
Edition 2024 in Fréjus

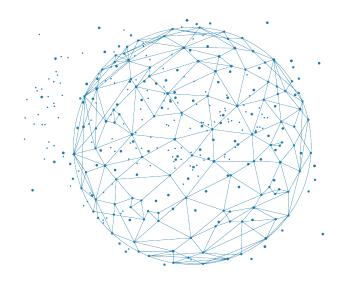
Theoretical part Semantic Web

Olivier DAMERON -Alban GAIGNARD -Pierre LARMANDE

DOI version final

Outline

- Life science data require
 - Integration
 - Knowledge-based reasoning
- The Semantic Web provide a relevant framework
- Use RDF to represent knowledge graphs
- Use SPARQL to query knowledge graphs
- Use RDFS and OWL to formalize knowledge as ontologies


What you will learn (hopefully):

- A general understanding of metadata and (symbolic) knowledge...
- ... that relies on surprisingly simple principles

Life science data from an information science perspectives

Big data [Laney, 2001]

Datasets so large and complex that traditional data processing is inadequate

Life science: data deluge since the 90s [Aldhous, 1993]

- Computerized biomedical data (evidence-based medicine, translational medicine, precision medicine)
- Genomics and bioinformatics

Science. 1993 Oct 22;262(5133):502-3.

Managing the genome data deluge.

Aldhous P.

PMID: 8211171 [PubMed - indexed for MEDLINE]

Science, 1995 Aug 4;269(5224):630.

Europe opens institute to deal with gene data deluge.

Williams N.

Lanfear J1.

Nat Rev Drug Discov. 2002 Jun;1(6):479. Dealing with the data deluge.

PMID: 12119750 [PubMed - indexed for MEDLINE]

Author information

PMID: 7624788 [PubMed - indexed for MEDLINE]

Our estimation is that genomics is a ``four-headed beast'' — it is either on par with or the most demanding domain[...] in terms of:

- data acquisition
- data storage
- data distribution
- data analysis

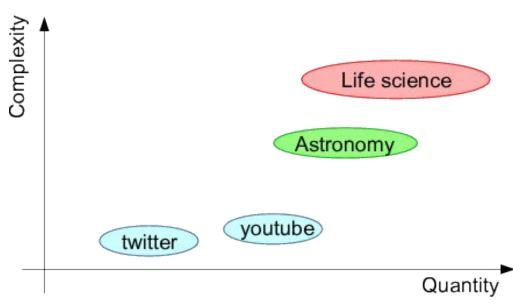
PERSPECTIVE

Big Data: Astronomical or Genomical?

Zachary D. Stephens¹, Skylar Y. Lee¹, Faraz Faghri², Roy H. Campbell², Chengxiang Zhai³, Miles J. Efron⁴, Ravishankar Iyer¹, Michael C. Schatz⁵*, Saurabh Sinha³*, Gene E. Robinson⁶*

Table 1. Four domains of Big Data in 2025. In each of the four domains, the projected annual storage and computing needs are presented across the data lifecycle.

Astronomy	Twitter	YouTube	Genomics	
25 zetta-bytes/year	0.5–15 billion tweets/year	500-900 million hours/year	1 zetta-bases/year	
1 EB/year	1-17 PB/year	1-2 EB/year	2-40 EB/year	
In situ data reduction	Topic and sentiment mining	Limited requirements	Heterogeneous data and analysis	
Real-time processing	Metadata analysis		Variant calling, ~2 trillion central processing unit (CPU) hours	
Massive volumes			All-pairs genome alignments, ~10,000 trillion CPU hours	
Dedicated lines from antennae to server (600 TB/s)	Small units of distribution	Major component of modern user's bandwidth (10 MB/s)	Many small (10 MB/s) and fewer massive (10 TB/s) data movement	
	25 zetta-bytes/year 1 EB/year In situ data reduction Real-time processing Massive volumes Dedicated lines from antennae	25 zetta-bytes/year 0.5–15 billion tweets/year 1 EB/year 1–17 PB/year In situ data reduction Topic and sentiment mining Real-time processing Metadata analysis Massive volumes Dedicated lines from antennae Small units of	25 zetta-bytes/year 0.5–15 billion tweets/year 500–900 million hours/year 1 EB/year 1–17 PB/year 1–2 EB/year In situ data reduction Topic and sentiment mining Real-time processing Metadata analysis Massive volumes Dedicated lines from antennae Small units of Major component of modern user's	



loi:10.1371/journal.pbio.1002195.t001

Nature of data complexity

- multiple scale (heterogeneity)
- (highly) interdependent at each scale
- interdependent between scales
- variability
- incompleteness
- evolutive
- distributed (and lack of interoperability)

Challenge (computational): How to handle this complexity?

- Experts are very good at analyzing data on their domain (hint...)
 - on their domain
 - on their data
 - with their limited human capacity
 - ... help is (badly) needed!
- The difficulty is to analyze data systematically
- Expertise = ability to use knowledge for interpreting data
 - aggregating data
 - inferring connections
- How to use their expertise, instead of trying to re-discover it?
 - assumption: we may not always need to re-discover naively the whole biology at each experiment

Requirements for handling the complexity of life science data

- Requirement 1: identify resources with interoperable identifiers
- Requirement 2: describe resources
 - their characteristics
 (e.g. start and end position of a gene)
 - their relations to other resources
 (e.g. the transcript associated to a gene, the transcription factors that regulate it...)
 - the categories they belong to
- Requirement 3: combine descriptions from different origins
- Requirement 4: query these descriptions
- Requirement 5: support semantically-rich querying and reasoning (because of the inner complexity) using domain knowledge

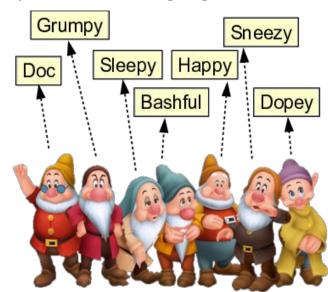
Metadata is a love note to the people and machines after you

"Metadata, you see, is really a love note - it might be to yourself, but in fact it's a love note to the person after you, or the machine after you, where you've saved someone that amount of time to find something by telling them what this thing is."

Jason Scott - http://ascii.textfiles.com/archives/3181

Capturing expertise with annotations

Annotation = explicit representation of the result of some interpretation process



Annotation = explicit representation of the result of some interpretation process

- ideally by an expert (from big data to smart data)
- requires some background knowledge
- formalization spanning the whole semantic spectrum, ranging
 - from free text...
 - ...to controlled vocabularies...
 - ...to (shared) semantic frameworks

Annotate data =

- Describe explicitly...
 - ... the relevant elements in your data...
 - ... their characteristics...
 - ... and the relations between them
- So that users (you + the non-experts) or programs do not have to go once again through the (tedious, complicated) process of interpreting them
 - It is important
 - It seems easy...
 - Exercice: describe a set of images
 - ...but turns out more difficult than expected
- 2 aspects:
 - Interpreting and describing data is for domain experts
 - Formalizing and representing the annotations and their dependencies is for data engineers

Fundamental principles

Data / Observations

#1 Annotate data = describe their interpretation -> metadata

#2 There are some dependencies btw some annotations -> knowledge graph

Abstractions / Models

#3 The dependencies between categories support multiple layers of generalization -> ontologies

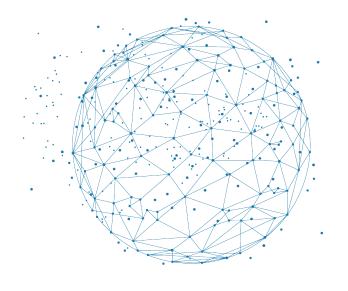
Graph of data U knowledge graph U ontologies

#4 Reasoning = rules for traversing the graphs

Using annotations for overcoming data complexity

Add annotations? But we have too much data already!

Benefits


- Can be used as proxy to complex data
- Simplifies by providing a compact abstraction
- Overcomes variability
- Enriches by making explicit the underlying meaning

Storing, sharing and reusing these annotations is the key to life science systematic data analysis


General introduction to semantic web

Knowledge Graphs

nviron 71300000 résultats (0,59 secondes

nstitut Pasteur | Pour la recherche, pour la santé, pour demain

aire un pour la recherche - Institut **Pasteur.** Fermer. EN · FR · Accueil. Saisissez vos mots-clés. 'Institut **Pasteur**. Retour L'Institut **Pasteur** · Notre histoire.

lotre histoire · Centre médical Institut Pasteur · Institut Pasteur · Dons - pasteur

Histoire de Louis Pasteur et de l'Institut Pasteur

ttps://www.pasteur.fr/fr/institut-pasteur/notre-histoire

Découvrez l'histoire de l'Institut Pasteur depuis 1888 et les diverses actions de Louis Pasteur, son ombat pour la vaccination et la recherche médicale.

Pasteur — Wikipédia

ttps://fr.wikipedia.org/wiki/Pasteur

e mot pasteur peut avoir plusieurs significations. Sommaire. 1 Fonction; 2 Saints chrétiens; 3

atronyme; 4 Toponyme; 5 Spectacles. 5.1 Films; 5.2 Pièce de ...

ouis Pasteur · Pasteur (christianisme) · Institut Pasteur

ouis Pasteur — Wikipédia

ttps://fr.wikipedia.org/wiki/Louis_Pasteur ▼

Centre Pasteur Dermatologie

ibis Boulevard Pasteur · 02 51 84 06 06

ouis Pasteur, né à Dole (Jura) le 27 décembre 1822 et mort à Marnes-la- Coquette (Hauts-de-Seine, à ette époque en Seine-et-Oise) le 28 septembre 1895 ...

tenommé pour: Vaccin contre la rage Domaines: Chimie, microbiologie Étudiants en thèse: Charles Friedel

ationalite: Française Etudiants en thèse: Charles Frie

Catégorie:Louis Pasteur · Pasteur Vallery-Radot · Maison de Louis Pasteur à ..

