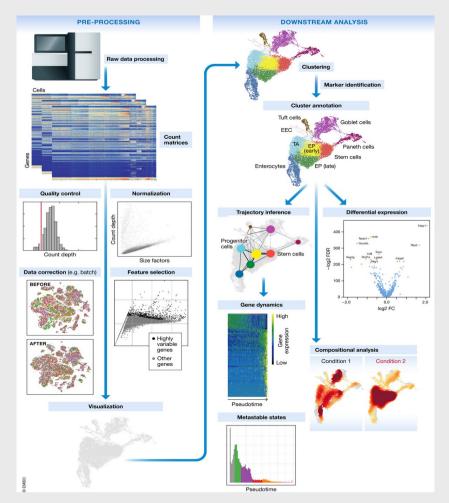
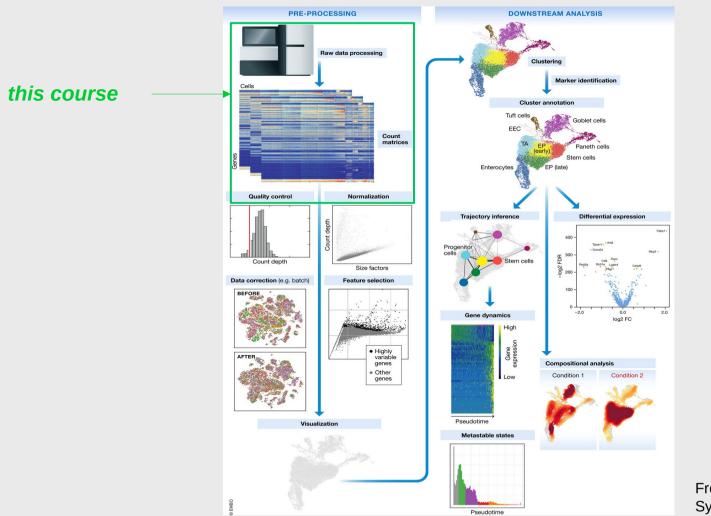

SincelITE 2024


Aziza CAIDI

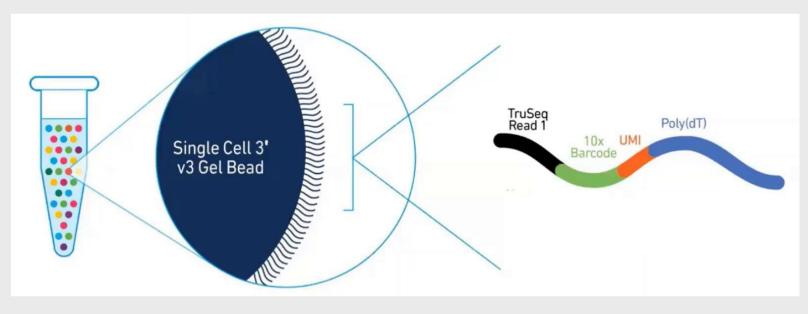
Mapping, quality control and quantification


Main steps of single cell data processing

From Luecken and Theis, Mol Systems Biology 2019

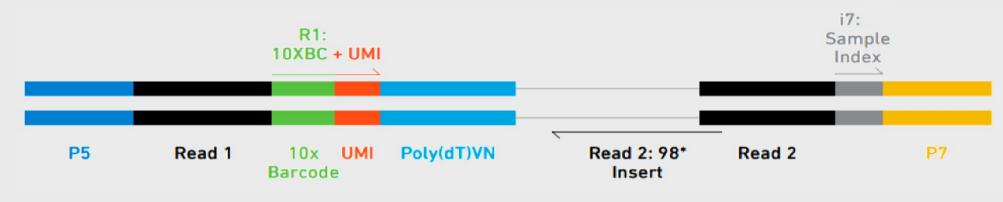
Main steps of single cell data processing

From Luecken and Theis, Mol Systems Biology 2019



The starting library

We will use a droplet-based library as an example.


10X GENOMICS®

The starting library

We will use a droplet-based library as an example.

