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Institute of Molecular and Cellular Pharmacology
Sophia-Antipolis

20 research teams composed of > 220 members

• Ion channels (pain, perception, epilepsy)

• Molecular signaling (molecular trafficking, lipidomics)

• Neurodegenerative disorders (Alzheimer, Parkinson)

• Neuropsychiatric disorders (nervous breakdown, mental retardation)

• Functional genomics and bioinformatics

15 Engineers running 5 technological platforms

• MICA, Imaging and Flow Cytometry

• CAPABIO, Proteomics and Metabolomics

• ANIPRO, animal care and behavior facility

• CoBiODA, Bioinformatics Hub

• UniCA GenomiX, Functional Genomics platform

Core member of the “France Génomique” 
network (2008, 60M€) > 500 academics

20242015 20182016 2022



• Large-scale transcriptome

• Oligonucleotide probe tilling
• Fluorochrome signal analysis

• Bulk resolution

• Whole transcriptome

• Next Generation Sequencing
• Full-transcript coverage

• Bulk resolution

• Whole transcriptome

• Microfluidics + NGS
• 3p-end gene signal (UMI)

• Sensitivity (6%)

• Single-cell / state resolution

• 300-1000 gene targets

• Imaging analysis
• Multiplexing FiSH (single molecule)

• Sensitivity (30-80%)

• Sub-cellular resolution

Early 2000’s: DNA microarray Late 2000’s: RNA sequencing Mid 2010’s: Single-cell 2020’s : Spatial

20 years of transcriptomics
Driven by microfluidics technological developments

Cost : 4k€
20 samples
25k genes

0,5M matrix

Cost : 4k€
20 samples
50k genes

1M matrix

Cost : 4k€
5k cells
50k genes

250M matrix

Cost : 4k€
250k cells
1k genes

250M matrix
+ Spatial dimension



Human Cell Atlas
CZI initiative (2016)

Mission to create comprehensive reference maps of all human cells, the fundamental units of life, 

as a basis for both understanding human health and diagnosing, monitoring, and treating disease.



Human Cell Atlas
Contributions

2019

2019

2021

2021

2022

2023

500k

80k

2,4M

2020 2023
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Single-cell transcriptomics

Bulk mRNA libraries 

100ng total RNA 
(10,000 cells)

Context

Single cell mRNA libraries 

10 pg total RNA 
(<<1pg mRNA)

• Elimination of PCR amplification bias and artefacts

• Highly efficient library preparation techniques

• Use of Unique Molecular Identifiers (UMI) to monitor the number of molecules
― Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers.

  Nat Meth 9, 72-74 (2012)

― Improved accuracy of molecule counting 



Single-cell transcriptomics

• Elimination of PCR amplification bias and artefacts

• Highly efficient library preparation techniques

• Spike-in ERCC molecules allow yield and capture efficiency evaluation

Bulk mRNA libraries 

100ng total RNA 
(10,000 cells)

Context

Single cell mRNA libraries 

10 pg total RNA 
(<<1pg mRNA)

Power Analysis of Single Cell RNA-Sequencing Experiments, Svensson et al., 2018

ERCC (External RNA Controls Consortium) 
― set of 92 RNA sequences,

― of varying length and GC content,

― mixed at known concentrations,

― 22 abundance levels that are spaced one fold change 

apart from each other



Single-cell transcriptomics

• Cell RNA content depend on its cell type and developmental stage

• Majority of RNA molecules are tRNAs and rRNAs, mRNA accounts for only 1-5%

• Approximately 360,000 mRNA molecules are present in a single mammalian cell

• ~ 12,000 different transcripts with a typical length of around 2 kb, 

• Some comprise 3% of the mRNA pool whereas others account for less than 0.1%. 
These rare or low-abundance mRNAs may have a copy number of only 5-15 

molecules per cell.

https://www.qiagen.com/fr/resources/faq?id=06a192c2-e72d-42e8-9b40-3171e1eb4cb8&lang=en

Bulk mRNA libraries 

100ng total RNA 
(10,000 cells)

How much RNA does a typical mammalian cell contain?

Single cell mRNA libraries 

10 pg total RNA 
(<<1pg mRNA)

https://www.qiagen.com/fr/resources/faq?id=06a192c2-e72d-42e8-9b40-3171e1eb4cb8&lang=en


Single-cell transcriptomics
Why single-cell profiling ?

