

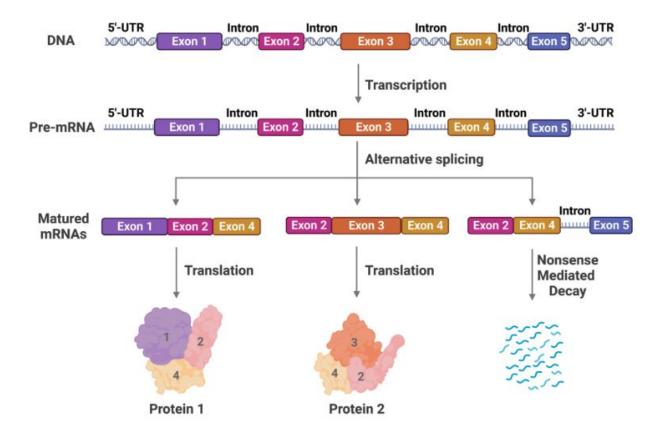
Long read single-cell and spatial transcriptomics

Ali Hamraoui & Morgane Fierville Thrusday 24 October 2025

Alternative splicing: the main mechanism for generating transcriptome complexity

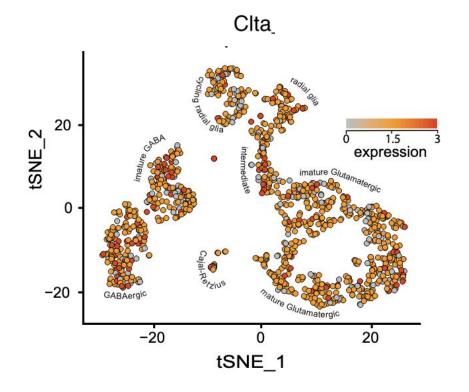
Alternative splicing plays a critical roles in:

- Cell differentiation
- Speciation
- Human diseases such as cancer, diabetes and neurological disorders.



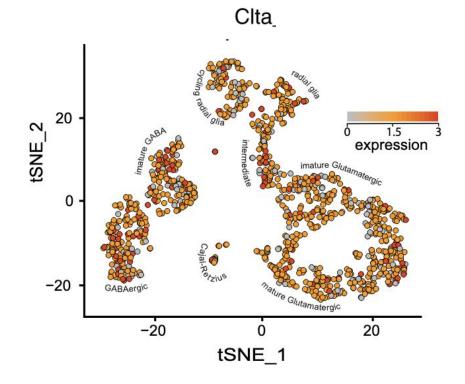
Single-cell analysis at isoform level is biologically more informative than at gene level

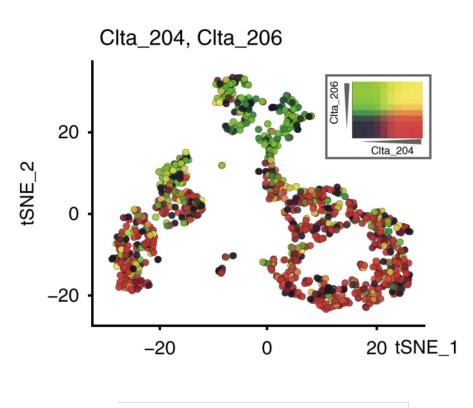
Clta isoform expression switch during **neuronal maturation** visualized on the t-SNE plot.



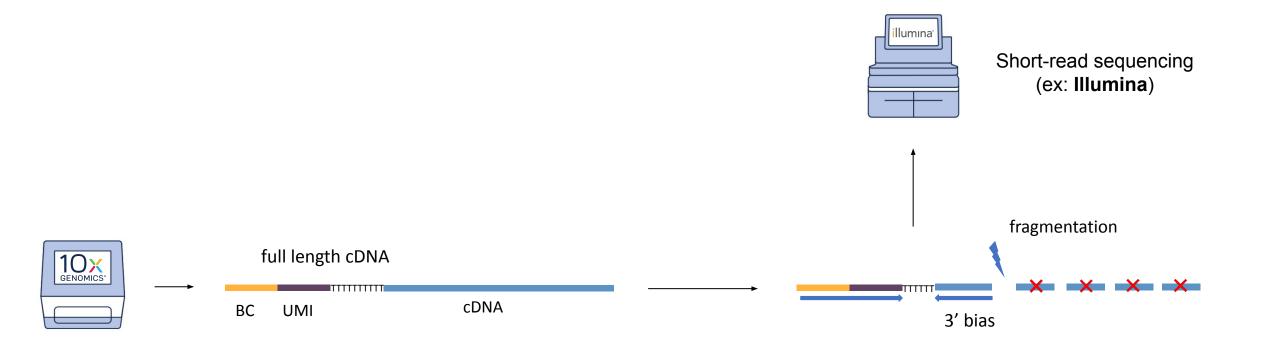
Single-cell analysis at isoform level is biologically more informative than at gene level