Lister

Commentaires

Named entity recognition (NLP)

Several facets of Artificial Intelligence

→ « pasteur » refers to Louis Pasteur

Knowledge Representation

- → Louis Pasteur is a scientist
- → a scientist is a kind of person

Reasoning

- → « if an entity is a scientists then its also a person »
- → « If a web resource is a person then display his/her portrait »

... and many other such as Computer Vision, Machine Learning

Travailler chez Apple

À propos d'Apple Équipes Apple Retail Étudiants Profil Se connecter

Siri - Software Engineer - Knowledge Graph

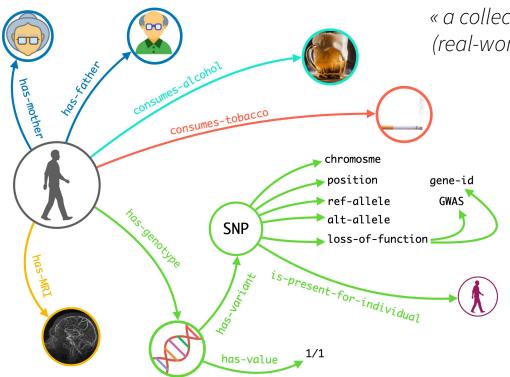
Santa Clara Valley (Cupertino), California, United States Machine Learning and AI

« Retour aux résultats de recherche

Summary

Posted: May 29, 2019

Weekly Hours: 40 Role Number: 200039719 The Knowledge Graph team is looking for outstanding engineers to build the next- generation of knowledge graph and data infrastructure at Apple to power features including Siri and Spotlight. If you are interested in building a world-class


- Key Qualifications Extensive systems programming experience in either Python or Java. Solid system development skills in UNIX-type OS (e.g. Linux, Mac OS)
 - · Experience working with large data sets and pipelines, ideally using the Apache
 - · software stack (e.g. Spark, HBase)
 - Excellent problem-solving and analytic skills
 - · You are self-motivated and able to quickly learn new domains
 - · You have good attention to detail
 - · Broad knowledge of computer science and systems
 - . Excellent communication and collaborative skills; Able to work as part of a small, focused team and give your best effort

Description

The Siri Knowledge Graph team is building groundbreaking technology in the areas of question answering, knowledge base construction and machine learning. We aim to be a "know-it-all" question answering system, capable of answering questions from hundreds of millions of users about nearly anything. The question answering system is backed by a knowledge graph that was automatically constructed from a vast number of data sources including natural language text, HTML tables, and many others. You will have exciting opportunities to working on rapidly building a more complete and accurate knowledge graph with impact across all of Apple. This knowledge graph also enables many other features across Apple besides the question answering feature at Siri. The problems we pursue include

- * Information Extraction from natural language text and semi-structured data such as HTML tables
- * Data Integration (e.g., Entity Resolution and Knowledge Fusion)
- * Knowledge graph reasoning and inference
- * Named Entity Linking

What is a Knowledge Graph?

« a collection of **interlinked descriptions of things** (real-word objects, abstract concepts, events, etc.) »

a database

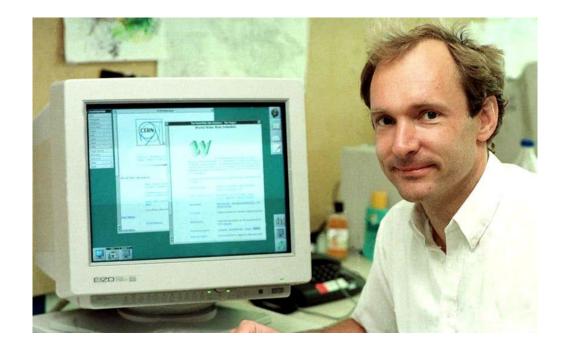
→ information storage / extraction

a **graph**

→ network analysis

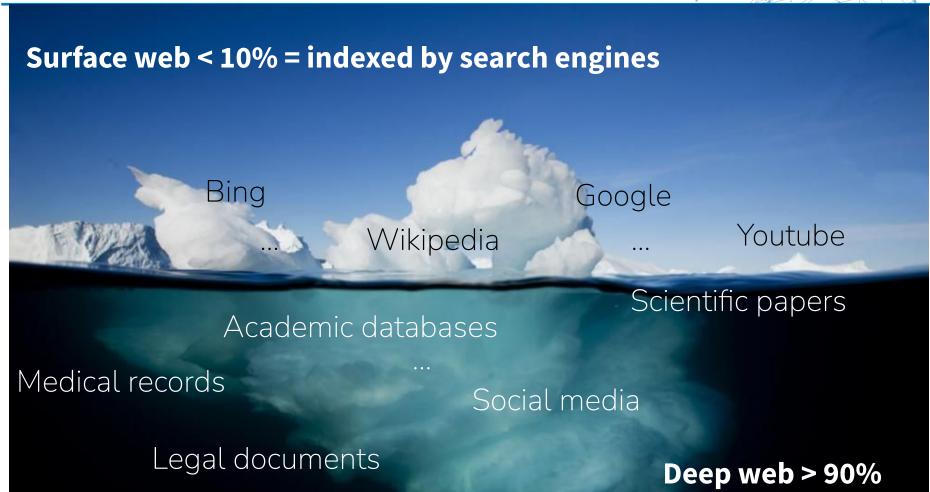
a knowledge base

→ formal semantics (logical facts, logical inferences)

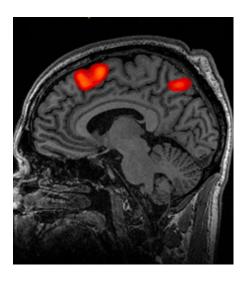



From linked documents (Web)

... to linked data (Semantic Web)


90's: web of documents

A **de-centralized** system of **hypertext documents** based on URL, HTTP, and HTML **standards** (World Wide Web consortium, W3C).


Nowadays: Web of data

Why so much data is not findable?

Genetic sequences

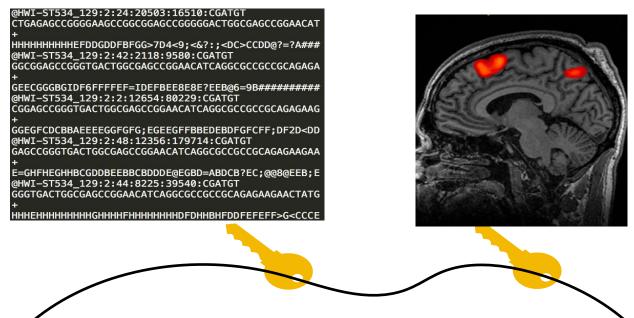
- 1st line = label
- 2nd line = raw sequence (A,T,C,G)
- 4th line = quality score for each base



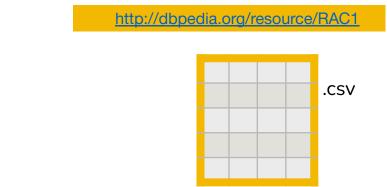
Medical image

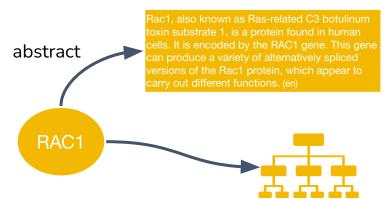
- MRI as imaging modality
- brain as imaging target
- labeled data (intensity/volume ?)

Semantic web

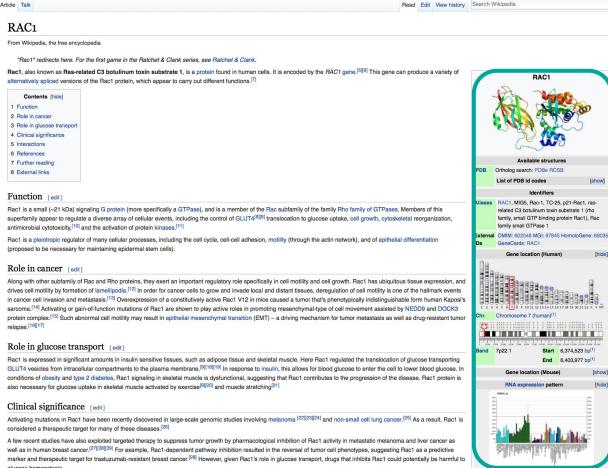

Make

and

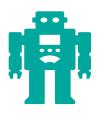


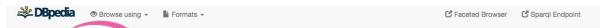

better exchange, interpret & reason on diverse data!!

W3C recommendations



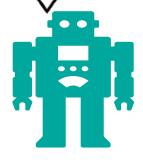
→ technological stack to implement FAIR principles <a> □


Wikipedia ... for humans


WIKIPEDIA

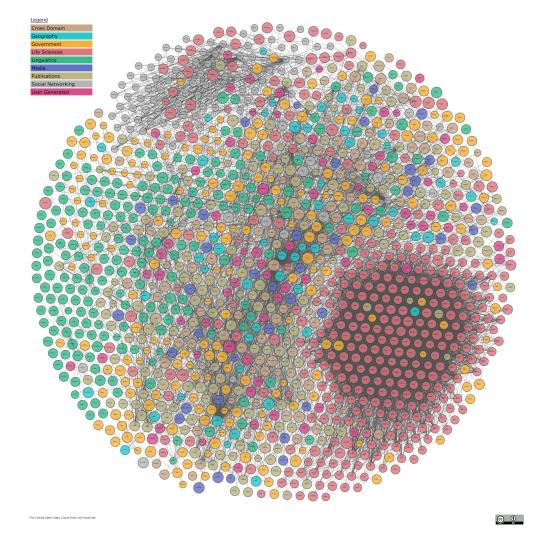
Wikipedia ... for machines (DBpedia)