Read1: unique cell barcode (x nt) + UMI (y nt)

Read2: RNA 3' sequence

I7: sample index: determines which sample the read originated from

Cellular barcode: determines which cell the read originated from Unique molecular identifier (UMI): determines which transcript molecule the read originated from

Plan

• Demultiplexing: generating fastqs from bcl

• Quality Check

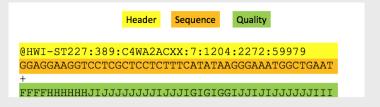
• Generating a gene x cell count matrix

Demultiplexing

Convert BCL files (sequencer output) to fastq files Most used tool : 10X's cellranger mkfastq a wrapper around bcl2fastq

- Usual sample sheet
- You must know :
 - i7 (i5) index sequence
 - R1 and R2 lengths
 - (depends on technology, version...)

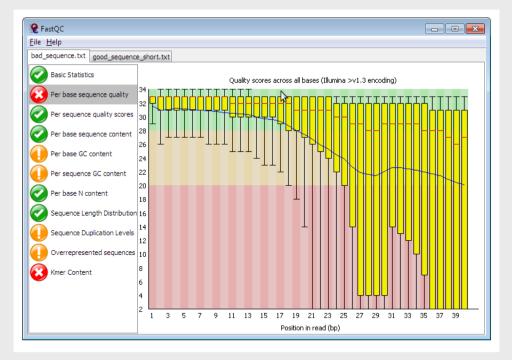
	-	_		_	_	
	A	В	C	D	E	F
1	[Header]					
2	IEMFileVersion	5				
3	Investigator Name	MD				
4	Experiment Name	sincellte				
5	Date	31/12/18				
6	Workflow	GenerateFASTQ				
7	Application	NovaSeq FASTQ Only				
8	Instrument Type	NovaSeq				
9	Assay	Chromium SingleCell 10x				
10	Index Adapters	Chromium SingleCell 10x Indexes (4x96 Indexes				
11	Description	PE26-98_SingleCell-10X				
12	Chemistry	Default				
13	[Reads]					
14 15	26					
15	98					
16	[Settings]					
17	[Data]					
18	Lane	Sample_ID	Sample_Name	index	Sample_Project	Description
19	1	SI-3A-A1_1	sample1	AAACGGCG	Chromium_20211119	Homo_sapiens
20	1	SI-3A-A1_2	sample1	CCTACCAT	Chromium_20211119	Homo_sapiens
21	1	SI-3A-A1_3	sample1	GGCGTTTC	Chromium_20211119	Homo_sapiens
22	1	SI-3A-A1_4	sample1	TTGTAAGA	Chromium_20211119	Homo_sapiens
22						


https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/using/bcl2fastq-direct

Demultiplexing

Convert BCL files (sequencer output) to fastq files Most used tool : 10X's cellranger mkfastq a wrapper around bcl2fastq

- Usual sample sheet
- You must know :
 - i7 (i5) index sequence
 - R1 and R2 lengths
 - (depends on technology, version...)
- 10X: 1 index = 4 sequences \Rightarrow 4 lines



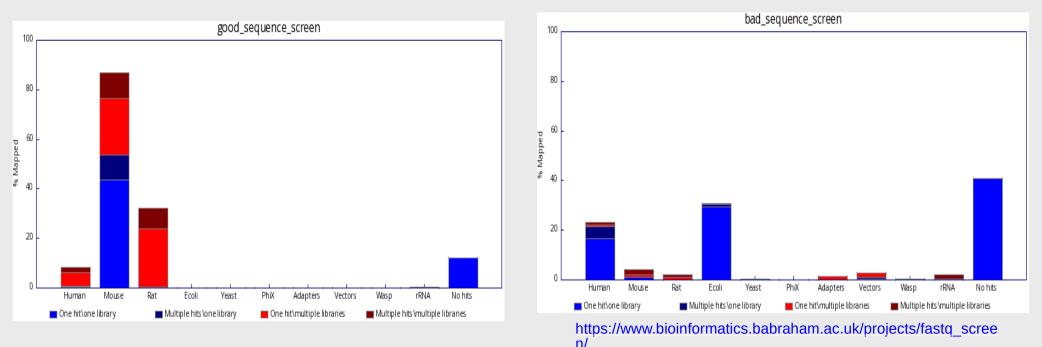
Quality Check

Check reads quality : fastqc

• Performs various basic QC on reads

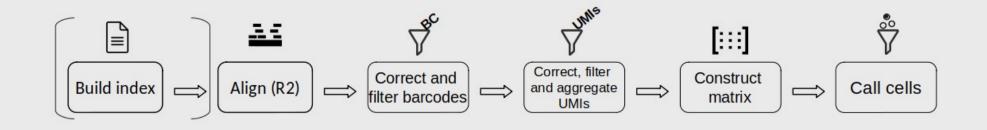
- For 10X scRNA datasets :
 - R1 (BC + UMI) : QC is mandatory. Watch out for Ns and highly repeated sequences
 - R2 : do as usual

