Single-Cell and Spatial technologies and experimental approaches

Kévin Lebrigand
Computational Biology and Omics Data Analysis
<u>https://cobioda.github.io</u>
IPMC, CNRS, Côte d'Azur University, France
Iebrigand@ipmc.cnrs.fr

- ⊻ @kevinlebrigand

- 01 Single-Cell experimental approaches
- 02 Spatial in-situ capture experimental approaches
- 03 Spatial imaging-based experimental approaches

Institute of Molecular and Cellular Pharmacology

Sophia-Antipolis

20 research teams composed of > 220 members

- Ion channels (pain, perception, epilepsy)
- Molecular signaling (molecular trafficking, lipidomics)
- Neurodegenerative disorders (Alzheimer, Parkinson)
- Neuropsychiatric disorders (nervous breakdown, mental retardation)
- Functional genomics and bioinformatics

15 Engineers running 5 technological platforms

- MICA, Imaging and Flow Cytometry MICA
- CAPABIO, Proteomics and Metabolomics
- ANIPRO, animal care and behavior facility
- CoBiODA, Bioinformatics Hub
- UniCA GenomiX, Functional Genomics platform 🥪

Core member of the "France Génomique" network (2008, 60M€) > 500 academics

20 years of transcriptomics

Driven by microfluidics technological developments

Early 2000's: DNA microarray

- Large-scale transcriptome ٠
- Oligonucleotide probe tilling
- Fluorochrome signal analysis
- Bulk resolution

Whole Genome View

Late 2000's: RNA sequencing

- Whole transcriptome
- Next Generation Sequencing
- Full-transcript coverage
- Bulk resolution

Cost : 4k€ 20 samples 50k genes 1M matrix

Mid 2010's: Single-cell

- Sensitivity (6%)

250M matrix

2020's : Spatial

- 300-1000 gene targets •
- Imaging analysis
- Multiplexing FiSH (single molecule)
- Sensitivity (30-80%)
- Sub-cellular resolution

Cost : 4k€ 250k cells 1k genes 250M matrix + Spatial dimension

- - - Whole transcriptome
- Microfluidics + NGS
 - 3p-end gene signal (UMI)
 - - Single-cell / state resolution

Human Cell Atlas

CZI initiative (2016)

Mission to create comprehensive reference maps of all human cells, the fundamental units of life, as a basis for both understanding human health and diagnosing, monitoring, and treating disease.

Human Cell Atlas

Contributions

2019

TECHNIQUES AND RESOURCES | 23 OCTOBER 2019

Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures $\widehat{\mathbf{O}}$

In collection: Human development

Sandra Ruiz Garcia, Marie Deprez, Kevin Lebrigand, Amélie Cavard, Agnès Paquet, Marie-Jeanne Arguel, Virginie Magnone, Marin Truchi, Ignacio Cabaliero, Sylvie Leroy, Charles-Hugo Marquette, Brice Marcet, Pascal Barby ⊠ 0, Laure-Emmanuelle Zaragosi ⊠ 0

+ Author and article information

Development (2019) 146 (20): dev177428

2019

Home > American Journal of Respiratory and Critical Care Medicine > List of Issues > Volume 202, Issue 12

A Single-Cell Atlas of the Human Healthy Airways

✓ ± 21 125 99 215

https://doi.org/10.1164/rccm.201911-2199OC PubMed: 32726565 Received: November 15, 2019 Accepted: July 28, 2020

2020

GENOMICS

High throughput error corrected Nanopore single cell transcriptome sequencing

Kevin Lebrigand 🏾, <u>Virginie Magnone, Pascal Barbry</u> 🏧 & <u>Rainer Waldmann</u> 🍽

Nature Communications 11, Article number: 4025 (2020) Cite this article

36k Accesses 83 Citations 67 Altmetric Metrics

2021

Analysis | Published: 02 March 2021

Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics

Christoph Muus ^{QI}, Malte D. Luecken ^{QI}, Gökren Eraslan, Lisa Sikkema, Avinash Waghray, Graham Heimberg, Yoshihiko Kobayashi, Esshit Dhaval Vaishnav, Ayshwarya Subramanian, Christopher Smillie, Karthik A. Jagadeesh, Elizabeh Thu Duong, Evgenij Fiskin, Elena Torlai Triglia, Meshal Ansari, Peiwen Cai, Brian Lin, Justin Buchanan, Sijia Chen, Jian Shu, Adam L. Haber, Hattie Chung, Daniel T. Montoro, Taylor Adams, The NHLBL LungMap Consortium & The Human Cell Atlas Lung Biological Network + Stow autors

