ways of picking n proteins among the m of interest
° (J\N"]:,’l”) ways of picking the N-n remaining proteins among the

M-m proteins that do not have the characteristic of interest
@ Total number of events

o () ways of picking N proteins among M
n!
Reminder: (}) = ———— ways of picking k items among n
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Where is the difference between normal variation and

over-representation? Hypergeometric test

@ A species has 20.000 proteins (background or reference)

o 2.000 proteins annotated by A (10%)
e 15.000 proteins annotated by B (75%)

@ The study S1 identified 12 proteins of interest
e 6 proteins annotated by A (50%) — p-value = 0.00053
e 9 proteins annotated by B (75%) — p-value = 0.64880
@ The study S2 identified 50 proteins of interest

e 6 proteins annotated by A (12%) — p-value = 0.38385
e 36 proteins annotated by B (72%) — p-value = 0.74831
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Where is the difference between normal variation and

over-representation? Hypergeometric test in Python

@ A species has 20.000 proteins (background or reference)
e 2.000 proteins annotated by A (10%)
e 15.000 proteins annotated by B (75%)

@ The study S1 identified 12 proteins of interest

1 >>> import scipy.stats as stats

2 >>> print stats.hypergeom.sf(6-1, 20000, 2000, 12)
3 0.00053836334315

4 >>> print stats.hypergeom.sf(9-1, 20000, 15000, 12)
5 0.648797987327

@ The study S2 identified 50 proteins of interest

>>> import scipy.stats as stats

>>> print stats.hypergeom.sf(6-1, 20000, 2000, 50)
0.38385375643

>>> print stats.hypergeom.sf(36-1, 20000, 15000, 50)
0.748314759755

Ut W N =
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How to do it? Analyzing a set of proteins

© How to do it? Analyzing a set of proteins
@ Method
@ Example
@ Correcting multiple testings: Bonferroni
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Analyzing a set of proteins: method

Let G be a set of proteins

@ compute the set of ontology terms A annotating directly or
indirectly (the ancestors) at least one of the proteins of G
@ for each ontology term a; in A:
e determine nb of proteins of G annotated by a;
e determine nb of proteins of the reference set annotated by a;
e compute an hypergeometric test and determine the p-value
@ sort the ontology terms by increasing p-value (the smaller the
better)
. . 0.05 .
© determine the p-value cut-off (typically W) cf. Bonferroni
correction
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Example 1: set of proteins (from Heme biosynthesis
pathway)

e P06132
P08397
P10746
P13196

°
°

°

e P13716
e P22557
e P22830
e P36551
e P50336
e Q12887
o Q7KZN9
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Example 1: ask Uniprot what these proteins are

http://sparql.u

1 PREFIX uniprot: <http://purl.uniprot.org/uniprot/>
2 PREFIX upc:<http://purl.uniprot.org/core/>
3
4 SELECT 7prot 7label
5 WHERE
6
7 ?prot {
8 uniprot:P06132 uniprot:P08397 uniprot:P10746 uniprot:P13196
9 uniprot:P13716 uniprot:P22557 uniprot:P22830 uniprot:P36551
10 uniprot:P50336 uniprot:Q12887 uniprot:Q7KZN9
11 }
12 ?prot upc:mnemonic 7label .
13}
v
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Example 1: protein names according to Uniprot

http://sparql.uniprot.org/

P06132  DCUP_HUMAN
P08397 HEM3_HUMAN
P10746 HEM4_HUMAN
P13196 HEM1_HUMAN
P13716 HEM2_HUMAN
P22557  HEMO0_HUMAN
P22830 HEMH_HUMAN
P36551 HEM6_HUMAN
P50336 PPOX_HUMAN
Q12887 COX10_.HUMAN
Q7KZN9 COX15_.HUMAN
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Example 1: retrieve the associated biological processes

from GOA (and GO for ancestors)