https://www.bioinformatics.babraham.ac.uk/projects/fastq c/

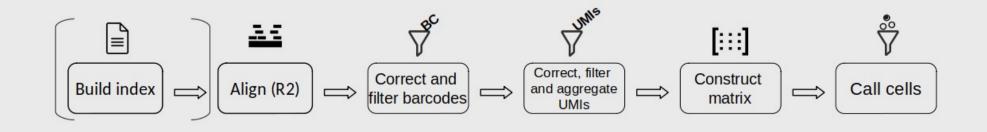

Quality Check

Trimming

- If QC is not good:
 - Low base quality
 - Remaining adapter sequence
 - Homopolymer tailing
 - Low complexity
- Many tools to trim reads:
 - Trimmomatic (Bolger A.M. et al., Bioinformatics (2014).
 - TrimGalore (Krueger F., https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/, unpublished 2012).
 - Cutadapt (Martin M., EMBnet.journal 2011)
 - Fastp (Chen *et al.*, Bioinformatics 2018).
- For single cell, like with xenome, apply to R2 file, then sync the R1 file.

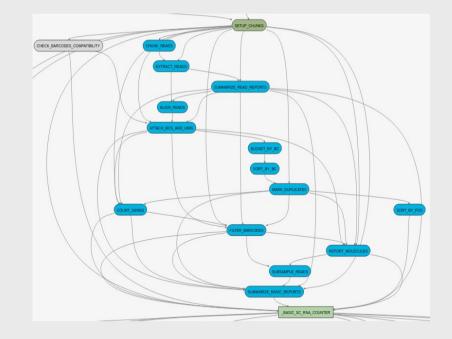

Check cross-species contaminations: FastQ Screen

- Quick mapping (bowtie2) of a subset of reads across multiple genomes and common contaminants: human, mouse, rat, E. coli, adapters, vectors...
- Identifies 1hit-1library, multi hits-1library, 1hit-multi libraries and multi hits-multi libraries


Principle

- A classical scRNA-seq workflow contains four main steps:
 - Mapping the cDNA fragments to a reference
 - Assigning reads to genes
 - Assigning reads to cells (cell barcode demultiplexing)
 - Counting the number of unique RNA molecules (UMI deduplication).

Principle


- Various tools have been developed:
 - **Cellranger:** 10X solution for 10X libraries only
 - **STARsolo**: an open source alternative to cellranger
 - kallisto+bustools: a pseudomapper and tool suite needing very little resources
 - (Alevin: a pseudomapper integrated with the salmon software)

