Quality Control, Normalization
Experimental Design

Agnes Paquet
SincellTE 2024 - 10/21/2024

agnes.paquet@syneoshealth.com




Main steps of single cell data processing
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Main steps of single cell data processing
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Aim of Quality Control

- We assumed that we have assigned 1
cell for each droplet (barcode)

p
- scRNAseq data quality can be semcar A G
impacted by technical and random P
noise ‘®
{
o,
Preprocessing is required to eliminate 1=
low quality cells and clean up technical
noise

1. Filter low quality cells (debris) and
empty droplets

2.  Remove Ambient RNA background
3. Detect and remove doublets

www.sc-best-practices.org



Detection of Poor Quality Cells

Number of UMI/Cells

- Detection of empty droplets
—Number of reads/UMIs per barcode
—Number of genes detected per barcode
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1 Empty Droplets

- Detection of dying cells
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% of UMls !n m_ItOChondrlal genes nFeature_RNA nCount_RNA percent.mito
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- Filtering thresholds should be adapted
to your system
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Filtering of Poor Quality Cells

- Cells with low RNA content may look

like poor quality cells compared to
Kneeplot
other cells:

O 0090

—~Small cells

500
11

“True” cells
—Immune cells

Number of UMI
50
L1

. @ “Smaller” cells
Several rounds of analysis may be oon + AmbientRNA ¢
needed at this step to ensure that good ; 10 100
quality data is not discarded parcode Rk

Adapted from Aglave, Montagne, Paquet




Ambient RNA correction
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- RNA can leak from dying/dead cells
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SoupX

Young MD, GigaScience 2020
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Warning: the software requires manual tuning.




Doublet detection

Doublets/Multiplets %.

Doublets happen when two/more cells are encapsulated in the same droplet
- Number of doublets increases with cell loading density

- Homotypic : 2 or more of the same cell type

—Harder to detect

—Low capture efficiency -> doublet don’t always have higher UMIs counts

—Can be removed if coming from 2 individual samples (SNPs or multiplexed tags)
- Heterotypic : different cell types

—Most problematic as they can look like an intermediate or transitioning cell type

- Several tools exist to identify doublets: scDblFinder, scds etc...
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Sources of Variation

« scRNAseq show strong variability between cells and between genes.

a B . Gene-specific factors
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scRNA-seq: 3 levels of normalization

- Normalization = Process of identifying and removing systematic variation not due
to real differences between RNA treatments
~i.e. differential gene expression.

- Goal: make gene counts comparable within and between cells.

C Call-specific. Gene-specific Mot rermoved
. effects flets by LINAI
- Gene-specific effects CERRCR N - a3
—Within cell: GC content, gene length Amplificaticn ' v
— For full-length RNAseq protocols = e / v
Gene lergth "
5 GG content ; v v
- Cell specific effects mEANA contert : J

- Sequencing depth

. . . . Vallejos CA, 2017
- Aim: make count distributions comparable

- Sample/Technology-specific effects -> Data Integration
—Batch effects (BAD)
- Between samples variability (GOQOD)

11




Bulk RNAseq normalization

RPKM/FPKM/TPM/CPM (Reads/Fragments per kilobase of transcript per million reads of
library)

- Normalize for sequencing depth and transcript length at the same time

-> ok if you have full length data

Global scaling
- Eg. Upper Quartile
- If we have too many zeros, the Size Factor will be off

Size factors calculation
- Estimation of library sampling depth
- DESeq2, edgeR TMM
- Suppose that 50% of genes are not DE
- If we have too many zeros, the SF will be off

These methods don’t work well for single-cell data
- TPM/CPM can be bias by a small number of genes carrying most of the signal

- Quantile based methods are limited: large number of zeros -> scale factor = 0
12




scRNA-seq: 3 levels of normalization

- Gene-specific effects
~within cell: GC content, gene length
—Not really accounted for in droplet assays

- Cell specific effects
-Aim: make count distribution comparable
1. Global scaling
2. Variance stabilization methods
3. Others

- Sample/Technology-specific effects -> Data Integration
—Batch effects (BAD)
—~Between samples variability (GOOD)
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Global Scaling