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

3 PREFIX uniprot: <http://purl.uniprot.org/uniprot/>

4 PREFIX goavoc: <http://bio2rdf.org/goa_vocabulary:>

5

6 SELECT DISTINCT ?bp 7bpLabel (count(?prot) as ?nbGenes)

7 WHERE {

8 { SELECT DISTINCT ?prot ?bp WHERE {

9 7prot {

10 uniprot:P06132 uniprot:P08397 uniprot:P10746 uniprot:P13196
11 uniprot:P13716 uniprot:P22557 uniprot:P22830 uniprot:P36551
12 uniprot:P50336 uniprot:Q12887 uniprot:Q7KZN9

13 ¥

14 ?prot goavoc:process/

15 (rdfs: subClassUfm(rdfs :subClass0f/owl:someValuesFrom))* ?bp .
16 7bp rdf:type owl:Class .

17 }

18 }

19 OPTIONAL { ?bp rdfs:label ?bpLabel . }

20 }

21 GROUP BY 7bp 7bpLabel

22 ORDER BY DESC(?nbGenes)
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Example 1: biological processes annotating the proteins

according to GOA (and GO for ancestors)

?bp ?bpLabel ?nbGenes
1 g0:0006725 " cellular aromatic comp. metab. proc.” 11
2 go0:0006778 " porphyrin-cont. comp. metab. proc.” 11
3 g0:0006779 " porphyrin-cont. comp. biosynth. proc.” 11
4 go0:0006783  "heme biosynthetic process” 11
5 g0:0006807 " nitrogen compound metabolic process” 11
6 go0:0008150 " biological process” 11
7 g0:0008152 " metabolic process” 11
8 g0:0009058 " biosynthetic process” 11
9 g0:0009987  "cellular process” 11

382 go:2000112  "regul. of cell. macrom. biosynth. proc.” 1

Annotation count alone cannot discriminate the relevant
annotations from the boring ones
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Background: Human proteins and their annotations

There are 48.804 human proteins, 38.660 of which annotated by at
least one biological process

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX uniprot: <http://purl.uniprot.org/uniprot/>

PREFIX uptaxo: <http://purl.uniprot.org/taxonomy/>
PREFIX upc: <http://purl.uniprot.org/core/>

PREFIX goavoc: <http://bio2rdf.org/goa_vocabulary:>

SELECT (count (DISTINCT ?prot) as ?nbGenes)
WHERE {
?prot rdf:type upc:Protein .
?prot upc:organism uptaxo:9606 .
#2prot goavoc:process/
# (rdfs:subClassOf [ (rdfs:subClassOf/owl :someValuesFrom))* 2bp .

o= e
N O © 00 N O Uk W N

-
= W
-

Result files:
@ queryResults_humanGenes_all.csv
@ queryResults_humanGenes_annotated.csv
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Background: Human proteins and their annotations

For each biological process, we can compute how many human
proteins it annotates (directly or indirectly), and add the result to
the graph

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX uniprot: <http://purl.uniprot.org/uniprot/>

PREFIX upc: <http://purl.uniprot.org/core/>

PREFIX goavoc: <http://bio2rdf.org/goa_vocabulary:>
PREFIX tf: <http://www.irisa.fr/dyliss/public/odameron/>

INSERT { ?bp tf:hasBackgroundOccurrences 7nbGenes . }
WHERE {
SELECT ?bp (count(DISTINCT ?prot) as ?nbGenes)
WHERE {
?prot goavoc:process/
(rdfs:subClassOf[krdfs:subClassOf/owl:someValuesFrom))* ?bp .

© 00 N O U e W N =

e e
w N = o

}
GROUP BY 7bp
ORDER BY DESC(?nbGenes)

== e
[ IS

3

=
I
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Examplel: compute annotations frequencies

© 00 N O U e W N =

e i e e
e e N =

18

Comparison of the number of proteins from setl (among 11)
annotated by a GO term VS the number of human proteins
annotated by the same GO term (among 38.660)

SELECT DISTINCT 7bp ?bpLabel (count(?prot) as ?nbGenes) ?nbOccRef
WHERE {
{ SELECT DISTINCT ?prot ?bp WHERE {

?prot { uniprot:P06132 uniprot:P08397 uniprot:P10746
uniprot:P13196 uniprot:P13716 uniprot:P22557 uniprot:P22830
uniprot:P36551 uniprot:P50336 uniprot:Q12887 uniprot:Q7KZN9 }

?prot rdf:type upc:Protein .

