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Main steps of single cell data processing 

From Luecken and Theis, Mol
Systems Biology 2019
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Main steps of single cell data processing 

From Luecken and Theis, Mol
Systems Biology 2019

This course
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• We assumed that we have assigned 1 
cell for each droplet (barcode)

• scRNAseq data quality can be 
impacted by technical and random 
noise

Preprocessing is required to eliminate 
low quality cells and clean up technical 
noise

1. Filter low quality cells (debris) and 
empty droplets

2. Remove Ambient RNA background

3. Detect and remove doublets

Aim of Quality Control

www.sc-best-practices.org
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• Detection of empty droplets
– Number of reads/UMIs per barcode

– Number of genes detected per barcode

• Detection of dying cells
– % of UMIs in mitochondrial genes

– % of UMIs in Ribosomal genes

• Filtering thresholds should be adapted 
to your system

• Use graphs

Detection of Poor Quality Cells

Empty Droplets

Empty

Real cells

Dying
Cells
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• Cells with low RNA content may look 
like poor quality cells compared to 
other cells:

– Small cells

– Immune cells

Several rounds of analysis may be 
needed at this step to ensure that good 
quality data is not discarded

Filtering of Poor Quality Cells

Adapted from Aglave, Montagne, Paquet
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• RNA can leak from dying/dead cells

• Contamination of all droplets can occur

• Some tools can effectively remove this 
background noise

Ambient RNA correction
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SoupX

Young MD, GigaScience 2020

BEFORE SoupX AFTER SoupX

Warning: the software requires manual tuning.
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Doublets/Multiplets

Doublets happen when two/more cells are encapsulated in the same droplet

• Number of doublets increases with cell loading density

• Homotypic : 2 or more of the same cell type
– Harder to detect

– Low capture efficiency -> doublet don’t always have higher UMIs counts

– Can be removed if coming from 2 individual samples (SNPs or multiplexed tags)

• Heterotypic : different cell types 
– Most problematic as they can look like an intermediate or transitioning cell type

• Several tools exist to identify doublets: scDblFinder, scds etc…
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Sources of Variation

Cuevas-Diaz Duran, 2024

• scRNAseq show strong variability between cells and between genes. 
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scRNA-seq: 3 levels of normalization

• Normalization = Process of identifying and removing systematic variation not due 
to real differences between RNA treatments 

– i.e. differential gene expression.

• Goal: make gene counts comparable within and between cells.

• Gene-specific effects 
– Within cell: GC content, gene length

– For full-length RNAseq protocols

• Cell specific effects
– Sequencing depth

– Aim: make count distributions comparable

• Sample/Technology-specific effects -> Data Integration
– Batch effects (BAD)

– Between samples variability (GOOD)

Vallejos CA, 2017
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Bulk RNAseq normalization

• RPKM/FPKM/TPM/CPM (Reads/Fragments per kilobase of transcript per million reads of 
library)

– Normalize for sequencing depth and transcript length at the same time

-> ok if you have full length data

• Global scaling
– Eg. Upper Quartile

– If we have too many zeros, the Size Factor will be off

• Size factors calculation
– Estimation of library sampling depth

– DESeq2, edgeR TMM

– Suppose that 50% of genes are not DE

– If we have too many zeros, the SF will be off

• These methods don’t work well for single-cell data
– TPM/CPM can be bias by a small number of genes carrying most of the signal

– Quantile based methods are limited: large number of zeros -> scale factor = 0
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scRNA-seq: 3 levels of normalization

• Gene-specific effects 
–within cell: GC content, gene length

–Not really accounted for in droplet assays

• Cell specific effects
–Aim: make count distribution comparable

1. Global scaling

2. Variance stabilization methods

3. Others

• Sample/Technology-specific effects -> Data Integration
–Batch effects (BAD)

–Between samples variability (GOOD)
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Global Scaling

• Hypotheses:
–Cell populations are homogenous

–The RNA content is similar in all cells

–Same scaling factor for all genes

• Choice of the scaling factor
–Median UMI counts

–10,000 default in Seurat / Cell Ranger

• In practice
–Hypotheses are not always verified, but lots of people use this method anyway
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Estimation of size factors using deconvolution