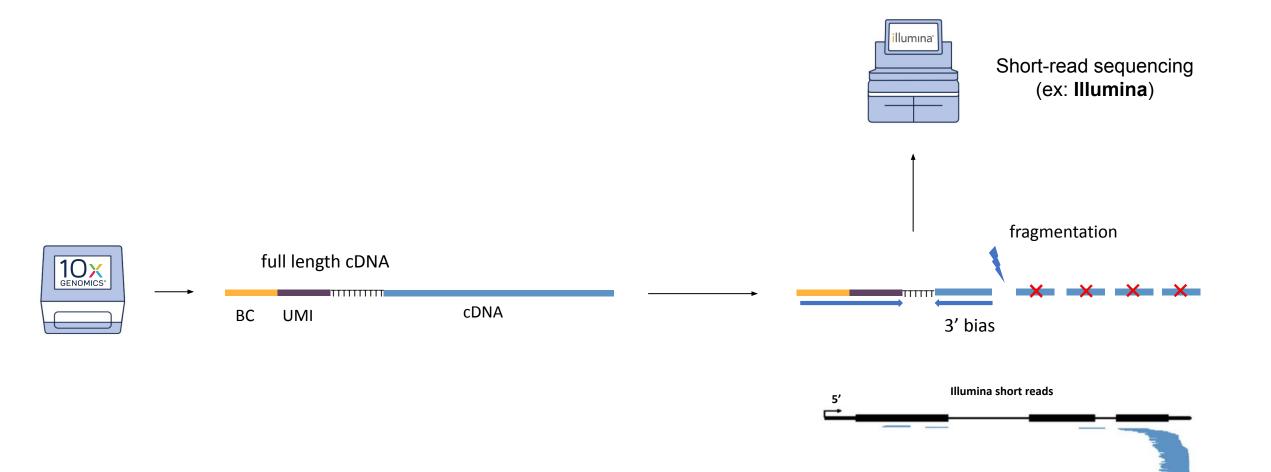
Clta isoform expression switch during **neuronal maturation** visualized on the t-SNE plot.

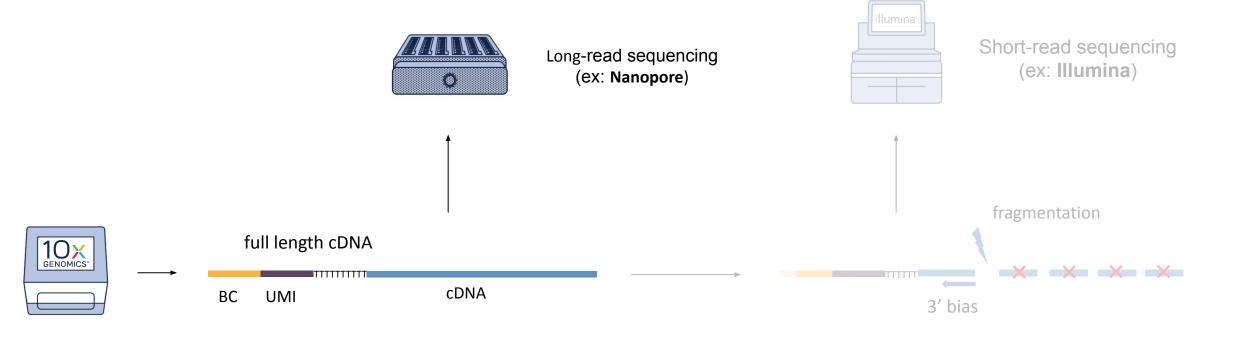


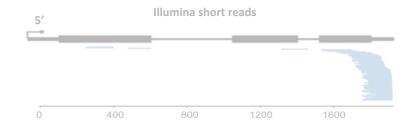


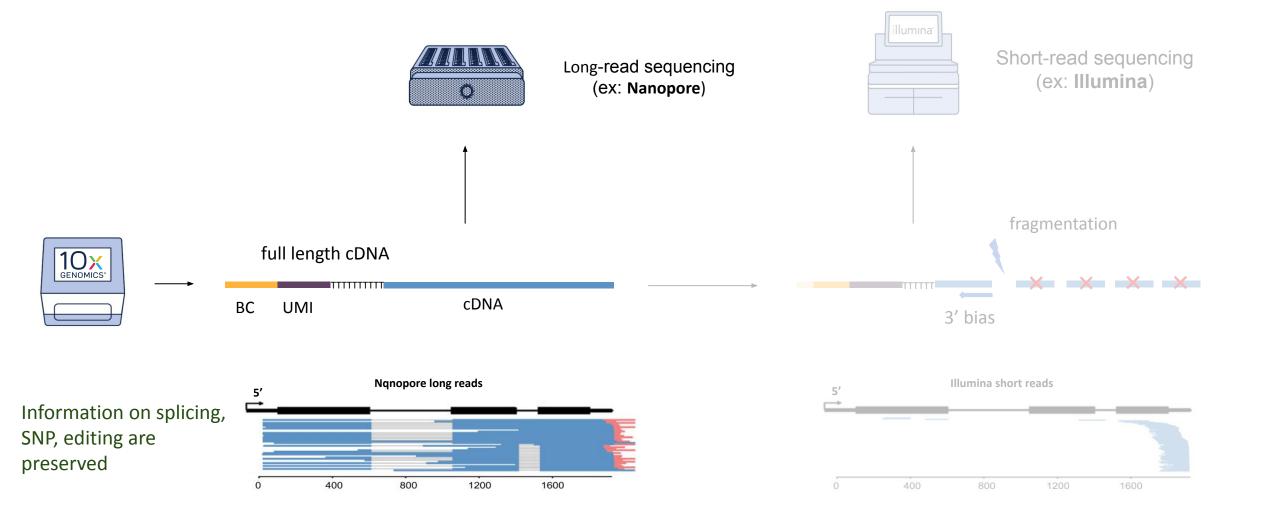
- Why single cell long read is usefull?
- Preprocessing and comparison of tools.
- Spatial isoform transcriptomics.
- Demo: scRNAseq long read data pre-processing.