?prot upc:organism uptaxo:9606 .

?prot goavoc:process/

(rdfs:subClassUf[krdfs:subClassOf/owl:someValuesFrom))* ?bp .

?bp rdf:type owl:Class .
}

}

OPTIONAL { 7bp rdfs:label ?bpLabel . }

?bp tf:hasBackgroundOccurrences ?7nbOccRef
}
GROUP BY 7bp 7bpLabel ?nbOccRef
ORDER BY DESC(7nbGenes) ASC(7nbOccRef)

Olivier Dameron, Alban Gaignard, Pierre Larn
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Example 1: annotations’ frequencies

Comparison of the number of proteins from setl (among 11)
annotated by a GO term VS the number of human proteins
annotated by the same GO term (among 38.660)

Result file: queryResults_proteinSetl.csv

?bp ?bpLabel ?nbGenes  ?nbOccRef
1 go0:0006783  "heme biosynth. proc.” 11 29
2 go:0006779 " porphyrin-cont. biosynth.” 11 36
B g0:0042168 "heme metabolic process” 11 47
11
33 go:0009987  "cellular process” 11 31839
34 g0:0008150 " biological process” 11 38660
35 g0:0046501 " protoporphyrinogen ..." 9 11
382 go:0050789  "regul. of bio. pro.” 1 18992

@ g0:0006783 annotates 11/11 proteins of setl, but only 29/38.660 of the
reference proteins = over-represented

@ g0:0008150 annotates 11/11 proteins of setl, and 38.660/38.660 of the
reference proteins = not over-represented

Olivier Dameron, Alban Gaignard, Pierre Larn 30/53



Example 1: annotations’ over-representation

File computeOverRepresentation.py

1 import csv

2 import scipy.stats as stats

3

4 with open('queryResults_proteinSetl.csv') as fd:

5 reader = csv.reader(£fd)

6 currentLine = reader.next() # skip header

7 for data in reader:

8 goID = datal[0] .replace('"<http://purl.obolibrary.org/obo/GO_', 'GO0').r
9 goLabel = datal[l].replace('"', '')

10 goNbOccSet = int(datal[2].replace('"', ''))

11 goNbOccRef = int(datal[3].replace('"', ''))

12 setSize = 11

13 refSize = 38660

14

15 goPvalBinom = stats.binom_test(goNbOccSet, setSize,

16 float (goNbOccRef) /refSize, alternative='greater')

17 goPvalHypergeom = stats.hypergeom.sf (goNbOccSet-1, refSize,
18 goNbOccRef, setSize)
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Example 1: annotations’ over-representation

Over-representation of the GO terms annotating at least 1 of the
proteins from setl (11 proteins) compared to the reference set

(38.660)
File overRepresentation proteinsSetl.tsv
GO ident GO label Binom. p-val Hyperg. p-val
1 g0:0006783  heme biosynth. proc. 4.23E-35 4.79E-36
2 go:0006779  porphyrin... biosynth. proc. 4.56E-34 8.32E-35
3 go0:0042168 heme metab. proc. 8.57E-33 2.41E-33
33 g0:0009987  cellular proc. 0.11 0.11
34 go0:0008150 biological proc. 1.0 1.0
35 go:0046501  protoporphyrinog. met. proc.  6.71E-31 5.69E-33
382 go:0050789  regul. biol. proc. 0.99 0.99

@ Binomial and hypergeometric tests p-values discriminate
over-expressed GO terms (255 have p-value < 0.05)

@ p-value(heme metab. proc.) < p-value(heme biosynth.) :-)
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Example 1: annotations’ over-representation