Nature Medicine 27, 546-559 (2021) Cite this article

53k Accesses | 197 Citations | 349 Altmetric | Metrics

2021 nature

Explore content Y About the journal Y Publish with us Y

nature > perspectives > article

Perspective | Published: 08 September 2021

A roadmap for the Human Developmental Cell Atlas

NANOPORE

Muzilfah Haniffa^{OD}, Deanne Taylor, Sten Linnarsson, Bruse J. Aronow, Gary D. Bader, Roger A. Barker, Pablo G. Camara, J. Gray, Camp, Alain Chédotal, Andrew Copp, Heather C. Etchevers, Paolo Giacobini, Berthold Göttgens, Guoji Guo, Ania Hupalowska Kyller, James Emily Kithy, Arnold Kriegstein, Joakim Lundeberg, John C. Marioni, Kerstin B., Meyer, Kathy K. Niakan, Mats. Nilisson, Bayanne, Olabi, Human Cell Atlas Developmental Biologial Network + Snow autors

Nature 597, 196–205 (2021) Cite this article

65k Accesses 87 Citations 324 Altmetric Metrics

2022

The discovAIR project: a roadmap towards the Human Lung Cell Atlas

Malte D. Luecken^{1,26}, Laure-Emmanuelle Zaragosi ^{©2,26}, Elo Madissoon^{3,4,26}, Lisa Sikkema ^{©1,26}, Alexandra B. Firsova^{3,45}, Elena De Domenico^{5,47}, Louis Kümmerle^{1,26}, Adem Sagtam^{5,46}, Marijn Berg^{1,8,26}, Ludvig Larsson^{9,26,2}, Alexandros Sountoulidis^{5,26}, Sarah A. Teichmann^{3,11}, Karen van Eunen^{12,13}, Gerard H. Koppelman ^{®1,27}, Kouroch Saeh-Parzy¹⁶, Sylot Leroy¹⁷, Pipa Powell⁶, Jujs Sarkans⁴, Wim Timens ^{©1,4}, Joakim Lundeberg¹⁷, Maarten van den Berge^{1,18}, Mats Nilsson¹⁸, Peter Horváth¹⁹, Jessica Denning¹⁶, Irene Pathedeodrou¹, Jackim L. Schulter^{2,18}, Mats Nilsson¹⁸, Peter Horváth¹⁹, Pasian J. Theis¹⁶, Urity Peteukhov²⁷, Alexander V. Misharin²², Ian M. Adcock ^{Q-1}, Michael von Papen²⁵, Fabian J. Theis¹, Christo Samakovlis⁶, Kerstin B. Meyer⁴ and Martijn C. Nawijn ^{Q/A}

2023 nature medicine

Explore content Y About the journal Y Publish with us Y

nature > nature medicine > resources > article

Resource Open access Published: 08 June 2023

An integrated cell atlas of the lung in health and disease

Lisa Sikkema, Ciro Ramírez-Suástegui, Daniel C. Strobl. Tessa E. Gillett, Luke Zappia, Elo Madissoon, Nikolay S. Markov, Laure-Emmanuelle Zaragosi, Yuge Ji, Meshal Anari, Marie-Jeanne Arguel, Leonie Apperloo. Martin Banchero. Christophe Bécavin, Marijn Berg. Evgeny Chichelnitskiy, Mei-i Chung, Antoine Collin. Aurore C. A. Gay, Janine Gote-Schneirag, Baharak Hooshiar Kashani. Kemal Inecki, Manu Jain. Theodore S. Kaeolos, Lung Biological Network Consortium..., Edbian J. Theis¹⁰ + Snow autors

Nature Medicine 29, 1563–1577 (2023) Cite this article

72k Accesses | 59 Citations | 379 Altmetric | Metrics

2023

The spatial landscape of gene expression isoforms in tissue sections $\frac{1}{2}$

Kevin Lebrigand, Joseph Bergenstråhle, Kim Thrane, Annelie Mollbrink, Konstantinos Meletis, Pascal Barbry ⊠, Rainer Waldmann, Joakim Lundeberg Author Notes