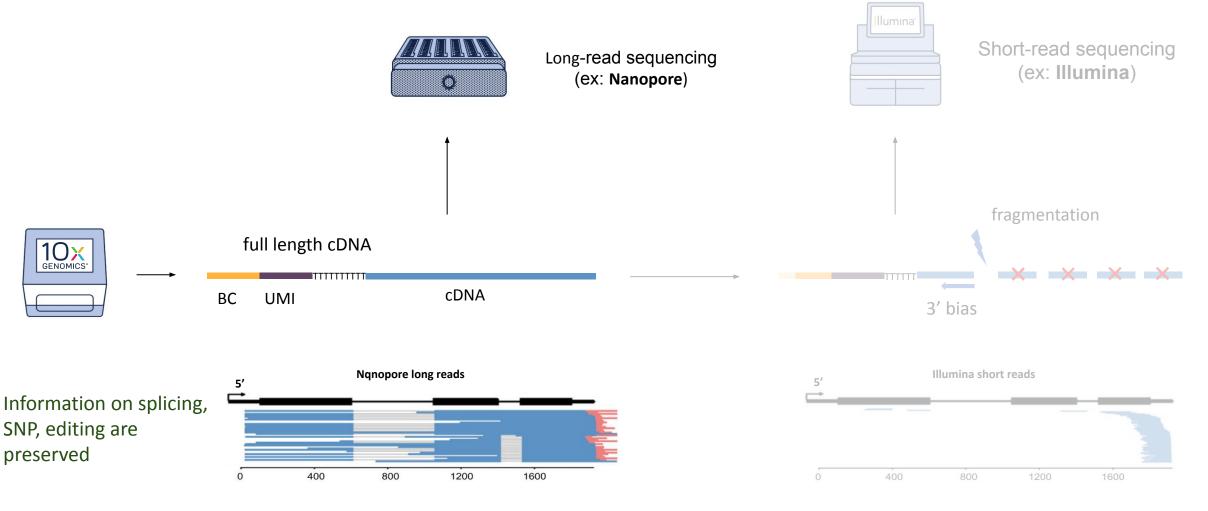






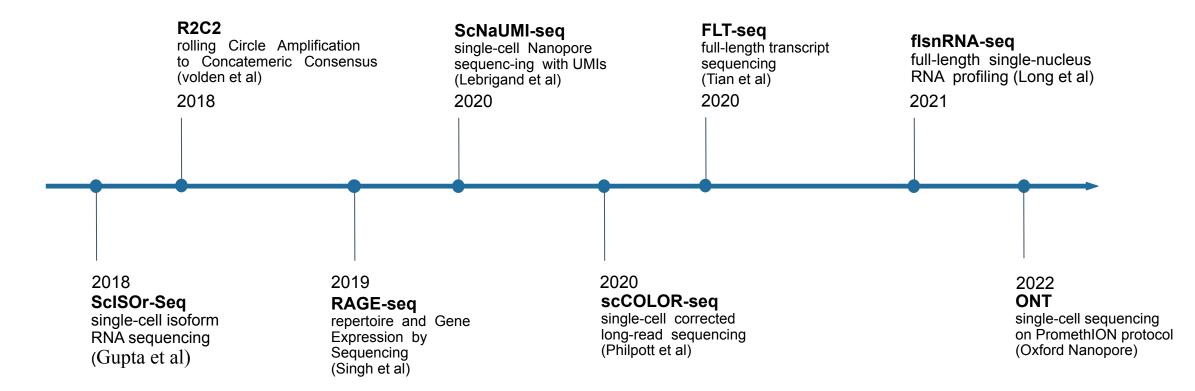






~95% accuracy on R9.4.1 flowCell

State of the art of the single cell long read with 10x Genomics

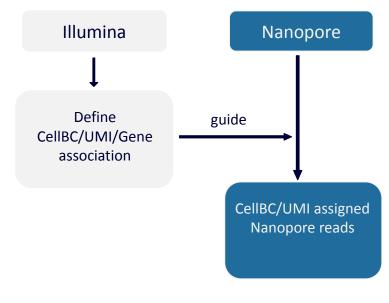


Bioinformatics preprocessing approaches for single cell long read

Several bioinformatics pre-processing tools have been developed to analyse nanopore-sequenced 10x transcriptome libraries.