Among the 382 GO terms annotating at least one of the 11
proteins of the set of interest:

o Binomial test: 255 have a p-value < 0.05
e Hypergeometric test: 255 have a p-value < 0.05 (the same!)

see Bonferroni correction in a few slides )

Olivier Dameron, Alban Gaignard, Pierre Larn



Example 1: annotations’ over-representation

102 - -

105 - -
10 - -
10-11 - N

1024 - -

104 - pValue = 0.05 -

p-value

10-20 - _
10-23 - -
10-26 - -
10-29 — _
10-32 - -

10-35 -
GO terms (382)
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Filtered significant GO terms for Gene setl

File overRepresentedGOterms.pdf

Olivier Dameron, Alban Gaignard, Pierre Larn



Example 2: set of random proteins

Select 11 at random from the 38.660 annoated ones

Set 2 (proteinsSetRandom. txt)

@ H3BS44
Q15831
Q9BVM4
C9J8P9
P22570
HOYN65
075396
QINX46
P58400
Q8TEW6
G3V4B7

Script selectRandomGenes.py on
queryResults_humanGenes_annotated.csv
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Example 2: ask Uniprot what these proteins are

http://sparql.uniprot.org/

C9J8P9 C9J8P9_HUMAN
G3v4B7  G3V4B7_HUMAN
HOYN65  HOYN65_HUMAN
H3BS44  H3BS44_HUMAN
075396  SC22B_HUMAN
P22570 ADRO_HUMAN
P58400 NRX1B_.HUMAN
Q15831 STK11_HUMAN
Q8TEW6 DOK4_HUMAN
Q9BVM4  GGACT_HUMAN
QINX46  ARHL2_HUMAN
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Example 2: annotations’ over-representation

Over-representation of the GO terms annotating at least 1 of the
proteins from random set (11 proteins) compared to the reference

set (38.660)

File overRepresentation proteinsSetRandom.tsv

GO ident GO label Binom. p-val Hyperg. p-val
1 go0:0036399  TCR signalosome assembly 0.00028449 0.00028453
2 go0:0090126  pr. cpx ass. in synap. matur.  0.00028449 0.00028453

246  go0:0021953  CNS neuron differentiation 0.04922 0.04923

687 go:0008150  biological proc. 1.0 1.0

e more GO terms (687 vs. 382)
@ P-values are (much) higher than for setl
(min 2.8E — 4 vs. 4.8E — 36)
e fewer GO terms with p-value < 5%: 246 (36%) vs. 255 (67%)
o still some terms are (slightly) over-expressed
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Example 2: annotations’ over-representation

100 -
— pValue = 0.05

101 -

102 -

p-value

103 -

104 -
GO terms (687)
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Multiple testings correction: rationale

@ When determining whether an annotation associated to k
elements among n is over-represented, we compute whether
the likelyhood of observing at least k elements is low.

o low likelyhood = significance level a: the probability of
incorrectly rejecting Hy is < «
o usually @ = 5%: in 5% of the tests, we accept to incorrectly
reject Hy, i.e. to find it significant whereas it is not
@ When repeating the test over multiple annotations, we
increase the number of hypotheses being tested, which also
increases the likelyhood of a rare event, and therefore, the
likelihood of incorrectly rejecting a null hypothesis.
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Multiple testings correction: explanation

> Cell J. 2019 Jan;20(4):604-607. doi: 10.22074/cellj.2019.5992. Epub 2018 Aug 1

Why, When and How to Adjust Your P Values?