10X GENOMICS

Single-Cell transcriptomics experimental approaches

Context

- Elimination of PCR amplification bias and artefacts
 - Highly efficient library preparation techniques
- Use of <u>Unique Molecular</u> Identifiers (UMI) to monitor the **number of molecules** – Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers.
 - Nat Meth 9, 72-74 (2012) — Improved accuracy of molecule counting

Context

- Elimination of PCR amplification bias and artefacts
- Highly efficient library preparation techniques
- Spike-in ERCC molecules allow yield and capture efficiency evaluation

ERCC (External RNA Controls Consortium)

- set of 92 RNA sequences,
- of varying length and GC content,
- mixed at known concentrations,
- 22 abundance levels that are spaced one fold change apart from each other
 Accuracy Pearson correlation between input and

Power Analysis of Single Cell RNA-Sequencing Experiments, Svensson et al., 2018

How much RNA does a typical mammalian cell contain?

- Cell RNA content depend on its cell type and developmental stage
- Majority of RNA molecules are tRNAs and rRNAs, mRNA accounts for only 1-5%
- Approximately 360,000 mRNA molecules are present in a single mammalian cell
- ~ 12,000 different transcripts with a typical length of around 2 kb,
- Some comprise 3% of the mRNA pool whereas others account for less than 0.1%. These rare or low-abundance mRNAs may have a copy number of only 5-15 molecules per cell.

https://www.giagen.com/fr/resources/fag?id=06a192c2-e72d-42e8-9b40-3171e1eb4cb8&lang=en

Average total RNA yields	
Primary cells (1×10 ⁶ cells)	Total RNA (µg)
Dendritic cells, human	4
Hematopoietic progenitor cells (CD34+), h	uman 1
Fibroblasts, rat	5
PBMC	8
Cell lines (1×10 ⁶ cells) Colon carcinoma cells	Total RNA (μg) 30
Cell lines (1×10 ⁶ cells) Colon carcinoma cells HEK 293 cells	Total RNA (μg) 30 16
Cell lines (1×10 ⁶ cells) Colon carcinoma cells HEK 293 cells HeLa cells	Total RNA (µg) 30 16 32
Cell lines (1×10 ⁶ cells) Colon carcinoma cells HEK 293 cells HeLa cells HUV-EC-C	Total RNA (μg) 30 16 32 38
Cell lines (1×10 ⁶ cells) Colon carcinoma cells HEK 293 cells HeLa cells HUV-EC-C THP1 cells	Total RNA (μg) 30 16 32 38 16

Why single-cell profiling ?

Chris Harris, 2020

Single-cell isolation techniques

To measure sequences in individual cells, we need method that capture one cell at a time

Review Article | Open Access | Published: 07 August 2018

Single-cell RNA sequencing technologies and bioinformatics pipelines

Byungjin Hwang, Ji Hyun Lee 🗠 & Duhee Bang 🗠

Evolution of isolation techniques and throughput

Exponential scaling of single-cell RNA-seq in the past decade Svensson et al., *Nature Protocols*, 2018 Manual pipetting

Exponential scaling of single-cell RNA-seq in the past decade Svensson et al., *Nature Protocols*, 2018

- 2009: 1 mouse blastomere
- 2010: 16 early mouse embryo

mRNA-Seg whole-transcriptome analysis of a single cell, Tang et al., 2009

Plate-based protocols

Exponential scaling of single-cell RNA-seq in the past decade Svensson et al., *Nature Protocols*, 2018

Single cell tagged reverse transcription, Islam et al., 2011 Quantitative single-cell RNA-seq with unique molecular identifiers, Islam et al., 2014 Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq, Zeisel et al., 2015

Spiked molecules per cell

Fluidigm C1 microfluidics

Exponential scaling of single-cell RNA-seq in the past decade Svensson et al., *Nature Protocols*, 2018

Fluidigm C1

- 96 / 800 cell chips,
- protocols for SMARTer, CEL-seq, STRT-seq, ...
- Limiting factor: capture chamber size and doublets

A cost effective 5' selective single cell transcriptome profiling approach with improved UMI design 3 Marie-Jeanne Arguel, Kevin LeBrigand, Agnès Paquet, Sandra Ruiz García, Laure-Ennanuelle Zaragosi, Pascal Babry ©, Rainer Waldmann

Nucleic Acids Research, Volume 45, Issue 7, 20 April 2017, Page e48, https://doi.org /10.1093/nar/gkw1242