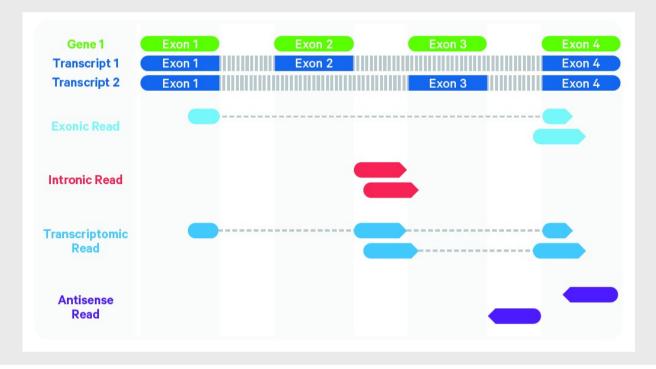
Cellranger

$$\left[\begin{array}{c} \blacksquare \\ \Longrightarrow \end{array}\right] \stackrel{\scriptstyle \bullet \bullet}{=} \Longrightarrow \stackrel{\scriptstyle \bullet \circ}{\xrightarrow} \\ \longrightarrow \\ \bigtriangledown \\ \longrightarrow \\ \longrightarrow \\ \longrightarrow \\ \longrightarrow \\ \blacksquare \\ \Longrightarrow \\ \blacksquare \\ \Longrightarrow \\ \stackrel{\scriptstyle \bullet \circ}{\xrightarrow} \\ \stackrel{\scriptstyle \bullet}{\xrightarrow} \\ \stackrel{\scriptstyle \bullet}{\xrightarrow} \\ \stackrel{\scriptstyle \bullet \circ}{\xrightarrow} \\ \stackrel{\scriptstyle \bullet \circ}{\xrightarrow} \\ \stackrel{\scriptstyle \bullet}{\xrightarrow} \quad \stackrel{\scriptstyle \bullet}{\xrightarrow} \\ \stackrel{\scriptstyle \bullet}{\xrightarrow} \quad \stackrel{\scriptstyle }{\xrightarrow} \stackrel{\scriptstyle \bullet}{\xrightarrow} \stackrel{\scriptstyle \bullet}{\xrightarrow} \stackrel{\scriptstyle \bullet}{\xrightarrow} \stackrel{\scriptstyle \bullet}{\xrightarrow} \stackrel{\scriptstyle \bullet}{\xrightarrow} \stackrel{\scriptstyle }{\xrightarrow} \stackrel{\scriptstyle \bullet}{\xrightarrow} \stackrel{\scriptstyle }{\xrightarrow} \stackrel{\scriptstyle }{\xrightarrow} \stackrel{\scriptstyle \bullet}{\xrightarrow} \stackrel{\scriptstyle }{\xrightarrow} \stackrel$$

- A set of pipelines for single cell analysis
- Many languages + task scheduler Martian
- Aligner: STAR
- single cell gene expression: cellranger count

https://support.10xgenomics.com/single-cell-gene-expression/s oftware/downloads/latest

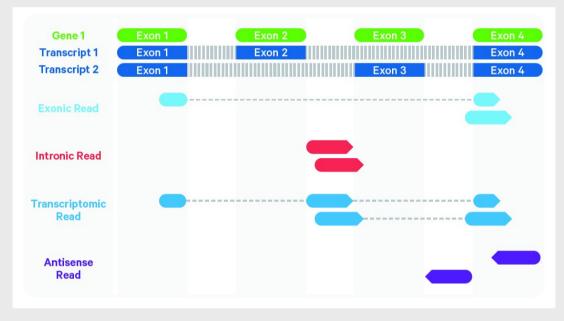
14


Reference Preparation

- Human/mouse retained biotypes :
- Protein coding
- Long noncoding RNA
- Antisense
- All biotypes belonging to BCR/TCR (i.e. V/D/J) Genes
- All pseudogenes and small noncoding rnas are removed.

(note that older Cell Ranger reference versions do not include BCR/TCR Genes)

Alignement


- Cell Ranger further aligns confidently mapped exonic and intronic reads to annotated transcripts by examining their compatibility with the transcriptome
- Reads are classified based on whether they are exonic (light blue) or intronic (red) and whether they are sense or antisense (purple).

Alignement

- In Cell Ranger 7.0, by default, the cellranger-count and cellranger-multi pipelines will include intronic reads for whole transcriptome gene expression analysis -> recommended to maximize sensitivity
- Any reads that map in the sense orientation to a single are carried forward to UMI counting.
- Cell Ranger ignores antisense reads (purple).

Reference Preparation

Cell Ranger Reference	Species	Assembly/Annotation	Genes before filtering	Genes after filtering
2020-A	human	GRCh38/GENCODE v32	60668	36601
2020-A	mouse	mm10/GENCODE vM23		32285
3.0.0	human	GRCh38/Ensembl 93	58395	33538
3.0.0	human	hg19/Ensembl 87	57905	32738
3.0.0	mouse	mm10/Ensembl 93	54232	31053
2.1.0	mouse	mm10/Ensembl 84	47729	28692
1.2.0	human	GRCh38/Ensembl 84	60675	33694
1.2.0	human	hg19/Ensembl 82	57905	32738
1.2.0	mouse	mm10/Ensembl 84	47729	27998