Mohieddin Jafari T, Naser Ansari-Pour 2

Affiliations + expand
PMID: 30124010 PMCID: PMC6099145 DOI: 10.22074/cellj.2019.5992
Free PMC article

Abstract

Currently, numerous papers are published reporting analysis of biological data at different omics
levels by making statistical inferences. Of note, many studies, as those published in this Journal,
report association of gene(s) at the genomic and transcriptomic levels by undertaking appropriate
statistical tests. For instance, genotype, allele or haplotype frequencies at the genomic level or
levels at the il ic level are compared between the case and control
groups using the Chi-square/Fisher's exact test or (i.e. two-sampled) t-test respectively,
with this culminating into a single numeric, namely the P value (or the degree of the false positive
rate), which is used to make or break the outcome of the association test. This approach has flaws
but nevertheless remains a standard and convenient approach in association studies. However, what

becomes a critical issue is that the same cut-off is used when 'multiple’ tests are undertaken on the
same case-control (or any pairwise) comparison. Here, in brevity, we present what the P value
represents, and why and when it should be adjusted. We also show, with worked examples, how to
adjust P values for multiple testing in the R environment for statistical computing (http://www.R-
project.org).

Keywords: Bias; Gene Expression Profiling; Genetic Variation; Research Design; Statistical Data
Analyses.

https://pubmed.ncbi.nlm.nih.gov/30124010/
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Bonferroni correction

Classic method to address multiple testings (there are many others)

Bonferroni correction

o If the desired significance level for a family of n; tests is «

S . . o
@ then test each individual hypothesis at significance level of —
g

@ assumes that the tests are independent. If we apply the tests
on a hierarchy of annotations, this assumption does not hold!

@ can be conservative (i.e. increase the number of false
negative) if there are a large number of tests or the test
statistics are positively correlated —> we may incorrectly
reject some annotations

Still better that no correction at all? )
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Example: list of random proteins (without Bonferroni

correction)

No multiple testing correction: for each test p-value < 0.05 )

setl (382 annot.) random set (687 annot.)

1) 4.79E-36 Heme biosynth. 1) 2.8E-4 TCR signalosome
2) 8.32E-35 Porphyrin. biosynth. 2) 2.8E-4 Prot. cplx assembly
3) 2.41E-33 Heme metab. 3) 4.2E-4 Organelle loc.
4) 5.69E-33 Prototpoph. IX met.  4) 5.7E-4 Guanylate kinase...
254) 0.0489 Regeneration 245) 0.0492 Resp. ionizing rad.
255) 0.0492 Resp. ionizing rad. 246) 0.0492 CNS neuron diff.
43 /53
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Example: list of random proteins (with Bonferroni

correction)

. . . 0.05
Multiple testing correction: for each test p-value <
|annot|

setl |annot| = 382

random set |annot| = 687
each test p-value < 1.3E — 4 each test p-value < 7.3E — 5

1) 4.79E-36 Heme biosynth. %)
2) 8.32E-35 Porphyrin. biosynth.

3) 2.41E-33 Heme metab.

4) 5.69E-33 Prototpoph. IX met.

71) 1.23E-4 Resp. endog. stim.
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Example 1: annotations’ over-representation

102 - -

105 - -
10 - -
10-11 - N
1024 - -

1017 . — pValue = 0.05

—— Bonferroni correction
10-20 - -

p-value

10-23 - -
10-26 - -
10-29 — _
10-32 - -

1035 - -
GO terms (382)
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Example 2: annotations’ over-representation

100 -
— pValue = 0.05
—— Bonferroni correction

10-1 -

102 -

p-value

103 -

104 -

105 -
GO terms (687)
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Benjamini-Hochberg correction

Benjamini-Hochberg correction

@ If the desired significance level for a family of n; tests is «

@ then test each individual hypothesis at a significance level that
depends on the rank of its p-value

. @ .
@ Bonferroni: same threshold (—) for all the annotations
s

@ Benjamin-Hochberg: the smaller the p-value, the smaller the

o . .

threshold (from — for the annotation with the smallest
g

p-value to « for the annotation with the greatest p-value)
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Filtered significant GO terms for Gene setl

File overRepresentedGOtermsWithBonferroni.pdf
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Synthesis

@ Synthesis
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@ Enrichment analysis is a classical method for identifying the
relevant annotations (e.g. GeneOntology terms) that describe
a set of elements (e.g. proteins)

@ Many tools do the work for you... but most people do not use
them correctly

@ Make sure to select the correct reference set!