Published: 09 December 2016 Article history •

capture efficiency = 26%

Arguel et al., 2016

Combinatorial indexing

Exponential scaling of single-cell RNA-seq in the past decade Svensson et al., *Nature Protocols*, 2018

WT Minia WT Tot Celle 1:2 Samples Tot Colle 1:2 Samples Tot Cole

sci-RNA-seq, Cao et al, 2017 SPLIT-seq, Rosenberg et al., 2018 Droplet-based

Exponential scaling of single-cell RNA-seq in the past decade Svensson et al., *Nature Protocols*, 2018

InDrop, Klein et al, 2015 Drop-seq, Macosko et al, 2015

Droplet-based

10x Genomics, Zheng et al, 2016

Exponential scaling of single-cell RNA-seq in the past decade Svensson et al., *Nature Protocols*, 2018

Comparative studies

Benchmarking single-cell RNA-sequencing protocols for cell atlas projects Mereu et al., Nat.Biotech, 2020

Fig. 6 | Benchmarking summary of 13 sc/snRNA-seq methods. Methods are scored by key analytical metrics, characterizing protocols according to their ability to recapitulate the original structure of complex tissues, and their suitability for cell atlas projects. The methods are ordered by their overall benchmarking score, which is computed by averaging the scores across metrics assessed from the human datasets.

What do you want to study ?

- \rightarrow more cells for statistics
- \rightarrow more genes for subsequent biology
- \rightarrow sequencing cost you can support
- \rightarrow 5p, 3p of full length protocols

Single-cell approaches in publications

- Huge amount of single-cell studies in the past 10 years,
- Droplet-based approaches = 61% (Chromium: 47%)

		Technique	Count	
https://doi.org/10.1093/database/baaa073	\rightarrow	Chromium	725	Droplet-based approaches
		Smart-seq2	177	- Digital Gene Expression (LIMI)
criptomics		SMARTer (C1)	124	
ase 2020		Drop-seq	74	- High cell number throughput
30,2020		SMARTer	28	- Limited capture efficiency (<10%)
	\rightarrow	InDrops	23	- 3n or 5n signal (SAGE-like)
		CITE-seq	18	
		CEL-seq2	17	
		STRT-seq	17	
		MARS-seq	16	
		Tang	15	
		CEL-seq	13	
		STRT-seq (C1)	13	
		Seq-Well	13	
		SORT-seq	12	
		BD Rhapsody	11	
		BioMark	8	
		GemCode	7	
		ICELL8	7	
		Perturb-seq	7	
		Patch-seq	6	
		sc-RT-mPCR	6	
		MERFISH	5	

Single-cell droplets-based rely on short reads

Single-cell approaches in publications

A curated database reveals trends in single cell transcriptomics Svensson et al., Database , 2020

- Huge amount of single-cell studies in the past 5 years,
- Droplet-based approaches = 61% (Chromium: 47%)
- Smart-based approach = 21%, <5% in the last 2 years

Technique	Count	
Chromium	725	Smart-based approach
Smart-seq2	177	Lower cell number (294 plate bandling)
SMARTer (C1)	124	- Lower cell number (364-plate nandling)
Drop-seq	74	- Higher capture efficiency (~30%)
SMARTer	28	No LIM before $\sqrt{2}$ (may 2020)
InDrops	23	- NO UMI Delore V3 (may 2020)
CITE-seq	18	- Full-length coverage using short-reads
CEL-seq2	17	
STRT-seq	17	Article Open Access Published: 30 May 2022
MARS-seq	16	Scalable Single-cell RNA Sequencing from full
Tang	15	transcripts with Smart Seq5xpress
CEL-seq	13	Michael Hagemann-Jensen, Christoph Ziegenhain & Rickard Sandberg 🖻
STRT-seq (C1)	13	Brief Communication Open Access Published: 30 May 2022
Seq-Well	13	Fast and highly sensitive full-length single-cell RNA
SORT-seq	12	sequencing using FLASH-seq
BD Rhapsody	11	Vincent Hahaut, Dinko Pavlinic, Walter Carbone, Sven Schuierer, Pierre Balmer, Mathieu Quinodoz,
BioMark	8	magdaletia netriter, sugletemo noma, cameron s. Cowan & amone zicela 🗢
GemCode	7	LIMIa datastad in LIEK202 colla
ICELL8	7	UNIS delected III HEK295 Cells
Perturb-seq	7	Droplets 10x: 30k (50k reads)
Patch-seq	6	Plate-based : 60k (200k reads)
sc-RT-mPCR	6	Smart-seg3: 150k (750k reads)
MERFISH	5	
		Mantis Microdispen