Year	Authors	Journal	Protocol	Approach	ΤοοΙ
2020	Lebrigand et al.	Nature comm.	scNaUMI-seq	Hybrid	SiCeLoRe
2021	Long et al.	Genome Biology	FlsnRNA-seq	Hybrid	Snuupy
	Wang et al.	RNA		Hybrid	scNapBar
	Tian et al.	Genome Biology	FLT-seq	Nanopore-only	FLAMES
2022	ONT		ONT	Nanopore-only	Sockeye
	Lebrigand et al.			Nanopore-only	SiCeLoRe 2.1
2023	Shiau et al.	Nature comm.		Nanopore-only	ScNanoGPS

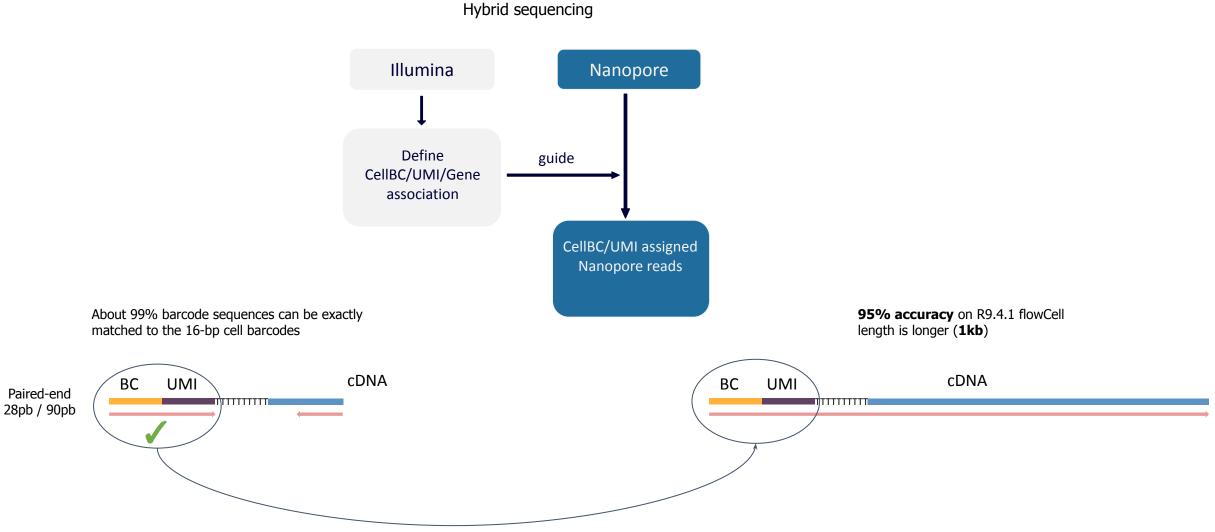
Hybrid approaches



ScNaUMI-seq (Single Cell Long Read) - Lebrigand et al. 2020

Bioinformatics preprocessing approaches for single cell long read

Several bioinformatics pre-processing tools have been developed to analyse nanopore-sequenced 10x transcriptome libraries.



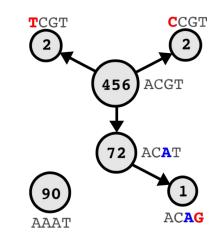
Bioinformatics preprocessing approaches for single cell long read

Several bioinformatics pre-processing tools have been developed to analyse nanopore-sequenced 10x transcriptome libraries.

Year	Authors	Journal	Protocol	Approach	ΤοοΙ
2020	Lebrigand et al.	Nature comm.	scNaUMI-seq	Hybrid	SiCeLoRe
2021	Long et al.	Genome Biology	FlsnRNA-seq	Hybrid	Snuupy
	Wang et al.	RNA		Hybrid	scNapBar
	Tian et al.	Genome Biology	FLT-seq	Nanopore-only	FLAMES
2022	ONT		ONT	Nanopore-only	Sockeye
	Lebrigand et al.			Nanopore-only	SiCeLoRe 2.1
2023	Shiau et al.	Nature comm.		Nanopore-only	ScNanoGPS

Nanopore-only approaches

Correction of BC & UMI similar to **umi tools** *Tom Sean Smith et al, Genome Research (2017)*



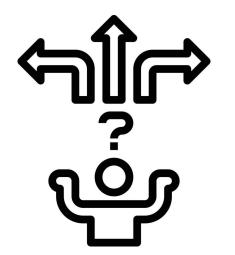
scRNA-seq Nanopore data preprocessing involves multiple steps

Comparative overview of scRNA-seq Nanopore preprocessing workflows : Diverse approaches for each step

scRNA-seq Nanopore data preprocessing involves multiple steps

Comparative overview of scRNA-seq Nanopore preprocessing workflows : Diverse approaches for each step