- Hypotheses:
—Cell populations are homogenous
- The RNA content is similar in all cells
—~Same scaling factor for all genes

In practice

Mormalized  Estimated
expression  scaling factor
+ &

~ r‘\-.
x&; = .'4.'!;."3];

- Choice of the scaling factor R
read count

~Median UMI counts
~-10,000 default in Seurat / Cell Ranger

- In practice
-Hypotheses are not always verified, but lots of people use this method anyway
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Estimation of size factors using deconvolution

- Alternative method to compute the size factors
- Pool cells to reduce the number of zeros
- Estimate the size factors for the pool

- Repeat many time and use deconvolution to estimate each cell size factor
- Implemented in scran packages
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Variance Stabilization

- Aim: Correct for the strong mean-variance relationship

Raw counts Delta method GLM residual Latent expression
Y= Y ~ Poisson (M)
Y log(Y/s +1) S
NExTa M ~ logNormal (u, )

a Confounding effect of size factors on PCA embedding of droplets encapsulating a homogeneous RNA solution
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Other methods are available...

- Normalization included in the statistical model
~SCDE, Monocle, MAST,...

- Normalization based on spike-ins or invariant genes
-BASICs, scNorm

Fancy modeling
- Modeling of single cell count data using Neg Binomial
- ZINB-Wave, single-cell variational inference (scVI) etc

Normalization for other biological factors
- Known or unknown variation: Cell cycle, % mitochondrial genes...
- Regression methods provided to account for know factors (E.g. Seurat)
— Latent variable models to estimate and remove unknown bias (scLVM)

17




scRNA-seq: 3 levels of normalization

- Gene-specific effects
~within cell: GC content, gene length

- Cell specific effects
-Aim: make count distribution comparable
1. Global scaling
2. scRNA-seq specific method from scater/scran package
3. Others

- Sample/Technology-specific effects -> Data Integration
—Batch effects (BAD)
—~Between samples variability (GOOD)

18




Why do we need data integration methods?

- In practice: single cell techniques are biased

—Variations between samples can be huge
- donor effect +/- sampling effect

-Samples may be processed using different technologies

- Combining datasets and applying cell-level normalization might not be

enough to remove this bias
B

@ Donor 1
@IPF1

_ ®IPF 2
wi#  |@Donor 2
@ Donor 3
@IPF 3

@ Donor 4
@®IPF 4

@ Donor 5
OHP

@ Donor 6
@ SSc-ILD 1

Misharin, BiorXiv 2018
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Data integration

For differential analysis:

-> Choose a framework where you can add a batch term in your statistical
model (e.g.: MAST, DESEQZ2, limma,...)

For other analyses:

-We need a method that will “merge” our datasets and remove the
unwanted variation

-Non-linear transformation of cells in different proportions
- Aligns datasets from different technologies and species

20




Conclusion

- Parameters choice will affect the results Rew scRNA-seq data
- Number of features selected }
-~ Number of PCs used in downstream analysis S
— Clustering resolution, etc... l
. . . Run QC checks
- Analysis will have to be repeated many times and normalize counts
l

Variance stabilization

- Normalization method should be selected based kSR ede
on the question of interest Bamﬁecltm o
- Variance Stabilization BN i"r‘gmm"
- Pearson Residual is best for cell type identification Dimensionality reduction
- Shifted-Log performs well for everything P B
P Clusierng
i "

Visualization

l

Cell-type annotation

Wu, Nat RevNeph 2020 21
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scRNAseq workflow: Bioinformatics Point of View

. What is the question ? Biological

Question

. What technique should we use to generate the
data ?
— Plate based / droplets
— Full length / 3’ counting with UMI

Which technology
> UNDERSTAND THE BIAS

. Experimental design

— Sequencing strategy
Number of cells / number of reads
Spike-ins (not available for droplets)

Experimental Design

Sequencing
strategy

Sample Prep

— Samples: Practical considerations
Types /number of samples

Cell preparation
Budget Data Analysis

24




Experimental design: technical considerations

z R . . 2 generation
Biological ti Cell isolation Protocol z
B|0|0g|ca] iological question Number of cells sequencing