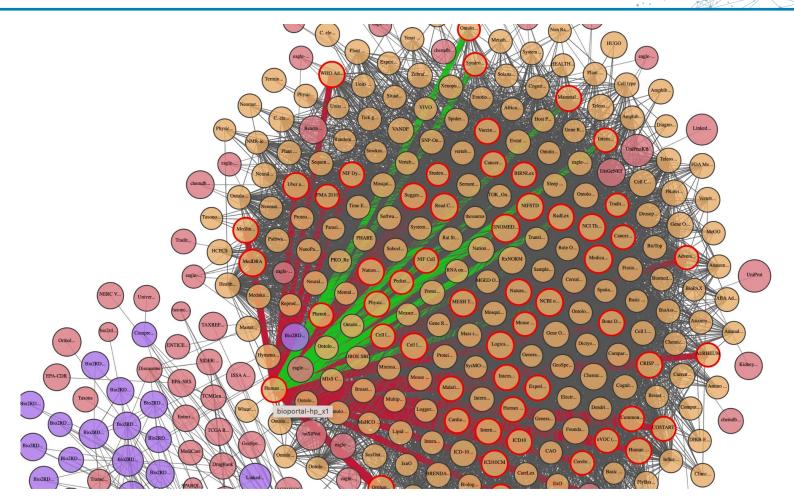
Give me all gene IDs described with « toxin »

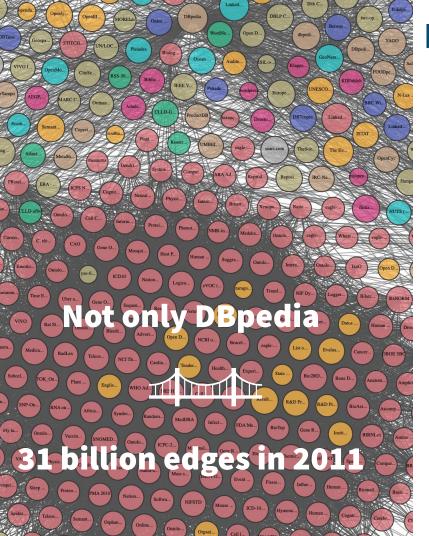

About: RAC1

An Entity of Type : _____alecule, irom Named Graph : http://dbpedia.org, within Data Space : dbpedia.org

Rac1, also known as Ras-related C3 botulinum toxin substrate 1, is a protein cond in human cells. It is encoded by the RAC1 gene. This gene can produce a variety of alternatively spliced versions of the Rac1 protein, which appear to carry out different functions.

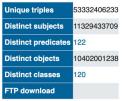

Property	Value
dbo:al stract	 Rac1 (RAS-related C3 botulinus toxin substrate 1) は、ヒト細胞に存在するタンパク質であり、RAC1遺伝子によりコードされてる。RAC1は選択的スプライシングにより異なる機能を持ったいくつかのタンパク質を生成しており、このうちの1つがRac1であるRac1は、悪性黒色腫や肺非小細胞癌を含むさまざまな癌の発生において、重要な役割を果たしていると考えられている。そのため、現在これらの疾患に対する治療標的と考えられている。(a)
	 Rac1 (англ. Ras-related C3 botulinum toxin substrate 1) — внутриклеточный белок из суперсемейства ГТФаз, относится к «малым» G-белкам. Находится в двух состояниях: активном ГТФ-связанном и неактивном ГДФ-связанном состоянии. В своей активной форме Rac1 связывается в клетке с целым рядом эффекторных белков и приводит к регулировке мнг их клеточных процессов тами процессов тами и процессов тами процессов (процессов тами процессов тами проц
dbo:entrezge.	• 5879
dbo:wikiPageExternalLink	 http://cmkb.cellmigration.org/report.cgi?report=orth_overview&gene_id=5879 http://www.cellmigration.org/index.shtml
dbo:wikiPageID	- 13562705 (xsd:integer)
dbo:wikiPageRevisionID	- 703055305 (xsd:integer)
rd:type	 ow:Thing wikidata:(2206229 wikidata:(28054 dbo:Biomolecule dbo:Protein

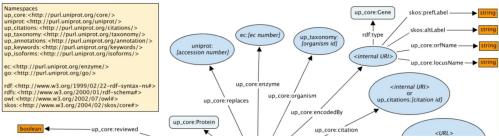

SELECT DISTINCT ?gene ?entrez_id ?uniprot_idWHERE {
 ?gene dbo:abstract ?abstract .
 FILTER (regex(?abstract, "toxin")).
 ?gene dbo:entrezgene ?entrez_id .
 OPTIONAL {?gene dbo:uniprot ?uniprot_id} .



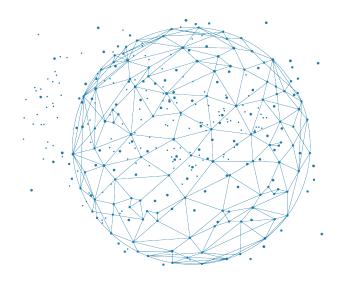
Intto://dbpedia.org/sparq/ Virtuoso SPARQL Query Editor Default Data Set Name (Graph IRI) About I Namespace Profixes I Inference rules I RDE views I ISPARQL The interpretation of this server do not allow you to retrieve remote RDF data, see details.) Results Format: Execution timeout: Options: Strict checking of void variables Generate SPARQL compilation report (instead of executing the query) (The result can only be sent back to browser, not saved on the server, see details) Results and the sent of this server do not allow you to retrieve remote RDF data, see details.)

gene http://dbpedia.org/resource/DsbA		uniprot_id
		"POAEG4"
http://dbpedia.org/resource/Cholinesterase		"P06276"
http://dbpedia.org/resource/Cholinesterase		"P22303"
http://dbpedia.org/resource/Cholinesterase	"43"	"P06276"
http://dbpedia.org/resource/Cholinesterase		"P22303"
http://dbpedia.org/resource/Clostridium_perfringens_alpha_toxin		
http://dbpedia.org/resource/Lymphotoxin		"P01374"
http://dbpedia.org/resource/Lymphotoxin		"Q06643"
http://dbpedia.org/resource/Lymphotoxin		"P01374"
http://dbpedia.org/resource/Lymphotoxin		"Q06643"
http://dbpedia.org/resource/Casein_kinase_2		"P19784"
http://dbpedia.org/resource/Casein_kinase_2		"P67870"
http://dbpedia.org/resource/Casein_kinase_2		"P68400"
http://dbpedia.org/resource/Casein_kinase_2		"P19784"
http://dbpedia.org/resource/Casein_kinase_2		"P67870"
http://dbpedia.org/resource/Casein_kinase_2		"P68400"
http://dbpedia.org/resource/Casein_kinase_2		"P19784"
http://dbpedia.org/resource/Casein_kinase_2		"P67870"
http://dbpedia.org/resource/Casein_kinase_2		"P68400"
http://dbpedia.org/resource/Collagenase		"P03956"
http://dbpedia.org/resource/Collagenase		"P22894"
http://dbpedia.org/resource/Collagenase		"P03956"
http://dbpedia.org/resource/Collagenase		"P22894"
http://dbpedia.org/resource/Guanylin		"Q02747"
http://dbpedia.org/resource/Macrophage_inflammatory_protein		"P10147"
http://dbpedia.org/resource/Macrophage inflammatory protein		"P13236"
http://dbpedia.org/resource/Macrophage_inflammatory_protein		"P10147"
http://dbpedia.org/resource/Macrophage_inflammatory_protein		"P13236"



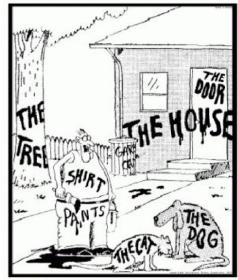

UniProt SPARQL Downloads Documentation/Help

Named graph http://sparql.uniprot.org/uniprot


Overview diagram

Main concepts

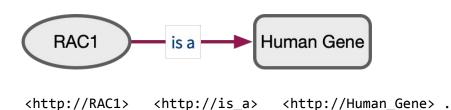
53 billion triples in Uniprot KG (Jan. 2024)


Representing Knowledge Graphs

There has to be a better way

"Now! That should clear up a few things around here!"

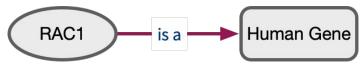
RDF: formalize statements



Simple sentence "subject - verb - object"

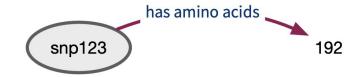
Graphical representation

Machine readable syntax (RDF)


RAC1 is a human gene.

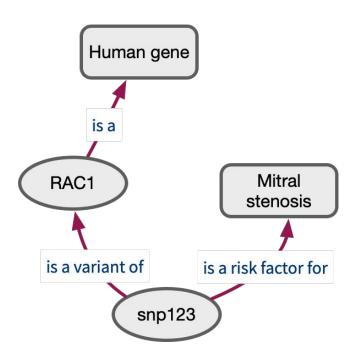
RDF: syntax to describe (and link) resources

Definition


- (1) an RDF statement represents a **relationship** between two entities: the **subject** and the **object**
- (2) the **predicate** represents the nature of their relationship
- (3) the relationship is phrased in a directional way (from subject to object) and is called in RDF a property
- (4) RDF statements are called **triples**: they consist of three elements they
- (5) Nodes are URIs to identify named entities on the web or Literals to represents text, numbers

<http://RAC1> <http://is_a> <http://Human_Gene> .

<http://snp123> <http://is_a_variant_of> <http://RAC1> .

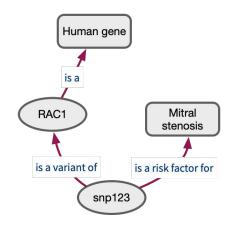

<http://RAC1> <http://has_amino_acids> 192 .

RDF graphs

Definitions

- (1) A **graph** structure is formed with a set of **nodes** (resources) and **edges**(relationships between resources)
- (2) A set of RDF triples is called an RDF graph. RDF is a **directed**, **labeled graph** data format for representing information in the Web.

Writing RDF graphs with Turtle


Definitions

- (1) One line per triple, each element separated by **space**, each triple endswith a
 - S P 0.
- (2) If two triples describe the same subject, you can reuse it:

S
$$P_1 \ O_1$$
; $P_2 \ O_2$.