Transcriptomics

Complex outcomes of alternative splicing

Scotti and Swanson, Nat Rev Genet., 2016

- 90% of the genes are subjected to alternative splicing,
- Gencode v42 : 252,416 distinct isoforms for 62,696 genes,
- On average, a human gene contains 8.8 exons, mean size of 145 nt,
- Average encodes mRNA 2,410 nt long :

Single-cell long-read transcriptomics

Droplets-based approach short reads vs long reads

Information on alternative splicing, fusion transcripts, SNV, editing, imprinting, allelic imbalance

ls lost

Remain accessible

Thursday

Single-cell long-read transcriptomics

SiCeLoRe, bioinformatics for Single Cell Long Read

Spatial in-situ capture transcriptomics

Spatial Transcriptomics approaches

Historical timeline

- Spatial transcriptomics aims at directly visualize gene expression in their original environment
- Tackle the main limitation of single cell experiment missing the spatial organization
- A lot of developments in the last years thanks to recent advances in different fields

Spatial Transcriptomics approaches

A lot of different options

Categories of Methods	Name	Single Cell Resolution	Omics Type *	Whole Transcriptome Profiling	Tissue Type *	
	10X Genomics Visium	~55 µm/spot	RNA	x	FFPE, FF	
Commenting based	Slide-Seq	~10 µm/spot	RNA	x	FFPE, FF	
Sequencing-based	Stereo-seq	Close to single cell	RNA	x	FFPE, FF	
	Light-seq	Close to single cell	RNA	x	FFPE	
Probe-based	NanoString GeoMx	~20-300 cells/ROI	RNA, protein	~hundreds of targets	FFPE, FF	
	NanoString CosMx	x	RNA, protein	~1000 targets	FFPE, FF	
Imaging-based	MERFISH	x	RNA, protein	~10,000 targets	FFPE, FF	
	seqFISH	x	RNA, protein	~10,000 targets	FFPE, FF	
	STARmap	x	RNA	~100–1000 targets	FFPE, FF	
x	Geo-seq	a number of cells	RNA	x	FFPE, FF	
Image-guided spatially	Zipseq	x	RNA	x	Live tissue, (FF)	
transcriptomic	NICHE-seq	x	RNA	x	Live tissue, (FF)	
sequencing	Spatially annotated FUNseq	x	RNA, (DNA, protein)	x	Live tissue, (FF)	
	Slide-DNA-seq	~10 µm/spot	DNA	Single cell whole genome sequencing	FFPE, FF	
	DBiT-seq	∼10 µm/pixel	RNA, protein	x	FFPE, (FF)	
	MIBI	x	Protein, metabolite	~100 targets	FFPE	
	MALDI-IMS	~10 µm/pixel	Protein, lipid metabolite	>100 targets	FF, (FFPE)	
Different modalities	CODEX	x	Protein	~60 targets	FFPE, FF	
and others	t-cyCIF	x	Protein	~60 targets	FFPE	
	spatial-ATAC-seq	~20 µm/pixel	Chromatin accessibility	Genome-wide chromatin accessibility	FF, (FFPE)	
	Spatial-CUT&Tag	~20 µm/pixel	Histone modification, (RNA, protein)	Genome-wide profiling of histone modifications	FF, (FFPE)	
	Epigenomic MERFISH	x	Histone modification	Genome-wide profiling of histone modifications	FFPE, (FF)	

Visium (2019, ST 2017) is widely adopted by academics

	5	25						4			l
					1		1	89	-		E
14	88.							10		-	E
	1				-			1			Г
1.	-			1	10		17	D.		. 1	ε
8	1		1			18	1				ľ
					1		U			-	E
										2	F
1						7					Г
				7		5	51	1	1		P
					0	7			in	-	Г
		12	51					-			Ē

DBit-seq (2020)