UMI Counting

- Cell Ranger attempts to correct for sequencing errors in the UMI sequences by association (Group confidently mapped reads -> Associate UMIs differ by a single base (less confidently mapped) to their assigned group)
- Gene annotation with the most supporting reads is kept for UMI counting, and the other read groups are discarded

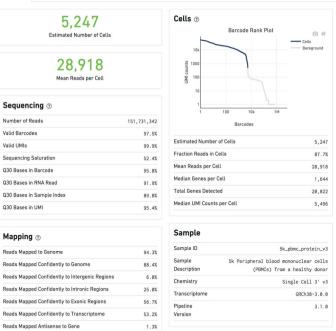
Before Clu	ustering		After Clustering		
Umi Count			Umi	Count	
ATGGCGTT	653	→	ATGGCGTT	673	
ATGGCGTA	12				
ATGGCGTC	8				
CTGGCAAC	403		CTGGCAAC	406	
CTGGC <mark>G</mark> AC	2				
CTGGCTAC	1				
TACCGGAT	42		TACCGGAT	45	
TACAGGAT	3				
sum reads	1124		sum reads	1124	
unique UMI	8	>	unique UMI	3	

19

UMI Counting

- Cell Ranger attempts to correct for sequencing errors in the UMI sequences by association (Group confidently mapped reads -> Associate UMIs differ by a single base (less confidently mapped) to their assigned group)
- Gene annotation with the most supporting reads is kept for UMI counting, and the other read groups are discarded
- Aggregation: 1 BC+UMIs = 1 unique RNA molecule (filter excess)
- Finally, construct matrix with selected reads: genes x barcodes

Cellranger


Outputs

File Name	Description
web_summary.html	Run summary metrics and charts in HTML format
metrics_summary.csv	Run summary metrics in CSV format
possorted_genome_bam.bam	BAM file containing both unaligned reads and reads aligned to the genome and transcriptome annotated with barcode information
possorted_genome_bam.bam.bai	Index for possorted_genome_bam.bam
filtered_feature_bc_matrix	Filtered feature-barcode matrices containing only cellular barcodes in MEX format. (In Targeted Gene Expression samples, the non-targeted genes are not present.)
filtered_feature_bc_matrix_h5.h5	Filtered feature-barcode matrices containing only cellular barcodes in HDF5 format. (In Targeted Gene Expression samples, the non-targete genes are not present.)
raw_feature_bc_matrices	Unfiltered feature-barcode matrices containing all barcodes in MEX format
raw_feature_bc_matrix_h5.h5	Unfiltered feature-barcode matrices containing all barcodes in HDF5 format
analysis	Secondary analysis data including dimensionality reduction, cell clustering, and differential expression
molecule_info.h5	Molecule-level information used by cellranger aggr to aggregate samples into larger datasets
cloupe.cloupe	Loupe Browser visualization and analysis file

10X Cell Ranger • count

5k_pbmc_protein_v3 - 5k Peripheral blood mononuclear cells (PBMCs) from a healthy donor

Summary Analysis

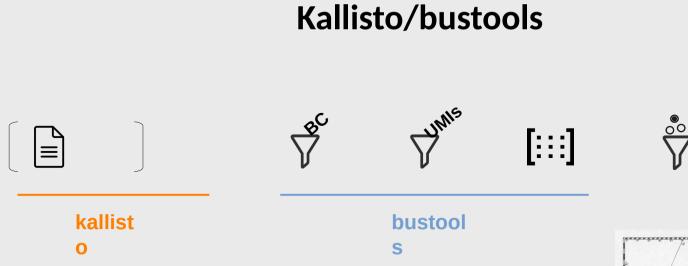
Cellranger

Turnkey solution

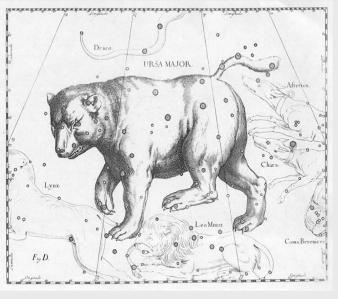
cellranger count --id=count_hgmm_100_hg19_mm10 \
--transcriptome=/db/off_biomaj/10xgenomics/refdata-cellrager-hg19-and-mm10-3.0.0 \
--fastqs=../../Data/fastqs/original --sample=hgmm_100 --jobmode=local \
--localcores=4 --localmem=50 --expect-cells=100 --nosecondary