(3) If two triples describe the same subject and predicate, you can reuse it:

```
S P 0_1, 0_2.
```

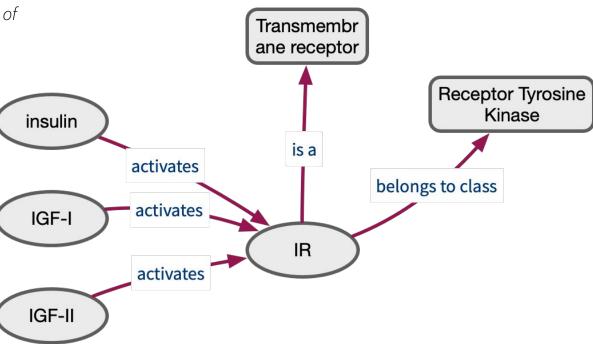


```
@prefix ns: <http://my/namespace/> .
```

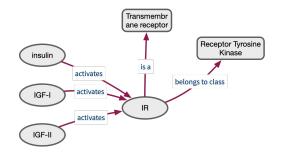
```
ns:RAC1 rdf:type ns:Human_gene .
ns:snp123 ns:is_a_variant_of ns:RAC1;
ns:is_a_risk_factor_of ns:Mitral_stenosis
```

In practice ... from text to KG

Exercise


From wikipedia: "The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase."

- 1. Draft a **graphical representation** of the associated knowledge graph.
 - ✓ Identify verbs → predicates
 - ✓ Identify linked entities, who is a subject of a relation? who is the object of a relation?
- 2. Give the **RDF syntax** for this KG.


Practice ...

In practice ...

"The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase."

In practice ...

You

Can you translate in RDF (turtle syntax) the following statement: "The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase"

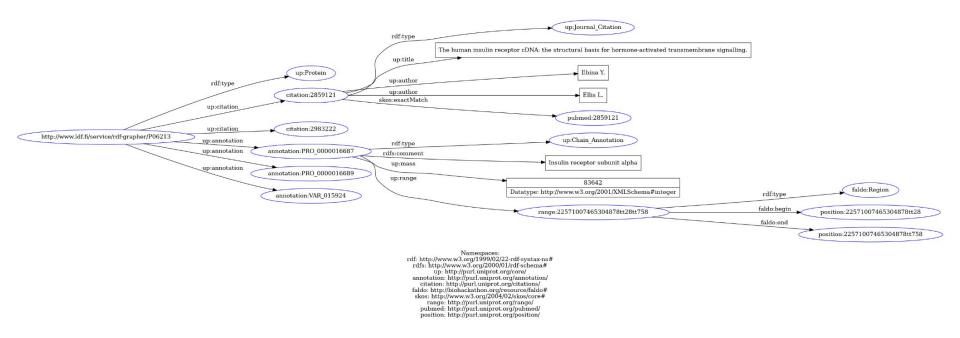
ChatGPT

Sure, here's how you could represent that statement in RDF using Turtle syntax:

```
Copy code
turtle
@prefix ex: <http://example.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
ex:InsulinReceptor rdf:type ex:TransmembraneReceptor ;
    ex:activatedBy ex:Insulin,
                 ex:IGF-I,
                 ex:IGF-II;
   ex:belongsToClass ex:ReceptorTyrosineKinase .
ex:Insulin a ex:Hormone .
ex:IGF-I a ex:Hormone .
ex:IGF-II a ex:Hormone .
```

In practice ... from KG to text

https://legacy.uniprot.org/uniprot/P06213.ttl


```
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix up: <http://purl.uniprot.org/core/> .
@prefix annotation: <http://purl.uniprot.org/annotation/> .
<P06213> rdf:type up:Protein ;
         up:citation citation:2859121 ,
                     citation:2983222 ,
         up:annotation annotation:PRO 0000016687,
                       annotation: PRO 0000016689 ,
                       annotation: VAR 015924 .
citation:2859121 rdf:type up:Journal Citation ;
 up:title "The human insulin receptor cDNA: the structural basis for
hormone-activated transmembrane signalling.";
 up:author "Ebina Y.", "Ellis L.";
  skos:exactMatch pubmed:2859121 .
annotation: PRO 0000016687 rdf: type up: Chain Annotation;
  rdfs:comment "Insulin receptor subunit alpha";
 up:mass 83642 ;
 up:range range:22571007465304878tt28tt758 .
range:22571007465304878tt28tt758 rdf:type faldo:Region ;
  faldo:begin position:22571007465304878tt28;
 faldo:end position:22571007465304878tt758 .
```

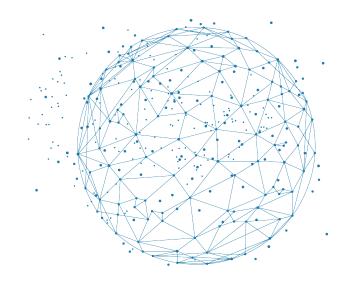
Exercice

1. Draft the knowledge graph associated to the RDF triples of the P06213 Uniprot entity.

Practice ... from KG to text

https://www.ldf.fi/service/rdf-grapher

Practice ... from KG to text


ChatGPT

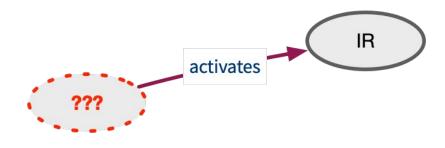
La protéine P06213 est une protéine. Elle est citée dans des journaux ayant pour titre "The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signaling." Ses auteurs sont Ebina Y. et Ellis L. Cette protéine a des annotations incluant "Sous-unité alpha du récepteur à l'insuline" avec une masse de 83642. Cette annotation correspond à une région spécifique identifiée aux positions 28 à 758.

!! inaccurate positions

!! no link to the pubmed paper

Querying with graph patterns

Triple patterns (TP)


SPARQL is the W3C language to query multiple data sources expressed in RDF.

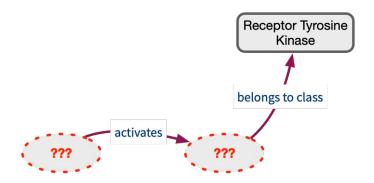
The principle consists in defining a graph pattern to be matched against an RDF graph.

Definition

Triple Patterns (TPs) are like RDF triples except that each of the subject, predicate and object may be a **variable**. Variables are prefixed with a ?.

Give me all known activators of IR?

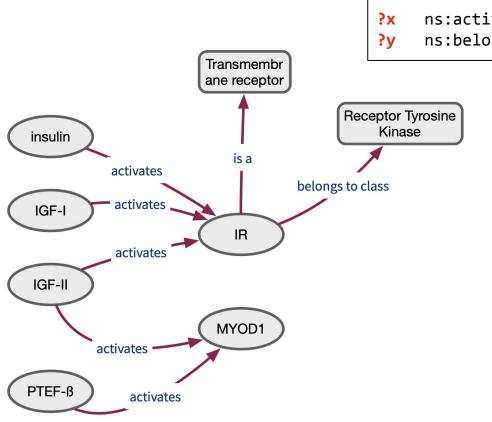
?x ns:activates ns:IR .


Basic graph patterns (BGP)

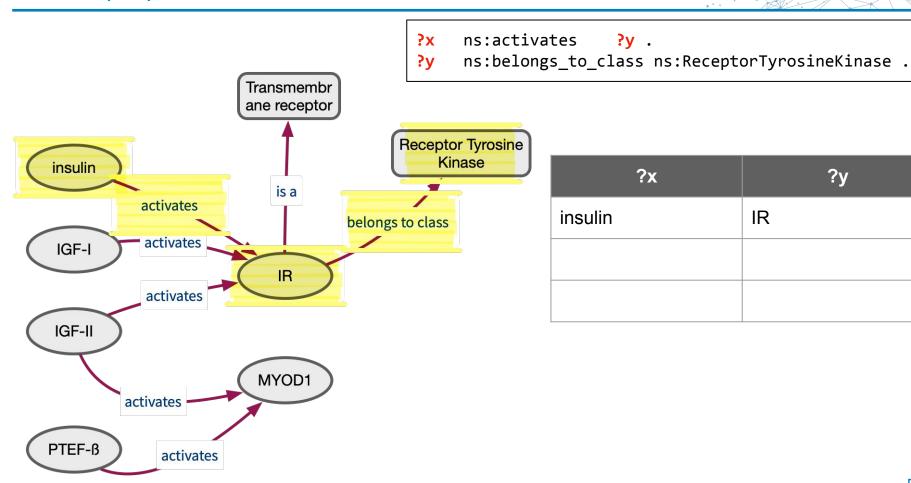
Definition

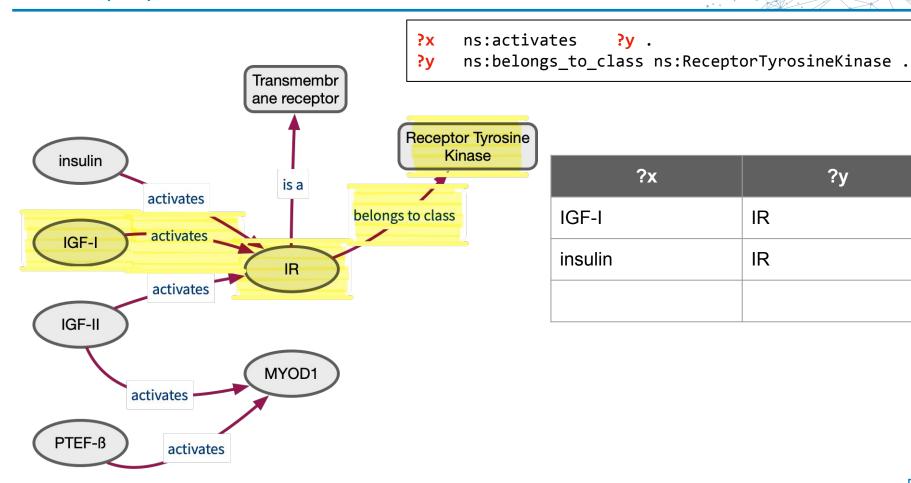
Basic Graph Patterns (BGPs) consist in a set of triple patterns to be matched on an RDF graph.