Chris Harris, 2020



Single-cell isolation techniques
To measure sequences in individual cells, we need method that capture one cell at a time



Exponential scaling of single-cell RNA-seq in the past decade

Svensson et al., Nature Protocols, 2018

Single-cell transcriptomics
Evolution of isolation techniques and throughput



Single-cell transcriptomics
Manual pipetting

Exponential scaling of single-cell RNA-seq in the past decade

Svensson et al., Nature Protocols, 2018

Tang’s initial protocol

• Total RNA isolated and fragmented,

• cDNA conversion oligodT primer + anchor

• 2nd  strand synthesis polyT primer + anchor

• PCR amplification 2 anchor sequences.

• 100 million SOLiD reads per cell

• 2009: 1 mouse blastomere

• 2010: 16 early mouse embryo

mRNA-Seq whole-transcriptome analysis of a single cell, Tang et al., 2009

RNA-Seq analysis to capture the transcriptome landscape of a single cell, Tang et al., 2010



Single-cell transcriptomics
Plate-based protocols

Exponential scaling of single-cell RNA-seq in the past decade

Svensson et al., Nature Protocols, 2018

Sten Linnarsson’s Lab (Karolinska Institutet)

• Plate-based protocols,

• based on template switching (TSO),

• 5’ end cDNA tagged

Publications :

• 2011: STRT-seq, no UMI 92 cells

• 2014: UMI, Islam et al., capture efficiency = 48%

• 2015: UMI, Zeisel et al, capture efficiency = 22%

Single cell tagged reverse transcription, Islam et al., 2011

Quantitative single-cell RNA-seq with unique molecular identifiers, Islam et al., 2014

Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq, Zeisel et al., 2015



Single-cell transcriptomics
Fluidigm C1 microfluidics

Exponential scaling of single-cell RNA-seq in the past decade

Svensson et al., Nature Protocols, 2018

Fluidigm C1

• 96 / 800 cell chips,

• protocols for SMARTer, CEL-seq, STRT-seq, …

• Limiting factor: capture chamber size and doublets

capture efficiency = 26%

Arguel et al., 2016



sci-RNA-seq (2017)

• 50,000 cells nematode

Caenorhabditis elegans

SPLIT-seq (2018)

• 156,049 single-nucleus

P22 and P11 mouse brain

Single-cell transcriptomics
Combinatorial indexing

Exponential scaling of single-cell RNA-seq in the past decade

Svensson et al., Nature Protocols, 2018

sci-RNA-seq, Cao et al, 2017

SPLIT-seq, Rosenberg et al., 2018

Parse Biosciences Evercode kits (2021)



Exponential scaling of single-cell RNA-seq in the past decade

Svensson et al., Nature Protocols, 2018

Single-cell transcriptomics
Droplet-based

Droplets-based protocols

• cells +barcoded beads

encapsulation

• 3’ end cDNA tagged

• 12 bp cell BC and 8bp UMI

• Capture efficiency 12,5%

• 44,808 mouse retinal cells (39 cell types)

InDrop, Klein et al, 2015

Drop-seq, Macosko et al, 2015



10x Genomics Chromium single cell controler (2016)

• Easy-to-set-up and robust workflow 

• High scalability (1,3M cells dataset)

Single-cell transcriptomics
Droplet-based

Exponential scaling of single-cell RNA-seq in the past decade

Svensson et al., Nature Protocols, 2018

10x Genomics, Zheng et al, 2016



Single-cell transcriptomics
Comparative studies

Benchmarking single-cell RNA-sequencing protocols for cell atlas projects

Mereu et al., Nat.Biotech, 2020
What do you want to study ?