- Many QC-metrics, results summarized in 1 html.
- Some secondary analysis
- More complex experiences: VDJ analysis, feature-barcoding
- Versions for ATAC-Seq, TCR-seq and BCRseq

- Proprietary
- Analyze only 10X product (cannot customize BC and UMI)
- Has its own scheduler: hard to include in another pipeline
- Compatibility not guaranteed with all HPC managers


Cellranger

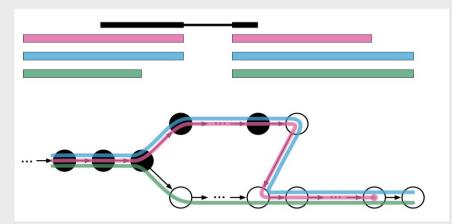
Single Cell Gene Expression Solution	CR 7.1	CR 7.0	CR 6.1	CR 6.0	CR 5.0		CR 3.1	CR 3.0	CR 2.2
3' Gene Expression v2 Libraries	-			1	1	1		1	1
3' Gene Expression v3 Libraries	4							1	×
3' Gene Expression v3 + Cell Surface Protein Libraries	1	1		1				1	×
3' Gene Expression v3 + CRISPR Screening Libraries	1	1	•	*	•			1	×
3' Cell Surface Protein Libraries only	4							×	×
Targeted Gene Expression	1	*	*		•		×	×	×
3' Cell Multiplexing	1				×	×	×	×	×
3' LT (Low Throughput)	1			1	×	×	×	×	×
3' HT (High Throughput)	1			×	×	×	×	×	×
Fixed RNA Profiling	1	1	×	×	×	×	×	×	×


Cell Ranger v8.0 introduces support for the analysis of GEM-X libraries.

Cell Ranger v7.2 is the last version to support the analysis of LT (low throughput) libraries.

- Make use of the pseudo-aligner kallisto and the toolsuite bustools
- Very good time and memory performance.

https://pachterlab.github.io/kallisto/download


Kallisto/bustools

- Kallisto is a pseudo aligner: fast, low memory
- Working with a reference transcriptome, not genome

- Kallisto is a pseudo aligner: fast, low memory
- Working with a reference transcriptome, not genome
- Principle:
 - reference chunked into k-mers ==> de Bruijn Graph
 - Reads chunked into k-mers and assigned to the
 - transcript(s) they overlap with
 - 1 read generally compatible with several transcripts:
 - proportion of transcripts computed by
 - Expectation Maximization from all reads

From Bray et al., Nat Biointechno 2016

A very nice explanation of kallisto: <u>https://bioinfo.iric.ca/fr/comprendre-comment-kallisto-fonctionne</u>

Kallisto/bustools

- Many technologies already accepted, the CB + UMI geometry is configurable
- Gives relative abundance, not absolute counts
- Output format in a specific, compressed format: bus instead of sam or bam files.

Allows analysis of non 10X technologies

2-bit encod	ling					
<32bp barcode	< 32bp umi	32bit eq. class id	32bit count	32bit flags		
01001101001 01001101001 01001101001 01001101001 01001101001 01001101001 1101000100	110111 110111 010010 110111 110111 110111	000001101001 110010010010 000001101001 000001101001 000001101001 100100100010	000100111001 111011001100 000100111001 000100111001 1110100111001 000100111001 000100111001 00110010101 001110010101 001110010101	0000 0000 0000 0000 0000 0000 0000 0000		

From Melsted et al., Bioinformatics 2019

Kallisto/bustools

• Next steps: bustools

Bus file + BC whitelist

[:::]

 ∇

bustools correct: correct and filter BC

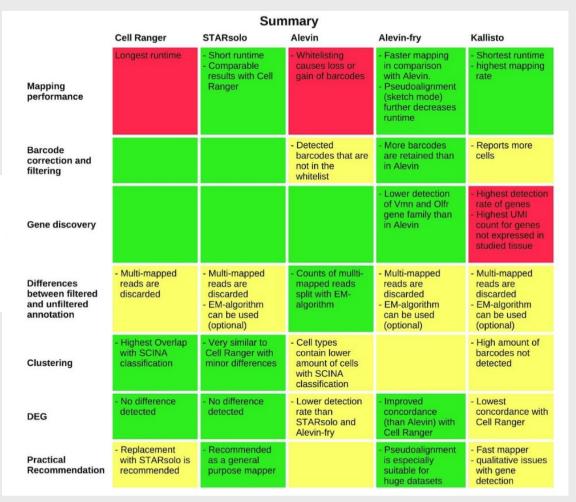
bustools sort: sort results by BC, UMIs and gene