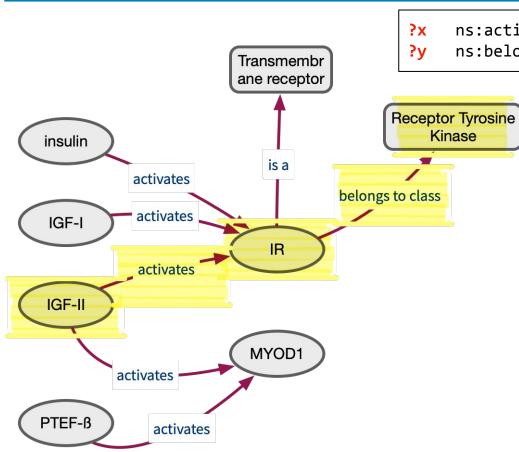
Give me **all** known activators of **any** Receptor Tyrosine Kinase?


→ all entities that activate something that belongs to class "Receptor Tyrosine Kinase"

- ?x ns:activates ?y .
- ?y ns:belongs_to_class ns:ReceptorTyrosineKinase .

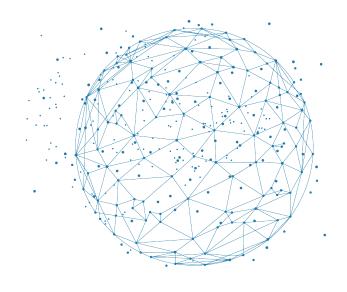



?x	ns:activates	?y .	
? y	ns:belongs_to_	class ns:ReceptorTyrosineKinase .	


?x	?y

?x	?y
insulin	IR

?y .



ns:activates ?y ns:belongs_to_class ns:ReceptorTyrosineKinase .

?x	?y
IGF-II	IR
IGF-I	IR
insulin	IR

<http://www.w3.org/1999/02/22-rdf-syntax-ns#> 1 - PREFIX rdf: PREFIX rdfs: http://www.w3.org/2000/01/rdf-schema#> Shortcuts http://purl.org/dc/elements/1.1/> PREFIX dc: PREFIX WD: http://vocabularies.wikipathways.org/wp#> definition PREFIX dcterms: http://purl.org/dc/terms/> PREFIX identifiers: PREFIX atlas: http://rdf.ebi.ac.uk/resource/atlas/"> PREFIX atlasterms: http://rdf.ebi.ac.uk/terms/atlas/ PREFIX efo: http://www.ebi.ac.uk/efo/> 10 Query clause SELECT DISTINCT ?wpURL ?pwTitle ?expressionValue ?pvalue where { 12 SERVICE https://www.ebi.ac.uk/rdf/services/atlas/spargl { 14 ?factor rdf:type efo:EFO 0000270 . ?value atlasterms:hasFactorValue ?factor . ?value atlasterms:isMeasurementOf ?probe . ?value atlasterms:pValue ?pvalue . ?value rdfs:label ?expressionValue . 19 ?probe atlasterms:dbXref ?dbXref . 20 ?pwElement dcterms:isPartOf ?pathway . ?pathway dc:title ?pwTitle . ?pathway dc:identifier ?wpURL . ?pwElement wp:bdbEnsembl ?dbXref . ORDER BY ASC(?pvalue)

Reasoning with Knowledge graphs

Handle synonyms (from PubMed https://pubmed.ncbi.nlm.nih.gov/)

- Look for articles about "vitamin c" in full text search
- Look at the MeSH annotations
- Look for the MeSH term vitamin C and the articles it annotates
- Look for the MeSH term ascorbic acid and the articles it annotates

Handle taxonomy (from the MeSH https://www.nlm.nih.gov/mesh/)

- Look for cardiovascular disease
- Select the relevant MeSH term (https://meshb.nlm.nih.gov/record/ui?ui=D002318)
- Look at its synonyms and its descendants
- Add it to the search builder
- Search on PubMed

Synonyms and taxonomy are handled transparently

In the GO website (http://geneontology.org/)

- Look for "glucose metabolic process"
- Select "ontology" in the radio box
- Select the relevant GO term (http://amigo.geneontology.org/amigo/term/GO:0006006)
- Select either the "graph view" or the "inferred tree view"
 - Visualise the GO term ancestors
 - Visualize the GO term descendants
- For Homo sapiens, how may proteins, miRNA, etc are annotated by this GO term (or one of its descendants)?

What is an ontology?

Definitions

"[...] an explicit specification of a conceptualization" (Gruber, 1993)

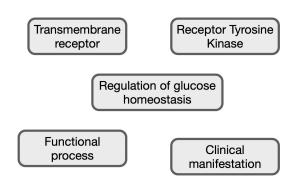
"[...] a formal specification of a shared conceptualization" (Borst, 1997)

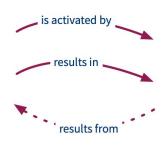
Explicit → a machine does not spontaneously "understand", "infer" or "reason"

Conceptualization → a knowledge model aimed at reducing the complexity (generalizing) real facts

Formal → reasoning mechanisms must be correct for reliable deductions

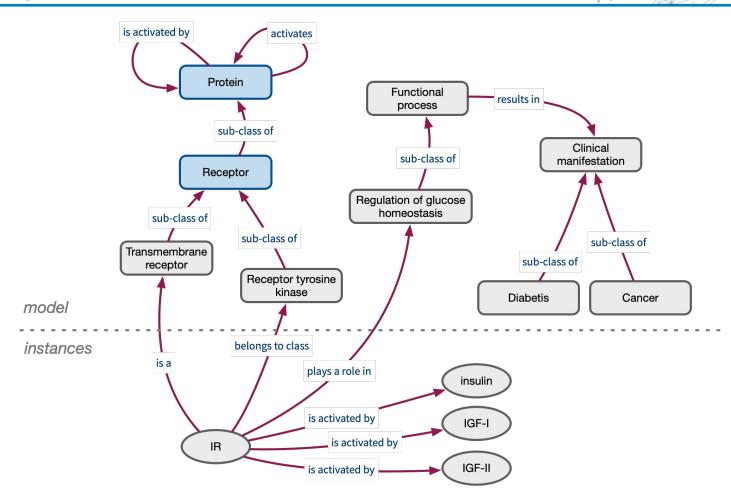
Shared → domain knowledge result from the consensus of expert communities




Toy example

The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase. [5]

Metabolically, the insulin receptor plays a key role in the regulation of glucose homeostasis, a functional process that under degenerate conditions may result in a range of clinical manifestations including diabetes and cancer.


How these concepts are related together?

How these relations link concepts together?

Do they allow deductions?

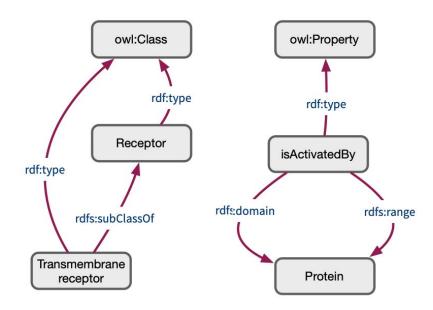
Toy example

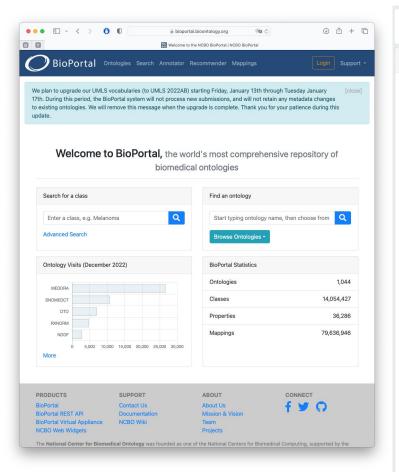
RDF-S to represent simple ontologies

RDF-Schema aims at providing a simple vocabulary to **organize domain-specific knowledge** through classes (**concepts**) and properties (**relationships**).

Class VS Instances

Resources may be classified into groups called **classes**. The members of a class are known as **instances** of the class. The rdf:**type** property is used to state that a resource is an instance of a class (« is a » relation).


Defining ontologies


- rdf:**type**: to state that a resource is an instance of a class
- owl:Class & owl:Property to define specific classes or properties
- rdfs:subClassOf: to state that all the instances of one class are instances of another
- rdfs:subPropertyOf: to state that all resources related by one property are also related by another

- rdfs:range: a constraint on the class membership(s) for values of this property
- rdfs:domain: a constraint on the class membership(s) for resources having this property
- rdfs:label, rdfs:comment

Sample RDF-S vocabulary

```
@prefix etbii: <http://our-namespace#> .
@prefix wikipedia: <https://en.wikipedia.org/wiki/>
etbii:TransmembraneReceptor rdf:type owl:Class ;
     rdfs:subClassOf etbii:Receptor ;
     rdfs:seeAlso wikipedia:Cell_surface_receptor .
etbii:Receptor rdf:type owl:Class ;
         rdfs:subClassOf etbii:Protein .
etbii:Protein rdf:type owl:Class .
etbii:isActivatedBy rdf:type owl:Property .
     rdfs:domain etbii:Protein ;
     rdfs:range etbii:Protein .
```