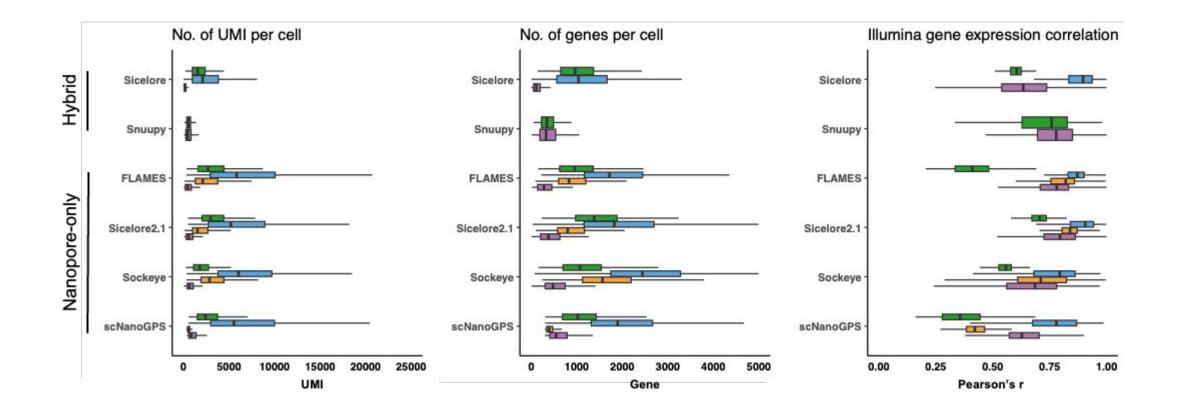
FASTQ	Cell barcod demulteplexing	Filter for chimeric reads	UMI deduplication	Consensus error correction	Isoform analysis	
Sicelore	SR data	\checkmark	SR data	\checkmark	\checkmark	
Snuupy	SR data	\checkmark	SR data	~	PolyA based	
scNapBar	SR data	×	SR data	×	\checkmark	
FLAMES	SR data or BLAZE 10X Shortlist (count over threeshold)	×	Merge UMIs within a fixed edit distance.	×	~	
Sockeye	10X Shortlist (count over threeshold)	\checkmark	UMItools clustering algorithm	×	StringTie	
Sicelore 2.1	10X Shortlist	Cluster UMIs based on distance.		~	~	
scNanoGPS	No guidance (count over threeshold)	\checkmark	Merge UMIs within a fixed edit distance.	\checkmark	LIQA	



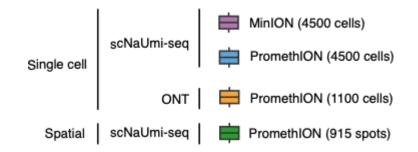
Which is the most appropriate bioinformatics approach(es) to analyse scRNAseq data to detect

and quantify isoforms at the single-cell level?

Comparing the methods at different protocols and variable sequencing depth



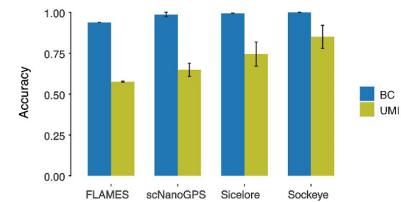
- Gene expression correlation between Nanopore and Illumina improves with sequencing depth
- · Sockeye reveals a subtle increase in the number of genes
- Sicelore2.1 shows the best gene expression correlation with short read data across all data types



hamraoui et al., (in preparation)

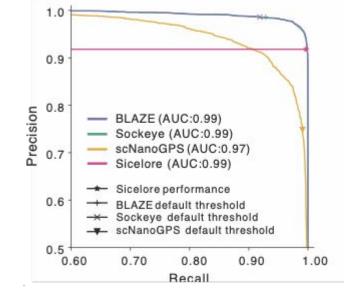
Comparing the performances of long-read methods on simulated data

We simulated **5** dataset (each comprising 5 million reads) with an amplification rate varying between 1 and 5.



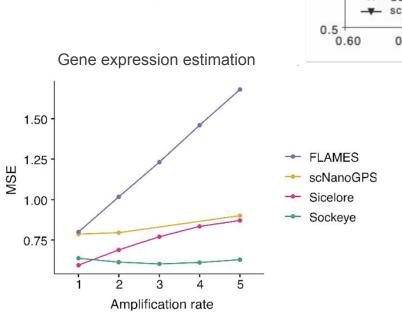
BC & UMI errors correction

Single cell identification



- Sockeye and BLAZE accurately identify single cells in nanopore data
- Sockeye shows the best UMI error correction strategy
- Accurate UMI error correction leads to best gene expresseion quatification performances

hamraoui et al., (in preparation)