bustools count: correct and filter UMIs, construct matrix

raw gene x barcodes matrix

Kallisto/bustools

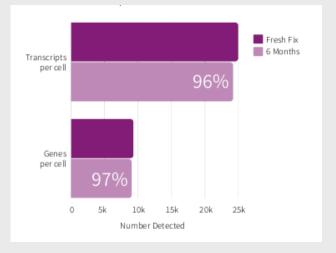
- For modular pipeline construction
- Not proprietary
- Allows analysis of non 10X technologies
- The fastest and less resource consuming (can run on a laptop)
- Easy to include in a pipeline
- Compatible with HPC managers


- Not a turnkey solution
- No secondary analysis
- Gap with cellranger
- No Add sample_name and well range

Comparative analysis of common alignment tools for single-cell RNA sequencing a

Ralf Schulze Brüning, Lukas Tombor, Marcel H Schulz, Stefanie Dimmeler, David John 🗷

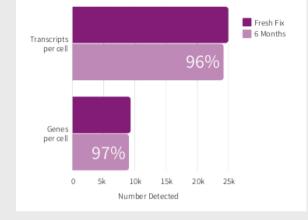
GigaScience, Volume 11, 2022, giac001, https://doi.org/10.1093/gigascience/giac001 Published: 27 January 2022 Article history ▼


From Shulze Bruning et al., GigaScience 2022

Other technology: Parse Biosciences

Design Flexible Experiments that Scale

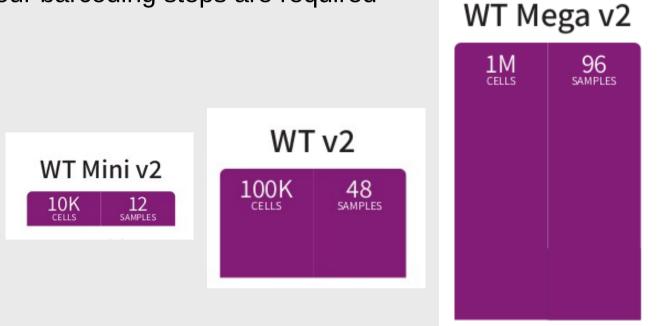
• Multiples samples are fixed and can be sequenced up to 6 months later

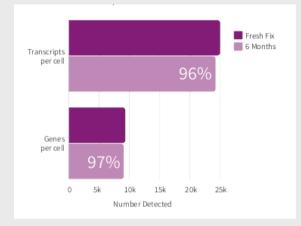


Other technology: Parse Biosciences

Design Flexible Experiments that Scale

- Multiples samples can be fixed sequenced up to 6 months later
- 3 kits are available

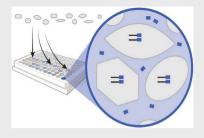



Other technology: Parse Biosciences

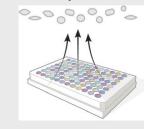
Design Flexible Experiments that Scale

Multiples samples can be fixed sequenced up to 6 months later

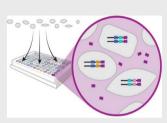
- 3 kits are available
- four barcoding steps are required



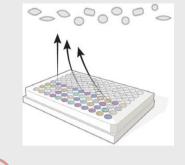
Parse Biosciences Workflow

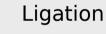

Reverse Transcription

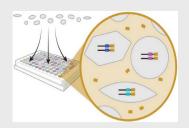
Split : Fixed cells/nuclei are distributed into wells, and the first sample-specific barcodes are added by in-cell reverse transcription.



Pool : All the cells are pooled together.

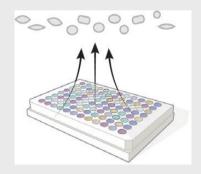

5 Split | The pooled cells are again distributed across a plate, and a third barcode is added via in-cell ligation reaction.




3

Pool : All the cells are pooled together.