Human Phenotype Ontology

Last uploaded: December 15, 2022

Proporties Notes Mannings Widgets

mary Classes Properties Notes	Mappings Widge	S					
np to:	Details Visualization	Notes (0) Class Mappings (18)					
No ad success	Preferred Name	Type II diabetes mellitus					
Blood group Linical modifier requency Mode of inheritance Past medical history Phenotypic abnormality Abnormal cellular phenotype Abnormality of blood and blood-forming t Abnormality of head or neck Abnormality of limbs Abnormality of limbs Abnormality of metabolism/homeostasis Abnormal circulating metabolite concen	Synonyms	Noninsulin-dependent diabetes mellitus Noninsulin dependent diabetes mellitus Type II diabetes Diabetes mellitus, noninsulin-dependent Diabetes mellitus type 2 NIDDM diabetes mellitus Non-insulin dependent diabetes Noninsulin-dependent diabetes Noninsulin-dependent diabetes Noninsulin-sependent diabetes Noninsulin-sependent diabetes Noninsulin-dependent diabetes IIDDM Diabetes mellitus Type II Type 2 diabetes					
Abnormal CSF metabolite concentration Abnormal CSF protein concentration Abnormal drug response Abnormal enzyme/coenzyme activity	Definitions	A type of diabetes mellitus initially characterized by insulin resistance and hyperinsulinemia and subsequently by glucose interolerance and hyperglycemia. Persons with type II diabetes mellitus rarely develop ketoacidosis.					
Abnormal erythrocyte sedimentation rate Abnormal homeostasis	ID	http://purl.obolibrary.org/obo/HP_0005978					
Abnormal energy expenditure Abnormal glucose homeostasis	comment	Persons with type II diabetes mellitus rarely develop ketoacidosis.					
Abnormal blood glucose concentrati Glucose intolerance Diabetes mellitus Diabetes ketoacidosis	database_cross_reference	SNOMEDCT_US:44054006 MSH:D003924 UMLS:C0011860					
Insulin-resistant diabetes mellitus Maternal diabetes Maturity-onset diabetes of the yc	definition	A type of diabetes mellitus initially characterized by insulin resistance and hyperinsulinemia and subsequently by glucose interolerance and hyperglycemia.					
Type I diabetes mellitus Type II diabetes mellitus Impaired glucose tolerance	has_alternative_id	HP:0005965 HP:0100652					
Hyperinsulinemia Impaired gluconeogenesis Increased proinsulin:insulin ratio Insulin insensitivity Insulin resistance Abnormal sweat homeostasis Abnormality of facid-base homeostasis Abnormality of fluid regulation Abnormality of femperature regulation Excessive purine production	has_exact_synonym	Noninsulin dependent diabetes mellitus Type II diabetes Diabetes mellitus, noninsulin-dependent NIDDM diabetes mellitus Non-insulin dependent diabetes Noninsulin-dependent diabetes NIDDM Diabetes mellitus Type II Type 2 diabetes					
	has_obo_namespace	human_phenotype					
Abnormal metabolism Abnormal salivary metabolite concentra Abnormal stool composition Abnormal tissue metabolite concentration	has_related_synonym	Noninsulin-dependent diabetes mellitus Diabetes mellitus type 2					

Reasoning with RDFS-Entailments

RDF 1.1 Semantics

W3C Recommendation 25 February 2014

This version:

http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

Latest published version:

http://www.w3.org/TR/rdf11-mt/ Test suite:

http://www.w3.org/TR/2014/NOTE-rdf11-testcases-20140225/ Implementation report:

http://www.w3.org/2013/rdf-mt-reports/index.html

http://www.w3.org/TR/2014/PR-rdf11-mt-20140109/ Previous Recommendation:

http://www.w3.org/TR/rdf-mt/

Patrick J. Hayes, Florida IHMC

Peter F. Patel-Schneider, Nuance Communications

Please check the errata for any errors or issues reported since publication.

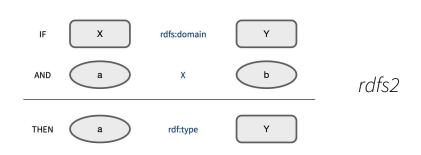
The English version of this specification is the only normative version. Non-normative translations may also be available.

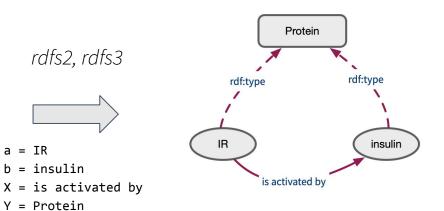
Copyright © 2004-2014 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply

Inference rules to produce new logical facts, or to check for logical soundness (satisfiability)

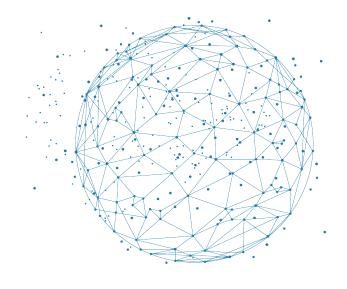
Deduce the multiple **types** of an entity based on class hierarchies

Deduce the **types** of entities exploiting the definition of **relations**

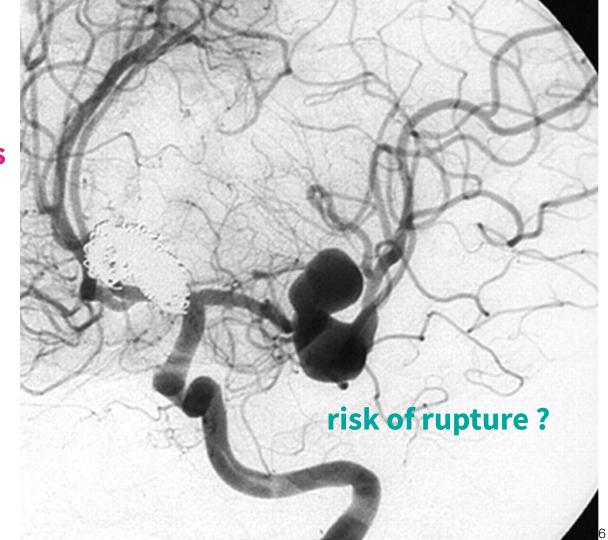

... more possibilities with OWL (Web Ontology Language) and Description Logics (DL)


Reasoning with RDFS-Entailments

From the specification of a "link", how to infer the type of a linked entity?


	If S contains:	then S RDFS entails recognizing D:							
rdfs1	any IRI aaa in D	aaa rdf:type rdfs:Datatype .							
rdfs2	aaa rdfs:domain xxx . yyy aaa zzz .	yyy rdf:type xxx .							
rdfs3	aaa rdfs:range xxx . yyy aaa zzz .	zzz rdf:type xxx .							
rdfs4a	ххх ааа ууу	xxx rdf:type rdfs:Resource .							
rdfs4b	ххх ааа ууу.	yyy rdf:type rdfs:Resource .							
rdfs5	xxx rdfs:subPropertyOf yyy . yyy rdfs:subPropertyOf zzz .	xxx rdfs:subPropertyOf zzz .							
rdfs6	xxx rdf:type rdf:Property .	xxx rdfs:subPropertyOf xxx .							
rdfs7	aaa rdfs:subPropertyOf bbb . xxx aaa yyy .	xxx bbb yyy .							
rdfs8	xxx rdf:type rdfs:Class .	xxx rdfs:subClassOf rdfs:Resource .							
rdfs9	xxx rdfs:subClassOf yyy . zzz rdf:type xxx .	zzz rdf:type yyy .							
rdfs10	xxx rdf:type rdfs:Class .	xxx rdfs:subClassOf xxx .							
rdfs11	xxx rdfs:subClassOf yyy . yyy rdfs:subClassOf zzz .	xxx rdfs:subClassOf zzz .							
rdfs12	xxx rdf:type rdfs:ContainerMembershipProperty .	xxx rdfs:subPropertyOf rdfs:member .							
rdfs13	xxx rdf:type rdfs:Datatype .	xxx rdfs:subClassOf rdfs:Literal .							

Application with multi-scale data

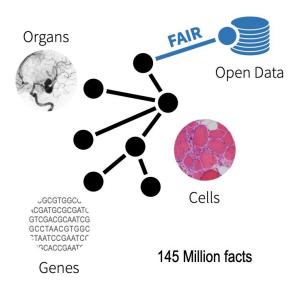


ICAN cohort: 34 univ. hospitals / 3400 subjects

- 3000 MRIs
- 800 whole genomes (under processing)

Bridging imaging-omics-clinical data: INEX-MED

INEX-MED



Intracranial aneurysms (3.2 % world population) **Congenital myopathies** (rare diseases)

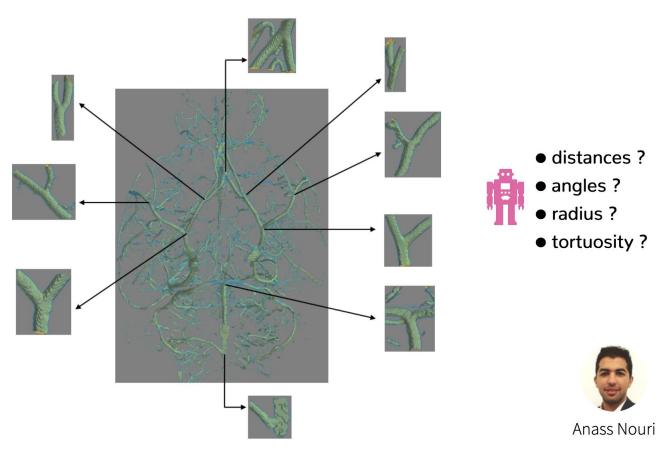
Multi-scale « Knowledge Graph »

Select Combine Reuse (Share)