High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue

Yang Liu, ^{1,2,6} Mingyu Yang, ^{1,2,6} Yanxiang Deng, ^{1,2,6} Graham Su, ^{1,2} Archibald Enninful,¹ Cindy C. Guo,¹ Toma Tebaldi,^{2,4} Di Zhang,¹ Dongloo Kim,¹ Zhiliang Bai,¹ Eileen Norris,¹ Alisia Pan,¹ Jiatong Li,¹ Yang Xiao,¹ Stephanie Halene,^{2,4} and Rong Fan,^{1,2,3,6}

Slide-seq v2 (2021)

Letter | Published: 07 December 2020

$\label{eq:Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seq V2$

Robert R. Stickels, Evan Murray, Pawan Kumar, Jilong Li, Jamie L. Marshall, Daniela J. Di Bella, Paola Arlotta, Evan Z. Macosko 🏾 & Fei Chen 🍽

Nature Biotechnology 39, 313–319 (2021) Cite this article

飘

Stereo-seq (2022)

Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays

Ao Chen, ^{1,2,29} Sha Liao, ^{1,29} Mengnan Cheng, ^{1,3,20} Kallong Ma, ^{1,30} Liang Wu, ^{1,3,4,28} Yiwei Lia, ^{1,5,20} Xiaojie Oiu, ^{5,7,28} Jin Yang,⁸ Jiangshan Xu, ^{1,3} Shijie Hao, ^{1,3} Xin Wang, ¹ Huitang Lu, ¹ Xi Chen, ¹ Xing Liu, ¹ Xin Huang, ^{1,3} Zhao Li, ¹ Yan Hong, ¹ Yujia Jiang, ^{1,3} Jian Peng, ¹ Shuai Liu, ¹ Mengzhe Shen, ¹ Chuanyu Liu, ^{1,10} Quanshui Li, ¹ Yue Yuan, ¹ Xiao Xiaoyu Wei, ¹ Huiwen Zheng, ^{1,3} Weimin Feng, ^{1,3} Zhifeng Wang, ^{1,4} Yang Liu, ¹ Zhaohui Wang, ¹ Yunzhi Yang, ¹ Haitao Xiang, ^{1,2} Lei Han, ¹ Baoming Qin, ⁵ Pengcheng Quo, ⁵ Guangyao Lai, ⁵ Pura Muñoz-Chanoves, ^{1,1,1} Patrick H. Maxwell, ³ Jean Paul Thiery, ^{1,4} Qing-Feng Wu, ¹⁵ Fuxiang Zhao, ¹ Bichao Chen, ¹ Mei Li, ¹ Xi Dai, ^{1,4} Shuai Wang, ^{1,4} Hayang Kuang, ¹ Junhou Hui, ¹ Liqun Wang, ¹⁰ Ji-Feng Fei, ¹⁰ Ou Wang, ¹ Xiaofeng Wei, ^{1,2} Haorong Lu, ^{1,1} Bowang Xiang, ^{1,3} Ling Gu, ^{1,10} Ming Ni, ⁸ Werwei Zhang, ^{1,10} Feng Mu, ⁹ Ye Yin, ^{1,20} Huanming Yang, ^{1,21} Michael Lisby, ² Richard J. Cornal, ²² Jan Mulder, ^{25,24} Mathias Uhién, ^{25,24} Miguel A. Esteban, ^{1,5,26}, ¹² Yuxiang Li, ^{1,2} Longqi Liu, ^{1,5,10,2} Xun Xu, ^{1,10,27}, and Jian Wang, ^{1,21} M

https://en.stomics.tech/

Systematic comparison

Analysis Open access Published: 04 July 2024

Systematic comparison of sequencing-based spatial transcriptomic methods

Yue You, Yuting Fu, Lanxiang Li, Zhongmin Zhang, Shikai Jia, Shihong Lu, Wenle Ren, Yifang Liu, Yang Xu, Xiaojing Liu, Fuqing Jiang, Guangdun Peng, Abhishek Sampath Kumar, Matthew E. Ritchie, Xiaodong Liu 🖾 & Luvi Tian 🖾

Spatial isoform Transcriptomics (SiT)