→more cells for statistics

→more genes for subsequent biology

→ sequencing cost you can support

→ 5p, 3p of full length protocols



Single-cell transcriptomics
Single-cell approaches in publications

Droplet-based approaches

- Digital Gene Expression (UMI)
- High cell number throughput

- Limited capture efficiency (<10%)

- 3p or 5p signal (SAGE-like)

A curated database reveals trends in single cell transcriptomics
Svensson et al., Database , 2020

• Huge amount of single-cell studies in the past 10 years,

• Droplet-based approaches = 61% (Chromium: 47%)



Single-cell Transcriptomics
Single-cell droplets-based rely on short reads

Illumina Nextseq500

Short-read sequencing yields 
just a short read close to 3’end



Single-cell transcriptomics
Single-cell approaches in publications

• Huge amount of single-cell studies in the past 5 years,

• Droplet-based approaches = 61% (Chromium: 47%)

• Smart-based approach = 21%, <5% in the last 2 years

A curated database reveals trends in single cell transcriptomics
Svensson et al., Database , 2020

Smart-based approach 

- Lower cell number (384-plate handling)
- Higher capture efficiency (~30%)

- No UMI before v3 (may 2020)

- Full-length coverage using short-reads

UMIs detected in HEK293 cells
Droplets 10x: 30k (50k reads)
Plate-based : 60k  (200k reads)

Smart-seq3: 150k (750k reads)

Mantis Microdispenser



• 90% of the genes are subjected to alternative splicing,

• Gencode v42 : 252,416 distinct isoforms for 62,696 genes,

• On average, a human gene contains 8.8 exons, mean size of 145 nt,

• Average encodes mRNA 2,410 nt long :

Alternative splicing and disease

Tazi et al., 2008

Transcriptomics

Scotti and Swanson, Nat Rev Genet., 2016

Complex outcomes of alternative splicing

Coding sequence

1,340nt

3’ UTR

300nt

5’ UTR

770nt

Inference required

Direct full exonic layout

One read is one molecule
Nature Method 

of the Year 2022



Information on alternative splicing, fusion transcripts, SNV, editing, imprinting, allelic imbalance

Remain accessibleIs lost

Standard short-read sequencing Long-read full-length sequencing

Droplets-based approach short reads vs long reads

Single-cell long-read transcriptomics

Gene-level
matrix

Isoform-level
matrix

Thursday



Single-cell long-read transcriptomics
SiCeLoRe, bioinformatics for Single Cell Long Read

E18 C57BL/6 mouse

hippocampus, cortex, 

and ventricular zone

80 

60 

40 

20 

0

Millions long-reads

FC1 FC2 FC3 FC4 FC5 FC6 FC7 FC8

190 cells: 32M

951 cells: 322M

R9.4, LSK-109 chemistry (2018)standard workflow
https://github.com/ucagenomix/sicelore

Rainer Waldmann

Thursday

https://github.com/ucagenomix/sicelore


Spatial in-situ capture transcriptomics
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Spatial Transcriptomics approaches
Historical timeline

• Spatial transcriptomics aims at directly visualize gene expression in their original environment

• Tackle the main limitation of single cell experiment missing the spatial organization

• A lot of developments in the last years thanks to recent advances in different fields

Spatially Resolved Transcriptomes Next Generation Tools for Tissue Exploration 

Asp et al., BioEssays, 2020

Merscope
Cosmx

Xenium

Slide-seq-v2

Stereo-seq
DBiT-seq



Spatial Transcriptomics approaches
A lot of different options



In-situ capture Spatial Transcriptomics (2017-2022)
Visium (2019, ST 2017) is widely adopted by academics

• Deconvolution tools can be use to 
recover proportion of single cell type

• Visium HD single cell resolution (2µm)



In-situ capture Spatial Transcriptomics (2017-2022)
DBit-seq (2020)



In-situ capture Spatial Transcriptomics (2017-2022)
Slide-seq v2 (2021)



In-situ capture Spatial Transcriptomics (2017-2022)
Stereo-seq (2022)

https://en.stomics.tech/

bin 50µm analysis



In-situ capture Spatial Transcriptomics (2017-2022)
Systematic comparison



Spatial isoform Transcriptomics (SiT)
Nucleic Acids Research, 2023 Thursday



Spatial imaging-based transcriptomics
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Spatial transcriptomics technologies (2019-2022)
Visium is widely adopted by academics

Page 37

But is not the ideal readout for spatial biology
(Akoya credit rough caricature)



Imaging-based Spatial Transcriptomics (2022)
No more sequencing for direct single-cell resolution

• Lower gene panel targets (from whole transcriptome to ~1,000 genes)

• Higher sensitivity (from ~6% to 30-80%)
• Larger imaging area (42 to 236 mm2)
• Higher resolution (from 55 µm to subcellular)