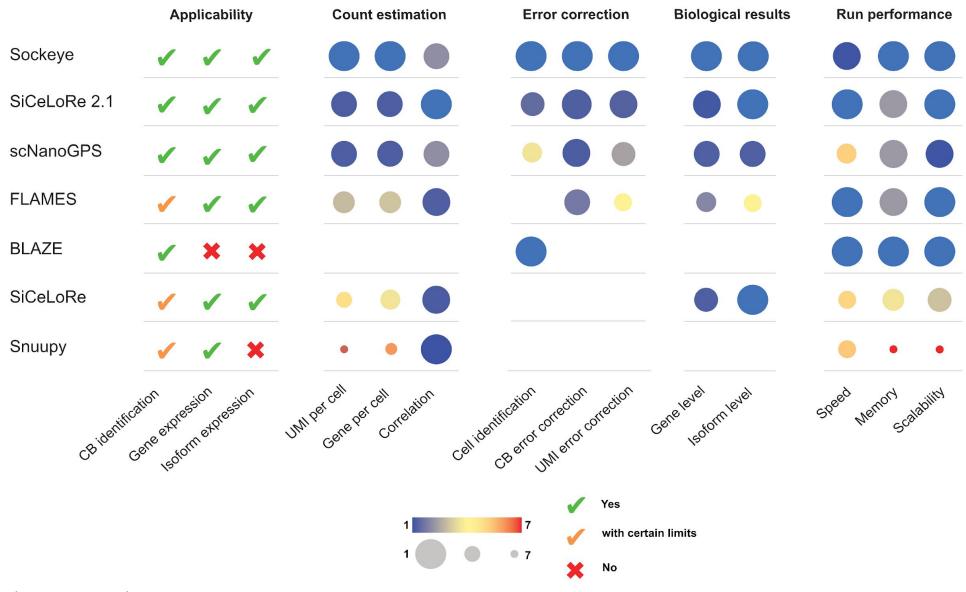
Comparing the performances of long-read methods on simulated data

We simulated **5** dataset (each comprising 5 million reads) with an **amplification rate** varying between **1** and **5**.

FLAMES scNanoGPS Sicelore Sockeye 1.5 -Relative UMI count 0.5 Annotated isoforms Novel isoforms 0.0 12345 2345 12345 12345 1 Amplification rate 0.75 Bate 0.50 Precision Recall 0.25 0.00 FLAMES Sicelore Sockeye

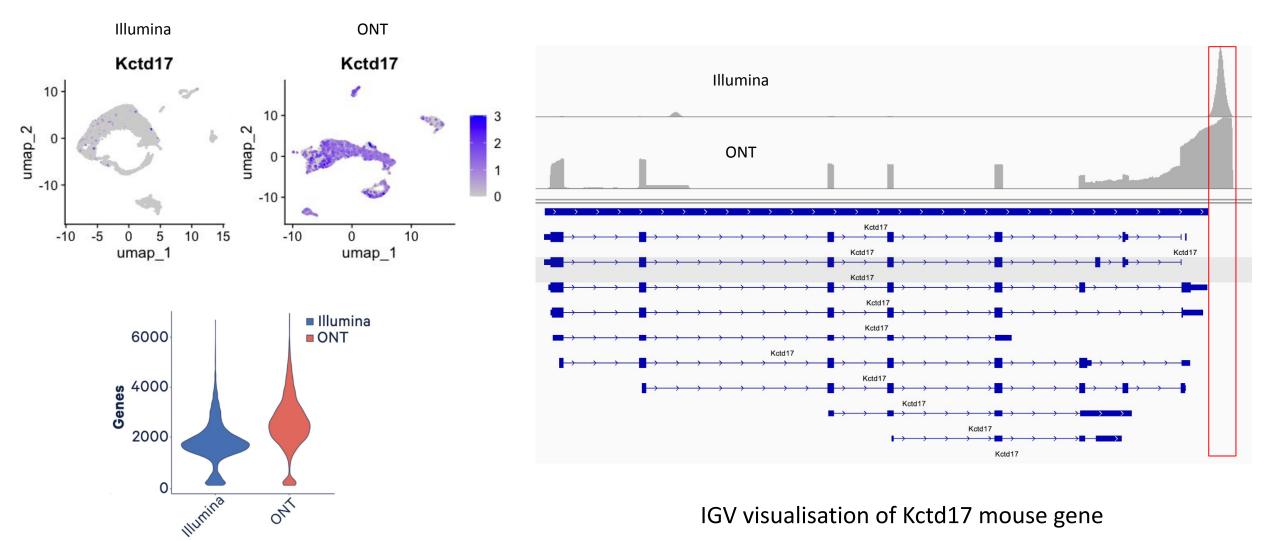
- Sockeye (StringTie) shows the best isoforms quantification accuracy
- Sicelore 2.1 outperforms other methods in isoforms identification

Ranking of methods across key aspects of evaluation criteria



hamraoui et al., (in preparation)

Short read 3' biased with incomplete 3'UTR annotation lead to loss of gene expression



10x Genomics., Alternative transcript isoform detection with single cell and spatial resolution *App Note* (2022)

Single cell long read: Key points

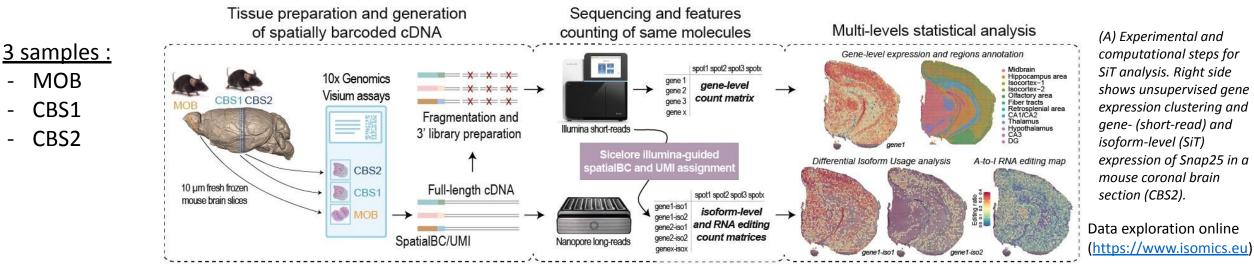
- Nanopore sequencing preserve informations on splicing, SNP ...
- Single-cell transcriptomics in long read enables a finer detection of isoforms.
- Long-read scRNA-seq improves gene detection in poorly annotated species.
- Sockeye (*wf-single-cell*) & Sicelore are efficient methods that provide a good compromise between the number of reads assigned, accuracy and computing cost.