Ontologies SPARQL queries

Predict Explain

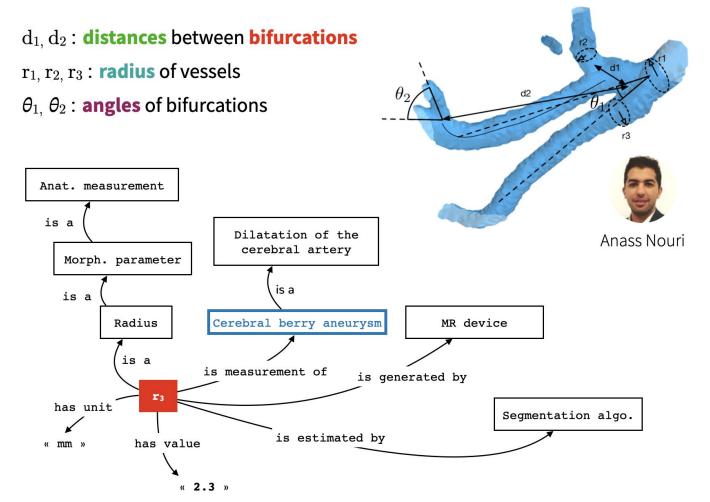
Statistics Reasoning Machine learning



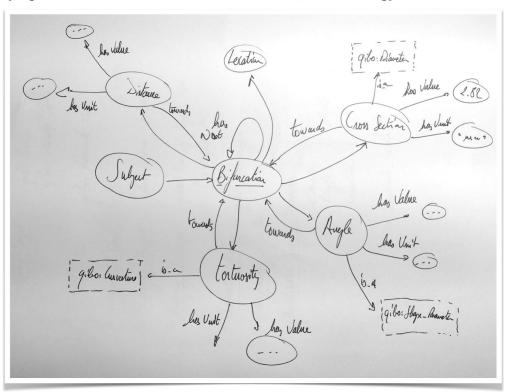
@Strasbourg

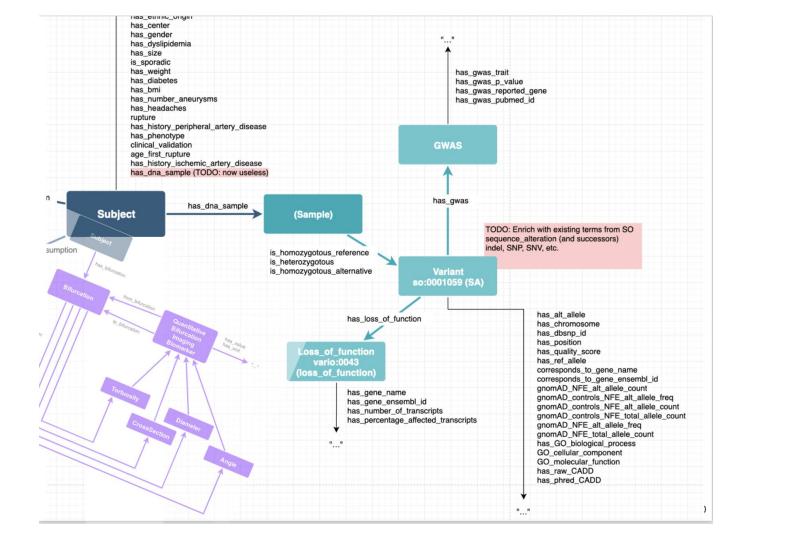
Association between imaging phenotypes - « omics » signatures ? Patients with high/low aneurysm rupture risk ?

Quantifications of cerebral artery bifurcations


Anass Nouri, Florent Autrusseau

Quantifications of cerebral artery bifurcations


Anass Nouri, Florent Autrusseau

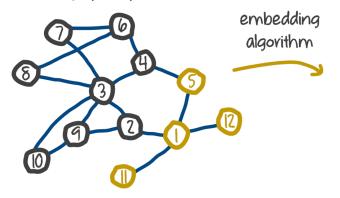

В	С	D	E	F	G	н	1	. 9	K	L	M	N	0	Р	Q	R	S
X coord	Y coord	Z coord	centrers bifs ID	CS (to neighbor1)	CS (to neighbor2)	CS (to neighbor3)	CS (to neighbor4	neighbor1 ID	neighbor2 II	neighbor3 ID	neighbor4 ID	FB1	FB2	FB3	Dist. to FB	1 Dist. to FB2	Dist. to FB3
176	241	0	3	2.82842712474619	2.9428090415820	4.93223042511211	1 -1	1 1	1	2 4	-1	-1	-1	1		1 -1	58
212	275	0	4	4.47213595499958	4.8670420531638	5.21895141649746	-1	1 0)	8 3	-1	1 -1	3	-1		1 36	-1
186	299	0	7	2.55228474983079	2.2761423749154	2.94280904158206	3 -1	1 24	2	2 6	-1	1 -1	-1	-1		1 -1	-1
195	273	4	8	-1	6	3.21895141649746	3 -1	1 10)	4 5	-1	1 4	-1	-1		5 -1	-1
163.66666	230.666666			-1	-1	-1								-1	_	5 -1	-1
122	240	10		-1		3.97874585671244		-						-1	_	5 -1	-1
50	162	15		2.82842712474619	-1	-1			-				-	-1		1 3	-1
33.666666		25		-1	-1	-1		-					-	-1		4 -1	-1
127	223	28		3.82136720504592		-1		-				_		-1	_		-1
1 111	228	28		-1		4.15737865166653				-		-	_	-1	_	3 -1	-1
132.5	222.5	34		4	4.1573786516665	-1						_	-	-1		1 20	-1
171	225	34		3.31207919004578	-1	4 4570700540005	1 -1		_			-		-1	_	4 -1 1 -1	-1
						4.15737865166653	1 -					_	-	-1	_	1 -1 8 -1	78
124	176 180	38	29	5.63299316185545		4.15737865166653		1 49	3	8 31	-	30	-1	-1	1	9 -1	-1
128.66666	225				4.3147373033330 4.1572798518885											7 -1	-
8 202		30,333	31	4.7090034014973Z	4.1575700510000	5 00020233040		1 40							1	0 -1	-
9 138		0	nte	4 6	KOT		no	Th	06		12	1 1	0	C		9 -1	
0 113	200	1		11 1725	276	all		30				1 1				2 -1	
1 147	229	41	25	4 4570384 18865	V 85NUVES183331	2 2761/227/015/	0	32		1 22		16	_	\sim		3 -1	
2 114		41		2.82842712474619												9 -1	
3 84	62								. 6							7 -1	
4 48				-1		4 17213595103958		37		6 47	\sim					9 -1	-1
5 214				3.9787458 7124	D1771	4 19 4		32		Δrr	1					0 -1	-1
6 8								34	4	53	• 45					5 -1	-1
7 134		43	43	-1	-1			57	5	0 38	-1					5 -1	-1
143		43	44					1 48	4							8 -1	-1
Angles1	Ang	les2	Angles3	Angles4	Angles5	Angles	5	resitute nel	abbor1	ortuosity to n	eighbor2	Tortuo	sity to	neig	hbor3	Tortuosity to	neighbor 4
59.3461659	01 61 210								66667								_1
									5205							-	-1
96.9824972			46.97728606104					0.44/111 62	5385								-1
25.5246019	90 65.575	5794768	89.77008119096	35 25.52460190	011 65.57557947	681 89.7700811	909635	0.434782608	3695652	0.381118	881118881	0.	47883	5978	835979		-1
39.6165682	23 75.1211	1354659	72.07978686060	77 39.61656823	339 75.12113546	596 72.0797868	3606077		-1	0.4056372	254901961	0.	38690	4761	904762		-1
-	1	-1		-1	-1	-1	-1		-1		-1				-1		-1
	1	-1		-1	-1	-1	-1		-1		-1			0.4	471875		-1
-	1	-1		-1	-1	-1	-1	0.40666666	6666667		-1				-1		-1
99.8110502	20 67.3460	0505207	18.29113790830	99.81105020	24 67.34605052	073 18.2911379	083032		-1		-1				-1		-1
83.736047	28 26.084	5415520	74.4986404330	63 83.73604728	300 26.08454155	204 74.498640	433063	0	.471875	0.3787878	378787879				-1		-1
-	1	-1		-1	-1	-1	-1		-1	0.4393939	39393939	0.	40126	9841	269841		-1
61.5631098	85 83.017	5027120	35.86096921989	61.5631098	83.01750271	208 35.8609692	2198911	0.328502415	5458937	0.3647058	882352941				-1		-1
-	1	-1		-1	-1	-1	-1		-1		-1	0.	36470	5882	352941		-1
56.7890892	23 66.4017	7912129	58.24859258384	08 56.78908923	891 66.40179121	297 58.2485925	838408	0.425925925	5925926	0.5060606	806060606	0.	40126	9841	269841		-1
22.5745959	95 79.8973	3882083	84.83729875636	39 22.5745959	79.89738820	831 84.8372987	7563639	0.34166666	6666667		0.25	0.	35555	5555	555556		-1

BrainHack project

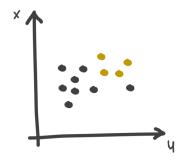
« From MS excel sheets to semantic bioimaging markers : representing and querying cerebral vascular measures with the QIBO ontology »


```
SELECT * WHERE {
  # Search variants
 ?subject ican:has_dna_sample ?sample .
 ?sample ican:is_heterozygotous ?variant .
 ?variant ican:has_chromosome "19";
           ican:has_position ?position ;
           ican:has_alt_allele ?alt_allele ;
           ican:has_ref_allele ?ref_allele .
 FILTER (?position > 10092337 && ?position < 10106407)
  # dbSNP identifier
 OPTIONAL { ?variant ican:has_dbsnp_id ?dbSNPid . }
  # First aneurysm rupture: age and localisation
 OPTIONAL { ?subject ican:age_first_rupture ?ageRupt . }
 OPTIONAL { ?subject ican:loc_first_rupture ?locRupt . }
```


KG Application in ML

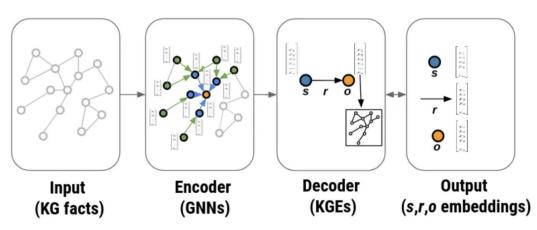


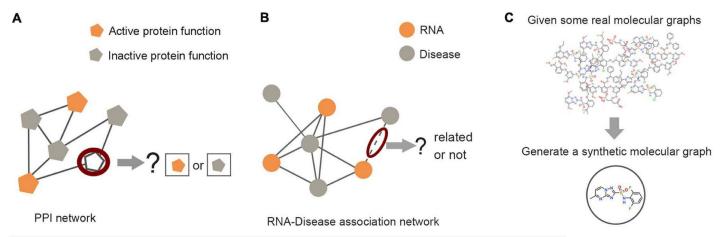
Graph embeddings approach


from a graph representation ...