Nucleic Acids Research, 2023

a

MOR

The spatial landscape of gene expression isoforms in tissue sections a Kevin Lebrigand, Joseph Bergenstråhle, Kim Thrane, Annelie Mollbrink, Konstantinos Meletis, Pascal Barbry X, Rainer Waldmann, Joakim Lundeberg Author Notes Nucleic Acids Research, Volume 51, Issue 8, 8 May 2023, Page e47, https://doi.org/10.1093/nar/gkad169 Published: 17 March 2023 Article history v Tissue preparation and generation Sequencing and features Multi-levels statistical analysis of spatially barcoded cDNA counting of same molecules Gene-level expression and regions annotation 1 spot1 spot2 spot3 spotx Midbrain 10x Genomics Hippocampus area Isocortex-1 gene 1 gene-level $\times \times \times \rightarrow$ aene 2 Isocortex-2 Visium assays Olfactory area Fiber tracts count matrix BS1 CBS2 **X** X X gene 3 Retrosplenial area gene x Fragmentation and CA1/CA2 Thalamus Illumina short-reads Hypothalamus CA3 DG 3' library preparation gene1 Sicelore illumina-quided Differential Isoform Usage analysis A-to-I RNA editing map spatiaIBC and UMI assignment CBS2 10 µm fresh frozen Full-length cDNA CBS1 spot1 spot2 spot3 spotx atio 0.3 c mouse brain slices gene1-iso1 1/1 A (A) Editing isoform-level gene1-iso2 and RNA editing dene2-iso1 count matrices gene2-iso2 SpatialBC/UMI Nanopore long-reads

denex-isox

gene1-iso1 🍏

gene1-iso2

Spatial imaging-based transcriptomics

Spatial transcriptomics technologies (2019-2022)

Visium is widely adopted by academics

But is not the ideal readout for spatial biology (Akoya credit rough caricature)

Imaging-based Spatial Transcriptomics (2022)

No more sequencing for direct single-cell resolution

- Lower gene panel targets (from whole transcriptome to ~1,000 genes)
- Higher sensitivity (from ~6% to 30-80%)
- Larger imaging area (42 to 236 mm2)
- Higher resolution (from 55 µm to subcellular)

Wednesday

Imaging-based Spatial Transcriptomics (2022)

No more sequencing for direct single-cell resolution

Nanostring CosMx

- 960 targets (panel 20k, AGBT24)
- Sensitivity : << 30-80% (+)
- Imaging area: 16 mm2 (2 days)
- Resolution: 200 nm

Vizgen Merscope

- 1.000 targets
- Sensitivity : 30-80% (+++)
- Imaging area: 100 mm2 (2 days)
- Resolution: 100 nm

10xGenomics Xenium

- 400 6,000 targets
- Sensitivity : 5-30% (++)
- Imaging area: 236 mm2 (4 days)
- Resolution: 200 nm

Imaging-based Spatial Transcriptomics (2022)

No more sequencing for direct single-cell resolution

Cyclic in situ Hybridization Chemistries

Imaging-based Spatial Transcriptomics platforms comparison

2 recent bioRxiv comparative studies

A Comparative Analysis of Imaging-Based Spatial Transcriptomics Platforms

David P. Cook¹, Kirk B. Jensen^{2,3,4}, Kellie Wise^{2,3}, Michael J. Roach^{2,3}, Felipe Segato Dezem^{6,7}, Natalie K. Rvan^{3,5}, Michel Zamoiski⁹, Ioannis S. Vlachos^{10,11,12,}, Simon R, V. Knott^{13,14}, Lisa M. Butler^{3,5}, Jeffrey L. Wrana^{1,15}, Nicholas E. Banovich¹⁶, Jasmine T. Plummer^{6,7,8*}, Luciano G. Martelotto^{2,3*}

NegProbe

NegProbe

Gene

Gen

1072 1074

CosMx - Rept

1074 10-2 100

Probe mean counts

Probe mean counts

105

Systematic benchmarking of imaging spatial transcriptomics platforms in FFPE tissues

Huan Wang^{1,*}, Ruixu Huang^{2,*}, Jack Nelson^{1,*}, Ce Gao³, Miles Tran³, Anna Yeaton⁴, Kristen Felt⁵, Kathleen L. Pfaff⁶, Teri Bowman⁷, Scott J. Rodig^{6,7}, Kevin Wei^{-3,7}, Brittany A. Goods^{2,**}, Samouil L. Farhi^{1,**}

	Xenium Rep 1	Xenium Rep 2	CosMx Rep 1	CosMx Rep 2	
Gene target #	377	377	1000	1000	
Total cell count	99,852	102,508	96,139	98,767	
Median gene count per cell	33	34	75	71	
Median transcript count per cell	88	92	113	99	
Median transcript count / gene target count	0.23	0.24	0.11	0.10	
Median transcript count (intersecting targets only)	23	24	8	7	

NegProbe

Gene

107

CosMx - Rep2

1074 1072 108

Probe mean counts

Probe mean counts

CosMx is less sensitive (high FPR)

- Merscope / Xenium for Fresh frozen slice
- Xenium more optimal for FFPE slice

Gene targets panel design

Depending on the biological question !