Wednesday



• 400 - 6,000 targets

• Sensitivity : 5-30% (++)

• Imaging area: 236 mm2 (4 days)

• Resolution: 200 nm

• 960 targets (panel 20k, AGBT24)

• Sensitivity : << 30-80% (+)

• Imaging area: 16 mm2 (2 days)

• Resolution: 200 nm

• 1.000 targets

• Sensitivity : 30-80% (+++)

• Imaging area: 100 mm2  (2 days)

• Resolution: 100 nm

Nanostring CosMx 10xGenomics XeniumVizgen Merscope

Imaging-based Spatial Transcriptomics (2022)
No more sequencing for direct single-cell resolution



Nanostring CosMx 10xGenomics XeniumVizgen Merscope

Imaging-based Spatial Transcriptomics (2022)
No more sequencing for direct single-cell resolution

ISH-based Multiplex Error-Robust FISH

Available (oct.2022)

Cartana ISS, padlock probes / RCA

Available (jan.2024)

Cyclic in situ Hybridization Chemistries

x4-8 / target gene

x15-50
x1-5



Imaging-based Spatial Transcriptomics platforms comparison
2 recent bioRxiv comparative studies

• CosMx is less sensitive (high FPR)

• Merscope / Xenium for Fresh frozen slice

• Xenium more optimal for FFPE slice



Gene targets panel design
Depending on the biological question !

https://portal.vizgen.com/

https://cloud.10xgenomics.com/xenium-panel-designer

Depending of your specific scientific focus

• Identify all major cell types, resolve cell subtypes
• Explore functional information 
• Investigate interactions between cell types

• Ligand-receptors analysis
• Explore canonical signaling pathways 

• Profile immune checkpoint molecules 
• …

Satisfy technological system limitations

• Number of targets available

• Range of gene targets expression
• Total gene targets expression 
• Budget around 15 k€ for 10 reactions

https://portal.vizgen.com/
https://cloud.10xgenomics.com/xenium-panel-designer


Experimental design 
Take advantage of the large imaging area

Each slide cost around 5 k€
multiplexing to remove batch effect and increase replicates for robust statistical analysis



Data acquisition
DAPI and cell boundaries staining for cell segmentation

DAPI chanel

Cell boundaries chanel

Nose

Eye

Tongue

Eye

Human fetal head section (PCW9)



Data acquisition
Cell segmentation

Eye

Cell segmentation 
is crucial to ensure 

cell x gene matrix 

purity for good 

subsequent biology 

Z
0

1

2
3

4
5

6

10 µm

3D segmentation required, actually not 
used, 2D segmentation per Z then 

harmonizing and summing the detected 
transcripts for all Z into the harmonized 

segmentation mask (nuclei of full cell) 



Raw data
Cell x gene matrix

Gene-level matrix

1.000 Genes

100k’s cells

…



Statistical data analysis
Standardized workflows + packages development

Dries’s lab, Dana-Farber Cancer Institute 

Satija’s lab, NYGC

Theis’s lab, helmholtz-munich Immunitas therapeutics

Scverse ecosystem, Oliver Stegle & Fabian J. Theis



Single-cell data analysis
Scanpy and Squidpy toolkits

Cell type correlation 

Gene marker detection, manual or automatic cell type identification

Differential expression analysis

Gene set functional enrichment

Transcription Regulatory Network

Batch effect correction, sample integration, cell type 

labeling transfer from single-cell references dataset



Test if cells belonging to 2 clusters are close to each other 

more often than expected (co-occurrence probability)

• Need to be in gene panel or inferred

• CellPhoneDB [Efremova et al., 2020] 
• Omnipath [Türei et al., 2016].

Bento is a Python toolkit for performing 

subcellular analysis of spatial transcriptomics 

for each cell, we count the number 

of neighbors that are of each cell 
type thus forming a “neighborhood 

profile” vector of length C, where C 

is the number of cell types. We then 
cluster all neighborhood profiles 

and call each cluster a “niche”.

Neighbors enrichment analysis

Cell-cell communication 

Ligand-Receptor analysis

Sub-cellular exploration

Cellular niches analysis

Single-cell data analysis including spatial resolution
New vast area for computational biologists (just like single-cell 5 years ago)
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