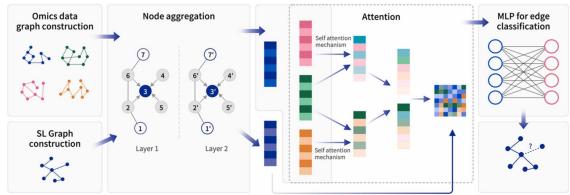
from https://gearons.org

Example in practice

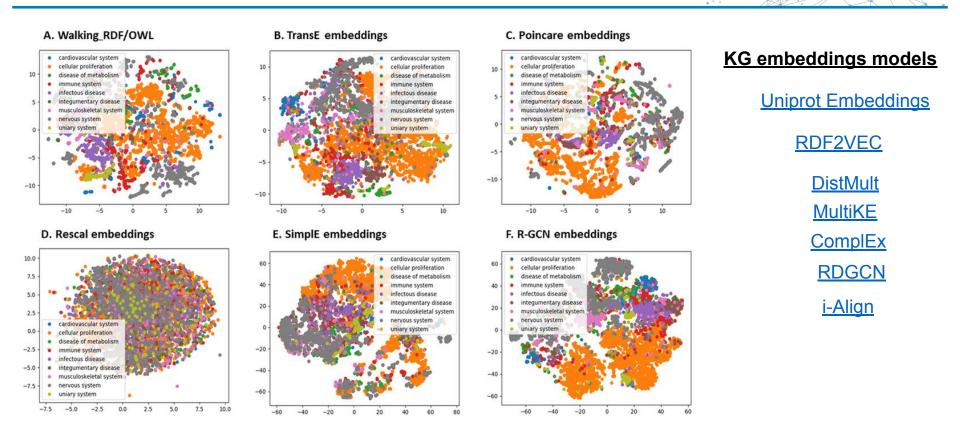

to real vector representation


Some GNN Tasks

Disease-Gene association
Protein Function prediction
PPI prediction
Drug-Target (Drug) Interaction
prediction
Drug response ...


Zhang X-M, Liang L, Liu L and Tang M-J (2021) Graph Neural Networks and Their Current Applications in Bioinformatics. Front. Genet. 12:690049. doi: 10.3389/fgene.2021.690049

Link prediction / node classification in life sciences


Zhang X-M, Liang L, Liu L and Tang M-J (2021) Graph Neural Networks and Their Current Applications in Bioinformatics. *Front. Genet.* 12:690049. https://doi.org/10.3389/fgene.2021.690049

Using graph-based model to identify cell specific synthetic lethal effects

https://doi.org/10.1016/j.csbj.2023.10.011

Embeddings methods on knowledge graphs give different results

Alshahrani M, Thafar MA, Essack M. 2021. Application and evaluation of knowledge graph embeddings in biomedical data. *PeerJ Computer Science* 7:e341 https://doi.org/10.7717/peerj-cs.341

Knowledge Graphs (KGs)

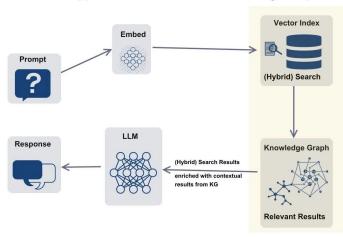
Cons:

- Implicit Knowledge
- Hallucination
- Indecisiveness
- Black-box
- Lacking Domainspecific/New Knowledge

Pros:

- Structural Knowledge
- Accuracy
- Decisiveness
- Interpretability
- Domain-specific Knowledge
- Evolving Knowledge

Pros:

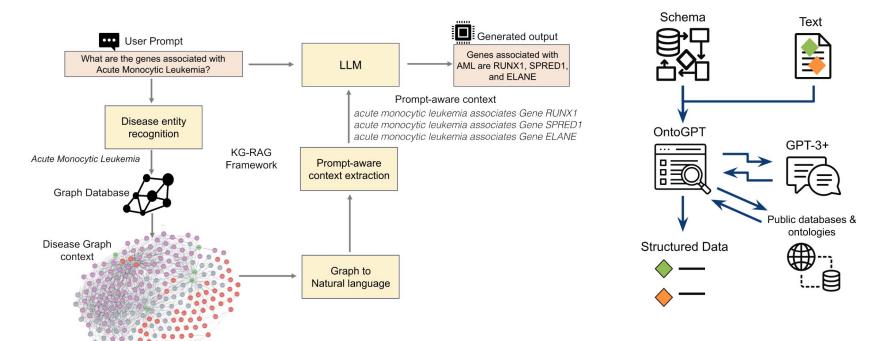

- · General Knowledge
- Language Processing
- Generalizability

Cons:

- Incompleteness
- Lacking Language Understanding
- Unseen Facts

Large Language Models (LLMs)

RAG Application enriched with a Knowledge Graph


Retrieval Augmented Generation and Knowledge Graphs

https://gradientflow.com/boosting-llms-with-external-knowledge-the-case-for-knowledge-graphs/

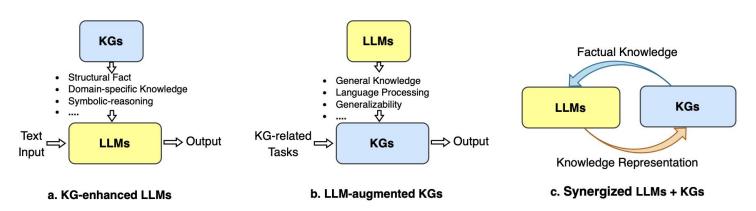
=> Boosting LLMs with External Knowledge: The Case for Knowledge Graphs

Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., & Wu, X. (2023). Unifying Large Language Models and Knowledge Graphs: A Roadmap. *ArXiv*, *abs*/2306.08302.

Some Life Science application of LLMs + KG

KG-RAG. Soman et al. https://arxiv.org/pdf/2311.17330.pdf

Overview of the SPIRES approach. SPIRES is available as part of the open source OntoGPT package: https://github.com/ monarch-initiative/ontogpt


Toward combining KGs and LLMs

KG to LLM

- Document / explain generated text with "facts" coming from knowledge graphs: e.g. Explicability https://arxiv.org/pdf/2309.01029.pdf https://arxiv.org/pdf/2309.01029.pdf https://arxiv.org/abs/2311.09188
- Explain data with complex structure : e.g. map data with ontologies, ontology alignment
- Answer domain-specific questions : e.g. guided fine-tuning

LLM to KG

- Natural language interface to generate SPARQL queries: e.g. SPARQL Generation: an analysis on fine-tuning OpenLLaMA for Question Answering over a Life Science Knowledge Graph. Ana Claudia Sima et al. SWAT4HCLS 2024 https://arxiv.org/abs/2402.04627
- Augment knowledge with synthetic data for better prediction in graph embedding approaches e.g. https://arxiv.org/abs/2203.13965

Phenomics Assistant: An Interface for LLM-based Biomedical Knowledge Graph Exploration

Shawn T O'Neil,
 Kevin Schaper,
 Glass Elsarboukh,
 Justin T Reese,
 Sierra A T Moxon,
 Nomi L Harris,
 Monica C Munoz-Torres,
 Peter N Robinson,
 Melissa A Haendel,
 Christopher J Mungall

doi: https://doi.org/10.1101/2024.01.31.578275

BioMedGPT: Open Multimodal Generative Pre-trained Transformer for BioMedicine

Yizhen Luo et al. https://arxiv.org/abs/2308.09442

Structured Prompt Interrogation and Recursive Extraction of Semantics (SPIRES): a method for populating knowledge bases using zero-shot learning 3

J Harry Caufield ▼, Harshad Hegde, Vincent Emonet, Nomi L Harris,
Marcin P Joachimiak, Nicolas Matentzoglu, HyeongSik Kim, Sierra Moxon, Justin T Reese,
Melissa A Haendel ... Show more

Bioinformatics, Volume 40, Issue 3, March 2024, btae104, https://doi.org/10.1093/bioinformatics/btae104

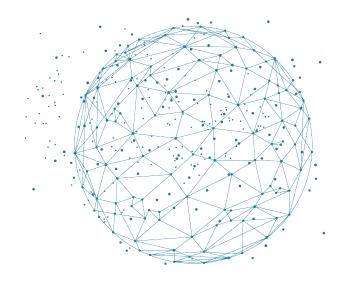
Biologically informed variational autoencoders allow predictive modeling of genetic and drug-induced perturbations

Daria Doncevic 1, Carl Herrmann 1

Affiliations + expand

PMID: 37326971 PMCID: PMC10301695 DOI: 10.1093/bioinformatics/btad387

Dynamic Retrieval Augmented Generation of Ontologies using Artificial Intelligence (DRAGON-AI)


Sabrina Toro et al

https://arxiv.org/abs/2312.10904

Biomedical knowledge graph-enhanced prompt generation for large language models

Soman et al. https://arxiv.org/pdf/2311.17330.pdf

Keep in mind

Complex data analyses require fine-grained, explicit descriptions

- Annotate your data with RDF to assemble knowledge graphs (KGs)
- Support future integration by referring to other Knowledge Graphs: URIs
- Formalize domain knowledge with ontologies:
 RDFS, OWL
- Mine (multiple) KGs with graph patterns: (federated) SPARQL queries

Advantages

- Graphs for humans & machines
- Semantic heterogeneity
- Established web technologies
- Technological framework
 for F * I R principles
- De-centralized: many query-able datasets published on the web (Linked Data Cloud)

Disadvantages

- Semantic heterogeneity (many Life Science ontologies ...)
- Reliability of external SPARQL endpoints
- No graphical user interfaces... learn RDF syntaxes and SPARQL query language
- Scalable querying is still a hot research topic ...

Going further

- Bob DuCharme
 - What is RDF? http://www.bobdc.com/blog/whatisrdf/
 - What is RDFS?
 http://www.bobdc.com/blog/whatisrdfs/
 - SPARQL in 11 minutes
 https://www.youtube.com/watch?v=FvGndkpa4K0
 - Learning SPARQL, 2nd ed. O'Reilly
- https://www.w3.org/TR/rdf11-primer/
- https://www.w3.org/TR/sparql11-query/
- https://www.slideshare.net/LeeFeigenbaum/spargl-cheat-sheet
- http://www.wikipathways.org/index.php/Help:WikiPathways_Sparql_queries
- https://www.fun-mooc.fr/fr/cours/web-semantique-et-web-de-donnees/

Questions?

olivier.dameron@univ-rennes1.fr alban.gaignard@univ-nantes.fr