Depending of your specific scientific focus

- Identify all major cell types, resolve cell subtypes
- Explore functional information
- Investigate interactions between cell types
- Ligand-receptors analysis
- Explore canonical signaling pathways
- Profile immune checkpoint molecules

• • • •

Satisfy technological system limitations

- Number of targets available
- Range of gene targets expression
- Total gene targets expression
- Budget around 15 k€ for 10 reactions

<u>https://portal.vizgen.com/</u> <u>https://cloud.10xgenomics.com/xenium-panel-designer</u>

Experimental design

Take advantage of the large imaging area

Image-based spatial transcriptomics identifies molecular niche dysregulation associated with distal lung remodeling in pulmonary fibrosis

Annika Vannan^{1,a}, Ruqian Lyu^{2,3,a}, Arianna L. Williams¹, Nicholas M. Negretti⁴, Evan D. Mee¹, Joseph Hirsh⁴, Samuel Hirsh⁴, David S. Nichols⁵, Carla L. Calvi⁶, Chase J. Taylo⁶, Vasiliy V. Polosukhin⁶, Ana PM Serezani⁵, A. Scott McCall⁵, Jason J. Gokey⁶, Heejung Shim³, Lorraine B. Ware^{5,7}, Matthew J. Bacchetta⁸, Ciara M. Shaver⁶, Timothy S. Blackwell^{5,9,10}, Rajat Walia¹¹, Jennifer MS Sucre^{4,9}, Jonathan A. Kropski^{5,9,10,9}, Davis J McCarthy^{2,3,9}, Nicholas E. Banovich^{1,6,*}

500 µm

https://www.ihcworld.com/products/Quick-Ray-Mold.htm

Each slide cost around 5 k€ multiplexing to remove batch effect and increase replicates for robust statistical analysis

Data acquisition

DAPI and cell boundaries staining for cell segmentation

Human fetal head section (PCW9)

DAPI chanel Cell boundaries chanel

Data acquisition

Cell segmentation

Article Published: 14 December 2020

Cellpose: a generalist algorithm for cellular segmentation

Carsen Stringer, Tim Wang, Michalis Michaelos & Marius Pachitariu

Nature Methods 18, 100–106 (2021) Cite this article

Cell segmentation is crucial to ensure cell x gene matrix purity for good subsequent biology

3D segmentation required, actually not used, 2D segmentation per Z then harmonizing and summing the detected transcripts for all Z into the harmonized segmentation mask (nuclei of full cell)

Raw data

Cell x gene matrix

Statistical data analysis

Standardized workflows + packages development

Single-cell data analysis

Scanpy and Squidpy toolkits

Batch effect correction, sample integration, cell type labeling transfer from single-cell references dataset

Transcription Regulatory Network

Single-cell data analysis including spatial resolution

New vast area for computational biologists (just like single-cell 5 years ago)

Neighbors enrichment analysis

Test if cells belonging to 2 clusters are close to each other more often than expected (co-occurrence probability)

Cellular niches analysis

for each cell, we count the number of neighbors that are of each cell type thus forming a "neighborhood profile" vector of length C, where C is the number of cell types. We then cluster all neighborhood profiles and call each cluster a "niche".

Cell-cell communication Ligand-Receptor analysis

- Need to be in gene panel or inferred
- CellPhoneDB [Efremova et al., 2020]
- Omnipath [Türei et al., 2016].

Sub-cellular exploration

Bento is a Python toolkit for performing subcellular analysis of spatial transcriptomics

Acknowledgments

Institut de Pharmacologie Moléculaire et Cellulaire

Pascal Barbry's Lab (IPMC, CNRS, France)

- Virginie Magnone
- Géradine Rios
- Marie Couralet
- Valentine Freschi
- Marie-Jeanne Arguel

CoBiODA IPMC bioinformatics

- Kévin Lebrigand
- Morgane Fierville
- Marin Truchi
- Eamon McAndrew