Question
i
High number of
.
& coverage

»3%°
3’ or 5' biased
Low number of Full-length ]
=
Mi ipetting, coverage
Differential y icmf(I::A e 8
Experimental Design expression [ ] w

Sample Prep

D ——
Transcriptome

characterization
or rare cells

FACS and/or
Microfluidic
device

Which technology Sub-population

identification

Dal Molin, 2019

« Large panel of cell isolation technologies and RNAseq protocols
Data Analysis available

« Understand protocol bias to help your collaborator select the
appropriate method

« Samples: practical considerations
- What are the major sources of variability?
- Types / number of samples -> Biological Replicates
- Cell preparation -> Be careful of confounding
- Budget 25




Experimental Design

Biological
- We have a question Question
- We have selected a protocol

V

{ Which technology ]

- How many samples?

- How many cells?

Experimental Design

- How many reads/cell?

Sequencing
- How do we combine all this to strategy

minimize batch effect?

Sample Prep

Data Analysis

26




How Many Samples?

Hyeongseon Jeon, 2023
Bulk RMNA-Seq Single-call RNA-seq High-throughput Spatial Transcriptomics

Lewel
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Data
Structura

Canily Gane Expressson Coont Mg
Sailyact x Gena Exprassion Cell x Géne Expression Cownd Data X
Count Data Cell/Spot F-dimensional Coordinates

Datection
Target

Spatially Vasiabie Genes

Diffesentially Expressed Genes Dbty Friirienind Tigsue Architestne

Cell Bub-populations
ColCell Commsnication

- Bulk RNAseq: each library corresponds to a biological sample

- Biological Replicates
—Technical replicates not recommended

- Single Cell RNAseq: 1 sample/batch = Many Cells (libraries)

— Each cell comes from the same biological sample
— Cells are not true replicates: there is a correlation between cells from the same sample

— Biological replicates are needed for robustness
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Estimating the required number of cells / sequencing depth

- Number of cells required
—~Do we have a lot of cells to begin with?
—Are we looking for rare cells (probability estimation)?

- WARNING: doublet rate increases with higher cell
numbers in droplet assays.

- Sequencing depth
- What are the limits of my sequencer? (Novaseq or NextSeq)

—Minimal number of reads for droplets: 50,000 reads/cells Zheng 2017
—Do the cells have lots of RNA ?

— Think about sequencing saturation £ P :.
— Think about dropouts generation 2 6 o
% e
§ 4 1 # ;_
Several tools are available for power calculation ; o

SN]SO el L

Hecoveed Coll Numibsrs
28




Example 1: PBMC

small cells, some don’t have a lot of RNA

Target: 5,000 cells
1 sample
NextSeq High 75

(~400millions reads / run)

Sequencing Saturation

08

0s

04

02

Estimated Number of Cells Cells
6,388
2 — Calls
Mk Background
L 3
Mean Reads per Cell Median Genes per Cell .00
61,047 1,343 :
I I é 2
s 100
5 5
2
H o
Sequencing -
Number of Reads 389,949,360 ;
Valid Barcodes 97.9% 1 0 0 1000 0k 100k
Barcodes
Reads Mapped Confidently to Transcriptome 52.5%
Estimated Number of Cells 6,388
Reads Mapped Confidently to Exonic Regions 54.6%
Fraction Reads in Cells 92.3%
Reads Mapped Confidently to Intronic Regions 21.4%
Mean Reads per Cell 61,047
Reads Mapped Confidently to Intergenic Regions 3.8%
Median Genes per Cell 1,343
Reads Mapped Antisense to Gene 3.8%
Total Genes Detected 21,143
Sequencing Saturation 82.5%
Median UMI Counts per Cell 4,480
Sequencing Saturation Median Genes per Cell
1400
s ycagenomix-cellranger-hg19-1.3.0
1200
5 1000
(@]
]
Q500
H
C
L4
0 &00
&
B 400
=
200
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Example 2: Nasal epithelium brushing
cells with lots of RNA