• Alternative method to compute the size factors

• Pool cells to reduce the number of zeros

• Estimate the size factors for the pool

• Repeat many time and use deconvolution to estimate each cell size factor

• Implemented in scran packages

Lun, 2016

Vallejos C, 2017
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Variance Stabilization

• Aim: Correct for the strong mean-variance relationship

Ahlmann-Eltze, 2023
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Other methods are available…

• Normalization included in the statistical model
–SCDE, Monocle, MAST,…

• Normalization based on spike-ins or invariant genes
–BASICs, scNorm

• Fancy modeling
– Modeling of single cell count data using Neg Binomial

– ZINB-Wave, single-cell variational inference (scVI) etc

• Normalization for other biological factors
– Known or unknown variation: Cell cycle, % mitochondrial genes…

– Regression methods provided to account for know factors (E.g. Seurat) 

– Latent variable models to estimate and remove unknown bias (scLVM)
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scRNA-seq: 3 levels of normalization

• Gene-specific effects 
–within cell: GC content, gene length

• Cell specific effects
–Aim: make count distribution comparable

1. Global scaling

2. scRNA-seq specific method from scater/scran package

3. Others

• Sample/Technology-specific effects -> Data Integration
–Batch effects (BAD)

–Between samples variability (GOOD)



19

Why do we need data integration methods?

• In practice: single cell techniques are biased
–Variations between samples can be huge

• donor effect +/- sampling effect 

–Samples may be processed using different technologies

• Combining datasets and applying cell-level normalization might not be 
enough to remove this bias

Misharin, BiorXiv 2018
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Data integration

For differential analysis:

-> Choose a framework where you can add a batch term in your statistical 
model (e.g.: MAST, DESEq2, limma,…)

For other analyses:

- We need a method that will “merge” our datasets and remove the 
unwanted variation

- Non-linear transformation of cells in different proportions

- Aligns datasets from different technologies and species
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Conclusion

• Parameters choice will affect the results
– Number of features selected

– Number of PCs used in downstream analysis

– Clustering resolution, etc…

• Analysis will have to be repeated many times

• Normalization method should be selected based
on the question of interest

• Variance Stabilization
– Pearson Residual is best for cell type identification

– Shifted-Log performs well for everything

Wu, Nat RevNeph 2020
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Experimental Design
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scRNAseq workflow: Bioinformatics Point of View

• What is the question ?

• What technique should we use to generate the 
data ?

– Plate based / droplets

– Full length / 3’ counting with UMI

 UNDERSTAND THE BIAS

• Experimental design  
– Sequencing strategy

• Number of cells / number of reads

• Spike-ins (not available for droplets)

– Samples: Practical considerations
• Types /number of samples

• Cell preparation 

• Budget
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Experimental design: technical considerations

Dal Molin, 2019

• Large panel of cell isolation technologies and RNAseq protocols
available

• Understand protocol bias to help your collaborator select the 
appropriate method

• Samples: practical considerations
- What are the major sources of variability?
- Types / number of samples -> Biological Replicates
- Cell preparation -> Be careful of confounding
- Budget
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Experimental Design

• We have a question

• We have selected a protocol

• How many samples?

• How many cells?

• How many reads/cell?

• How do we combine all this to 
minimize batch effect?
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How Many Samples?

• Bulk RNAseq: each library corresponds to a biological sample
– Biological Replicates

– Technical replicates not recommended

• Single Cell RNAseq: 1 sample/batch = Many Cells (libraries)
– Each cell comes from the same biological sample

– Cells are not true replicates: there is a correlation between cells from the same sample

– Biological replicates are needed for robustness

Hyeongseon Jeon, 2023
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Estimating the required number of cells / sequencing depth

• Number of cells required
– Do we have a lot of cells to begin with?

– Are we looking for rare cells (probability estimation)?

• WARNING: doublet rate increases with higher cell 
numbers in droplet assays.

• Sequencing depth
– What are the limits of my sequencer? (Novaseq or NextSeq)

– Minimal number of reads for droplets: 50,000 reads/cells

– Do the cells have lots of RNA ? 