Questions?

- Why single cell long read is usefull?
- Preprocessing and comparison of tools.
- Spatial isoform transcriptomics.
- Demo: scRNAseq long read data pre-processing.

Spatial Isoform Transcriptomics (SiT)

Explorative method for characterizing spatial isoform variation and sequence heterogeneity



• <u>Different steps :</u>

- Sequenced by Nanopore long-read and analyzed with *SiCeLoRe*
- Visium data analysed with *SpaceRanger*
- Spatial analyses with Seurat
- Isoform switch with Isoswitch
- A-to-I RNA editing with Seurat
- Deconvolution of the spot to have an estimation of the cell type proportion with **SPOTlight**

Lebrigand K, Bergenstråhle J, Thrane K, Mollbrink A, Meletis K, Barbry P, Waldmann R, Lundeberg J. The spatial landscape of gene expression isoforms in tissue sections. Nucleic Acids Res. 2023 May 8;51(8):e47. <u>https://doi.org/10.1093/nar/gkad169</u>

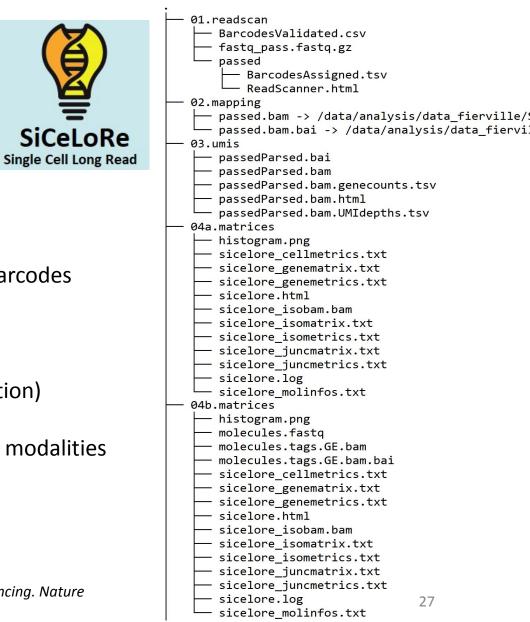
Single Cell Long Read (SiCeLoRe) pipeline

 A suite of tools dedicated to cell barcode / UMI (unique molecular identifier) assignment and bioinformatics analysis of highly multiplexed single cell Nanopore or PacBlo long read sequencing data.

The workflow integrates several sequential steps :

- Cell barcode and UMI assignment to long reads guided by a list of valid barcodes
- Transcript isoform identification
- Generation of molecules consensus sequences (UMI-guided error-correction)
- Production of count matrices (isoforms / junctions / SNPs x cells) for new modalities integration into standard single cell RNA-seq statistical analysis.

Lebrigand K, Waldmann R et al. (2020). High throughput error corrected Nanopore single cell transcriptome sequencing. Nature Communication 11, 4025. <u>https://doi.org/10.1038/s41467-020-17800-6</u>



Visium - in situ capture spatial transcriptomics

Whole-transcriptome spatial method developed by 10X Genomics

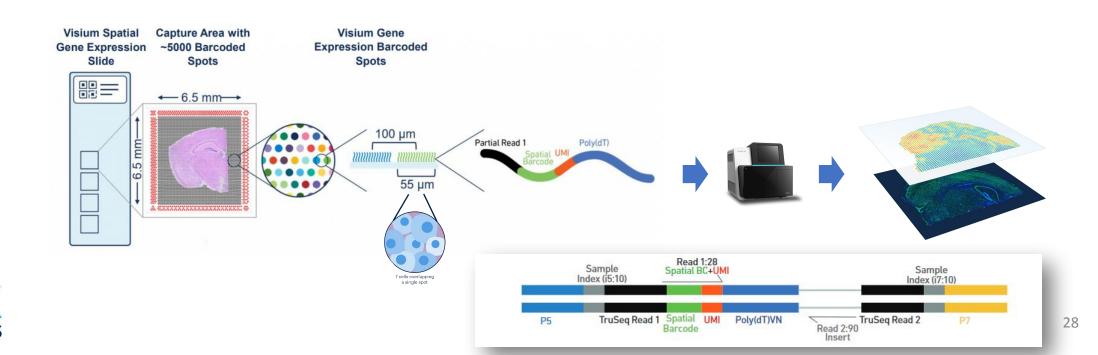
- Slide with 4 captures areas :
 - 6.5 mm x 6.5 mm
 - ~5 000 barcoded spots
- Individual spot is 55 microns