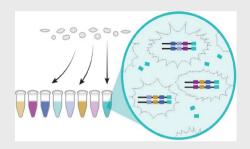
Split : The pooled cells are distributed across a plate, and an in-cell ligation adds the second barcode.



34

Parse Biosciences Workflow

6


Pool : All the cells are pooled together.

Lysis and Library Prep

Split : The pooled cells are distributed across several sub-libraries then lysed. The fourth barcode is added via PCR.

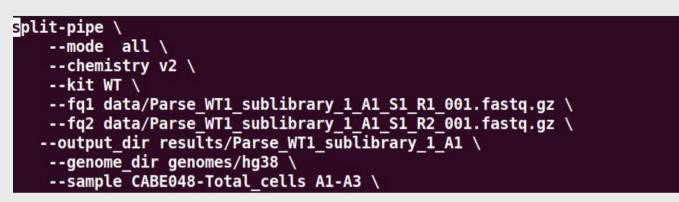
Sequencing with Illumina

Each transcript is assigned to a single cell based on a unique combination of barcodes.

Genes	Barcodes 1 2 3 4	
Gene A - Gene B - Gene C -		Cell 1
Gene A Gene B Gene D		Cell 2
Gene E - Gene F - Gene G -		Cell 3

Data Analysis

ParseBiosciences-Pipeline.1.2.0.zip


Create new environment with Python 3.10
conda create -n spipe conda-forge::python==3.10

Activate your new environment
conda activate spipe

ParseBiosciences-Pipeline

- Reference preparation : use split-pipe --mode mkref
- Aligner: STAR
- single cell gene expression : Parse count
- specify samples name for well ranges
- Running the pipeline for each library
- Combine libraries results

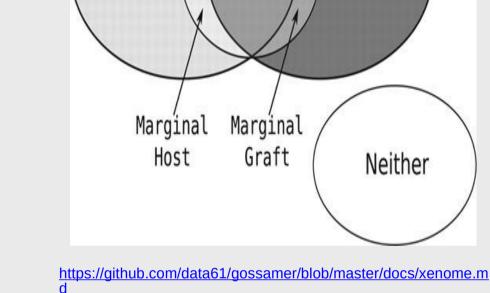
- Turnkey solution
- Many QC-metrics, results summarized in 1 html.
- Some secondary analysis
- No empty droplet
- Versions for TCR-Seq and BCR-seq
- Batch effect reduced

- Proprietary
- Analyze only Parse product (cannot customize BC and UMI)
- Has its own scheduler: hard to include in another pipeline

SincelITE 2024

Aziza CAIDI

Thank you for your attention!



Thanks to Marine AGLAVE

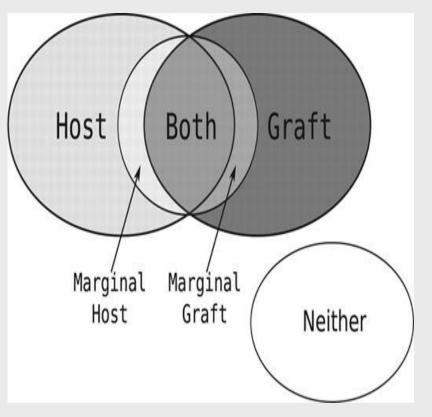
Quality Check

Multiple species: Xenome

- For xenografts or contaminated samples
- 5 fastq files :
 - Graft
 - Host
 - Both
 - Neither
 - Ambiguous
- For single cell, apply to R2 only and sync R1: e.g. seqkit:
 - *seqkit seq* lists the selected read names.
 - seqkit grep filters R1 by keeping only reads in this list.
 - seqkit pair pairs filtered R1 with R2.

Both

Host


Graft

Quality Check

Multiple species: Xenome

- Xenome version is bugged: patch gossamer
- https://github.com/data61/gossamer

- Alternatives :
 - Xengsort (Zentgraf and Rahmann, S. Mol Biol 2021).
 - XenofilteR (Kluin et al, BMC Bioinfo 2018)
 - Bamcmp (Khandelwal et al., MCR 2017).
 - XenoSplit: (<u>https://github.com/goknurginer/XenoSplit</u> Unpublished 2019).

https://github.com/data61/gossamer/blob/master/docs/xenome.m d