Cell Ranger - czf_brossage_180430 -

Target: 5,000 cells 10%
Estimated Number of Cells Cells

2 samples, S

NextSeq High 75 o

Mean Reads per Cell Median Genes per Cell 2|

SUMMARY  ANALYSIS

E L]
- ; 2 -l
~ o 2
400millions reads / run
2
Sequencing v
MNumber of Reads 227,046,761 ; .
Valid Barcodes 97.9% ! o 100 000 10k 100k
Barcodes
Reads Mapped Confidently to Transcriptome 55.2%
Estimated Number of Cells 3,733
Reads Mapped Confidently to Exonic Regions 57.4%
Fraction Reads in Cells 82.5%
Reads Mapped Confidently to Intronic Regions 17.6%
Mean Reads per Cell 460,821
Reads Mapped Confidently to Intergenic Regions 4.2%
Median Genes per Cell 3,302
Reads Mapped Antisense to Gene 3.7%
Total Genes Detacted 22,636
Sequencing Saturation 49.1%
Median UMI Counts per Cell 12,963
Q30 Bases in Barcode 96.1%
Sequencing Saturation Median Genes per Cell
11 |
= ycagenomix-cellranger-hg19-1.3.0
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Number of cells: example of the 1.3millions cells dataset

a Full Dataset 1112 of Dataset 1/24 of Dataset |
(1219103 cells) (101592 cells) (50796 cells)

.' "."-l..ﬂ,
<! Ay : = £’ ] e

i o
-] ] o H:ﬁﬁ'- v
I N I 8 s - ™

1/48 of Dataset 1/96 of Dataset 1/192 of Dataset i
(25398 cells) (12699 cells) (6350 cells)
i P

Bhaduri A, BiorXiv 2017
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Technical design: summary

- Discuss about sequencing depth with the biologist

- If the sequencing is too shallow, the statistical analysis may not be robust
~Worst case scenario: you can’t even find the biologist favorite gene

- More cells is not always better
- Sequencing depth should be the same for all samples

Highly Expressed Genas All Cther Genes
- "ﬁ.
IS I
T o P L 5M Reads

10M Reads

25M Reads

50M Reads
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Sample Preparation

Biological
- We have a question | Question

- We have selected a protocol

V

{ Which technology ]

Experimental Design

Sequencing
- How do we combine all this to strategy

minimize batch effect?

Sample Prep

Data Analysis
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What about experimental confounding factors?

- sScCRNA-seq are often performed 1 sample at a time

~Dissociation is difficult, sample are collected 1 by 1,...
- Technological aspects vary too (seq depth, number of cells captured)

- Several studies report evidence for strong batch effects

The effect of technical baich on single cell gene

Study design: Three C1 replicates per Individual expression for raw counts data
3
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Ambient RNA / Dissociation induced genes

PBMC 4k Annotation
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Aim for a Balanced Study Design

Confounded desian

én é& go £
000 800 000 e
] o Q o
! -1 ' 4 - }
800 o0
Q o
! |
Flates
¥ qE
Sequencer lanes

Baran-Gale 2018

+ ) + |
o o o a
o0 Q0o [+~ 1] 000
ool 000 oo9 * oo0
Go o
oo oo
poo goﬂ
T -]

Sequencer lanes

- Balanced design may be hard to achieve for practical reasons

A

- Multiplexing :
—Natural SNPs (demuxlet)

—~Expression of Xist/ChrY
—Cell-hashing

Stoeckius, 2018
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Example: Mouse Cell Atlases

ARTICLE

hittpsz'/doiog/10.1038/54 1586.018.0590-4

Single-cell transcriptomics of 20 mouse
organs creates a Tabula Muris

The Tabula Muris Conscrtinm®

Marin Truchi, IPMC

Cell

Mapping the Mouse Cell Atlas by Microwell-Seq

Graphical Abstract

>40 Mouse organs and tissues Microwell-seq

>400,000 Single Cell
mRNA-seq
Beads + Cells
The Mouse Cell Atlas

- e
%w‘g# v ™ C o
@Eﬂs Ao e

'd:u,. .

X

Authors

Xiaoping Han, Renying Wang,
Yincong Zhou, ..., Gue-Cheng Yuan,
Ming Chen, Guoji Guo

Correspondence

xhan@zju.edu.cn (X.H.),
ggj@zju.edu.cn (G.G.)