@ Do not forget to correct for multiple tests!
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Setl: DAVID

3 Cluster(s) [ Download Fi

Enrichment Score:

17.75
[ GOTERM_BP_DIRECT heme biosynthetic

process =
[} UP_KW BIOLOGICAL PROCESS Heme RT 10 57E28 17E-27
[[] KEGG PATHWAY Porphyrin RT 11 30E24 1BE23
[] KEGG_PATHWAY i is of cofactors BT 11 22E18 6.7E-18
[[] KEGG_PATHWAY Metaholic pathways RT 11 33E8B 65E8
[[] UP KW DISEASE Disease variant A s 10 15E1 31E1
Annotation Cluster 2 Enrichment Score: 4.17
D GOTERM_CC_DIRECT :i:nc;mriﬂl inner AT 7 3.5E8  T.0E7
[] UP_KW_CELLULAR_COMPONENT Mitochondrion £ 7 46E6 1BES
[] UP_KW DOMAIN Transit peptide RT o 5 11E5 45E5
[] GOTERM_CC_DIRECT mitochondrion £ 7 21E5 2.1E4
[[] UP_SEQ FEATURE TRANSIT-Mitochondrion RT 5 9.8E5 6.1E-3
[[] GOTERM CC DIRECT mitochondrial matrix BT 3 16E-2 T7.8E2
[] UP_KW_CELLULAR COMPONENT Membrane BT e—— 7 10E1 14E1

Annotation Cluster 3 Enrichment Score: 0.14 Benjamini

D UP_KW DOMAIN Transmembrane helix AT s 3 6.7E-1 9.0E1

[] UP_KW_DOMAIN Transmembrane 24 — 3 6.8E-1 9.0E-1
GOTERM_CC_DIRECT integral component of -

(m} e BT o 3 7T9E-1  1.0E0

[7] UP_SEQ FEATURE TRANSMEM:Helical [1 — 3 7961 1080

| 18 terms ‘ were not clustered.
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Setl: Revigo (scatterplot)

Biolagical Process (37) | Cellular Component (7)  Molecular Function (7) ~ Tag Clouds | Report

Descripion | Table | Scatterpiot | 3D Scatterpiot  Interactive Graph | Tree Map
= Bubble size: [ LogSize v
% 6- O 10
5 27
2 72
2
Bubble color: [ Value
—30
2
-20
TG0:0046501 protoporphyrinogen I mekabolic process 10
(CO:0007058) biomyihei process
04 0
TGO0006785) e B biar
6007605 meme Obiomyt | L (60:0006725) cellular aromatic
) compound metabolic process
(GO:0006784) heme A
biosynthetic process
(G0:0006785) heme B
_a] biosynthetic process
[ (c0:0006807) nitrogen
‘compound metabolic process
(GO:0009058) biosynthetic
6 (COCUTAL tebapyrom matbol | process
[ t60:0018130) heterocyde
biosynthetic process
[ 160:0019438) aromatic
| compound biosynthetic process
[ (60:0020027) hemoglobin
metabolic process
10 (G0:0033013) tetrapyrrole
1 H i & ] '
Samanticspace X
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Setl: Revigo (scatterplot

Biolagical Process (37) | Cellular Component (7) ecular Function (7) | Tag Clouds

Descripti Table = Scatterplot 3D Scaiterplot  Interactive Graph | Tree Map

Value to show: (@ Value (O Log?

cellular nitrogen
tetrapyrrole metabolic process

cellular
biosynthetic
process

heme A biosynthetic process

cellular
biosynthetic -
process.

process

heme a metabolic process

cellular nitrogen
compound metabolic organic
process

cellular metabolic...

heme O biosynthetic process

heme B biosynthetic process

oycle

arganenitrogen
metabolic process

compound
metabol

heme B metabolic process

arganic eyelic
compound

biosynthetic
process

organanitrogen
compound
heterocycle biosynthetic process biosynthetic
process

heme © metabalic process.
aromatic compound biosynthetic

pigment metabolic process

process

organic substance biosynthetic
process

response to
arsenic-containi...

response to...
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