– Think about sequencing saturation

– Think about dropouts generation

Several tools are available for power calculation

Zheng 2017
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Example 1: PBMC 
small cells, some don’t have a lot of RNA

Target: 5,000 cells

1 sample

NextSeq High 75

(~400millions reads / run)
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Example 2: Nasal epithelium brushing 
cells with lots of RNA

Target: 5,000 cells

2 samples, 

NextSeq High 75 

~400millions reads / run
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Number of cells: example of the 1.3millions cells dataset

Bhaduri A, BiorXiv 2017
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Technical design: summary

• Discuss about sequencing depth with the biologist

• If the sequencing is too shallow, the statistical analysis may not be robust
–Worst case scenario: you can’t even find the biologist favorite gene

• More cells is not always better

• Sequencing depth should be the same for all samples
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Sample Preparation

• We have a question

• We have selected a protocol

• How many samples?

• How many cells?

• How many reads/cell?

• How do we combine all this to 
minimize batch effect?
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What about experimental confounding factors?

• scRNA-seq are often performed 1 sample at a time
–Dissociation is difficult, sample are collected 1 by 1,…

–Technological aspects vary too (seq depth, number of cells captured)

• Several studies report evidence for strong batch effects

Hicks , 2017
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Ambient RNA / Dissociation induced genes

Van den Brick, Nat Method 2017

soupX tutorial
Young, 2020
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Aim for a Balanced Study Design

• Balanced design may be hard to achieve for practical reasons

• Multiplexing :
–Natural SNPs (demuxlet)

–Expression of Xist/ChrY

–Cell-hashing

Baran-Gale 2018

Stoeckius, 2018
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Example: Mouse Cell Atlases

Marin Truchi, IPMC
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Microwell seq

> 400,000 cells

>50 mouse tissues and cultures

> 800 cell types identified

based on 60,000 good QC cells

• Over 100,000 cells

• 20 organs

• Double design:
– Shallow profiling using droplets

– FACS + full length profiling

Mouse Atlas Summary

MCA Tabula Muris
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MCA Lung data (6940 cells) Han et Al, Cell (2018)

Dropouts
96 % 
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MCA Lung data (6940 cells)

Gene expression and cell type markers available on : 
http://bis.zju.edu.cn/MCA/gallery.html?tissue=Lung

 31 cell types (21 immune)
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TM Lung 10X data (5449 cells)

Dropouts
93 % 



43

TM Lung 10X data (5449 cells)

n = 205

n = 41

n = 5

n = 225

n = 425

n = 151

n = 456

n = 22

n = 24

n = 145

n = 832

n = 2534

n = 246

n = 89

n = 49

 15 cell types (8 immune)
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TM Lung 10X data (5449 cells)
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TM Lung SMART-Seq data (1620 cells)

Dropouts
89 % 
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TM Lung SMART-Seq data (1620 cells)

 16 cell types (7 immune)
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TM Lung SMART-Seq data (1620 cells)

 6 mice 
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Mouse Atlases Sequencing depth comparison

Tabula Muris, 2018
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Use Existing Data to Select a Protocol 

• Our collaborator is thinking about setting up a small clinical trial to study a 
skin disease

• She is asking for advice regarding sample collection and preparation for 
scRNASeq

• Clinical sample :
– Samples collected and processed 1 by 1 if using fresh tissue

– Some cell types are known to be degraded when frozen

• Using GEO, we reanalized 2 studies with healthy skin tissue
–Fresh samples: GSE132802

–Frozen samples: GSE147424
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Difference in data quality is clear

Fresh Frozen

Nottet, Syneos Health
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Cell Type Identification

• All cell types are present in both datasets (but proportions vary)

• Differential analysis fresh vs frozen did not show a lot of DE genes

• Frozen tissue can be a solution here. A higher sequencing depth could be recommended
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Conclusion

• Single Cell RNAseq data are very sensitive

• Sample/Batch effects can be very strong

• Hard problem to correct in downstream analysis
– Batch/conditions are confounded

• New protocols based on frozen/FFPE tissue + multiplexing are available 
to reduce the confounding factors
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Thank you
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Hicks, Biostatistics 2017