In Brief

Development of Microwell-seq allows
construction of a mouse cell atlas at the
single-cell level with a high-throughput
and low-cost platform.
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Mouse Atlas Summary

1SNE 2

Microwell seq
> 400,000 cells
>50 mouse tissues and cultures
> 800 cell types identified
based on 60,000 good QC cells

Tabula Muris

t-SNE 1
50 -25 o] 25 50
50— i . i )
Ductal
of
25
o
Z0
gar™ Ty » | Pro- Endethalial
#ER E ot N ABedls &
z pinelal cals Safféml'e
- A el
L R 4 4
Tools Moy~ &
_50 Meurcns
& Aorta Fat @ Liver Skin
Blad der & Heart @ Lung © Spleen
@ Brain myeloid © Kidnay @ Mamrmary gland Thyrmus
Brain non-m yeloid ® Large inteatine Marrow # Tongue
= Diaphragm « Limb muscle ® Pancreas Trachea
- Over 100,000 cells
)
- 20 organs

- Double design:
—Shallow profiling using droplets
~-FACS + full length profiling
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MCA Lung data (6940 cells) /a7 etAl cell (207
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MCA Lung data (6940 cells)
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oo LUNG > 31 cell types (21 immune)
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Gene expression and cell type markers available on : 40
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ARTICLE
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Single-cell transcriptomics of 20 mouse
organs creates a Tabula Muris
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TM Lung 10X data (5449 cells)
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TM Lung 10X data (5449 cells)

> 15 cell types (8 immune)
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TM Lung 10X data (5449 cells)
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TM Lung SMART-Seq data (1620 cells)
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TM Lung SMART-Seq data (1620 cells)
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TM Lung SMART-Seq data (1620 cells)

ﬂ

404

201 L .
> 6 mice
. L ERUEY
o * 1'- d?,-'." ‘#_' @:nm
m 4 4,2 ‘:-. "f;: @ssr
E"z_’ L. éf ™~ & o :1;-‘_ . @390 F
"" W N




Mouse Atlases Sequencing depth comparison

Number of genes detected per cell
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Use Existing Data to Select a Protocol

- Our collaborator is thinking about setting up a small clinical trial to study a
skin disease

- She is asking for advice regarding sample collection and preparation for
scRNASeq

- Clinical sample :
- Samples collected and processed 1 by 1 if using fresh tissue
- Some cell types are known to be degraded when frozen

- Using GEO, we reanalized 2 studies with healthy skin tissue
~Fresh samples: GSE132802
—~Frozen samples: GSE147424
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Difference in data quality is clear
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UMAP_2

Cell Type Identification

Fresh Frozen

10
© Astrocyte ® Keratinocytes
® B_cell ® Macrophage
® BM ® MEP
® BM & Prog. ® Monocyte
® Chondrocytes ® MSC
® CMP @ Myelocyte
04 ® DC ® Neuroepithelial_cell
! 3 Fdf N| © Embryonic_stem_cells ® Neurons
b4 F:z;en % @ Endothelial_cells © Neutrophils
= @ Epithelial_cells ® NK_cell
2 ©® Erythroblast ® Osteoblasts
® Fibroblasts © Platelets
® Gametocytes ® Pre-B_cell_CD34-
® GMP ©® Pro-B_cell_CD34+
® Hepatocytes ® Pro-Myelocyte
® HSC_-G-CSF ® Smooth_muscle_cells
101 ® HSC_CD34+ ® T_cells
® iPS_cells ©® Tissue_stem_cells

- All cell types are present in both datasets (but proportions vary)
- Differential analysis fresh vs frozen did not show a lot of DE genes

- Frozen tissue can be a solution here. A higher sequencing depth could be recommended
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Conclusion

- Single Cell RNAseq data are very sensitive
- Sample/Batch effects can be very strong

- Hard problem to correct in downstream analysis
- Batch/conditions are confounded

- New protocols based on frozen/FFPE tissue + multiplexing are available
to reduce the confounding factors
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Thank you
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The Problem of Confounding Biological Variation and Batch Effects
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