GENOMICS

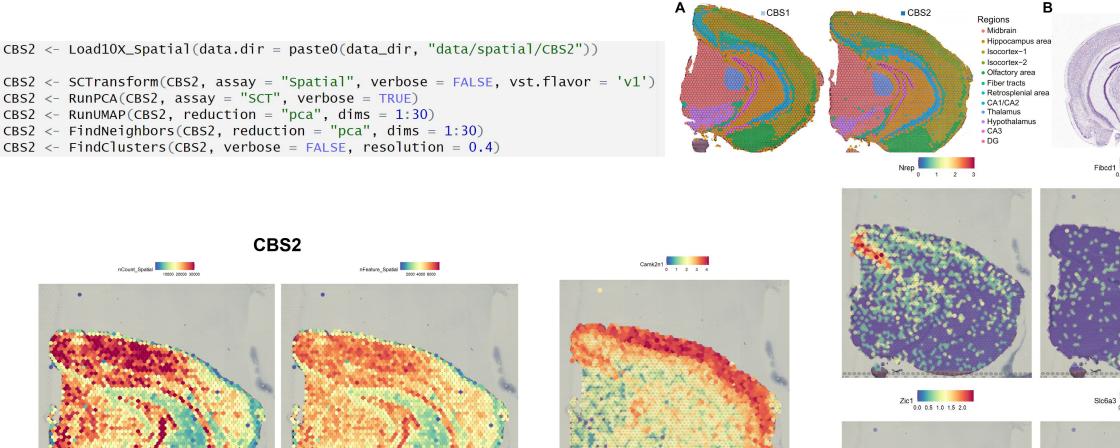
Capture ~1-10 cells per spot depending on tissue type

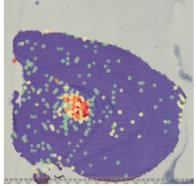
- Tissue sections cut and placed onto the 10X Visium slide
- H&E stained and imaged with a brightfield microscope
- Spot's spatial barcode is retained throughout library preparation
- Sequenced by NGS to visualize gene expression across the tissue

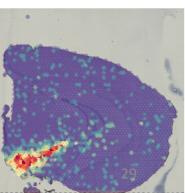
□ Spatial barcode / UMI assignment strategy identical to single cell transcriptomics



Spatial analyses with Seurat







0 1 2 3 4

0.0 0.5 1.0 1.5 2.0

More explored this afternoon

Seurat object with spatial and long-read data

An object of class Seurat
157917 features across 918 samples within 6 assays
Active assay: Spatial (31053 features, 0 variable features)
3 layers present: counts, data, scale.data
5 other assays present: SCT, ISOG, ISO, JUNC, AtoI
2 dimensional reductions calculated: pca, umap
1 image present: slice1

An object of class Seurat 27998 features across 190 samples within 1 assay Active assay: RNA (27998 features, 0 variable features) 1 layer present: counts

5 different assays :

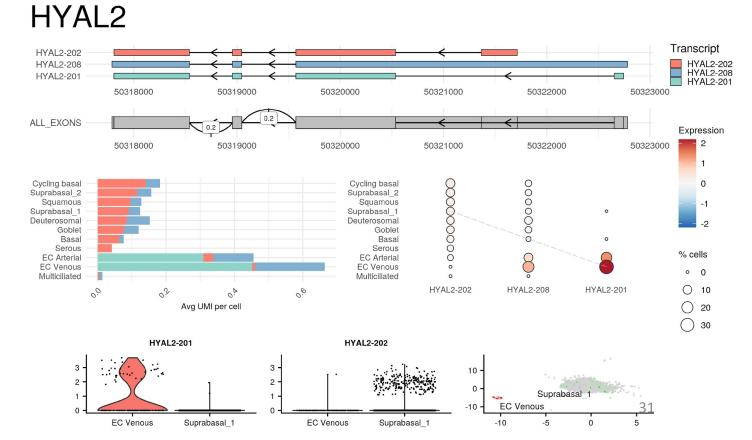
- 'Spatial' containing gene-level raw short-read data from the Space Ranger output
- 'ISOG' containing the gene-level Nanopore long-read data
- **'ISO'** containing isoform-level transcript information where only the molecules where all exons are observed are kept
- 'JUNC' containing each individual exon-exon junction observation per isoform
- 'Atol' cotnaining exonic editing sites from the RADAR database and from the Licht et al., 2019, study, for which we observed at least one UMI in our dataset

Isoswitch – R package

- Facilates the characterization of isoform expression in long-read single-cell datasets.
- Includes a set of functions and reports built on top of Seurat, ggplot and rmarkdown that can be used
 - to search,
 - to visualize and
 - to document isoform expression patterns, and particularly isoform switches between cell identities.

General Workflow :

- 1. Input data setup & pre-processing
- 2. Isoform characterization
- 3. Isoform switch detection
- 4. Gene reports



Ignacio Atienza (previous student)

Isoswitch – Input data setup & pre-processing

1. Input data setup & pre-processing

- Work with Seurat objects with gene- and isoform-level counts generated by ScNaUmi-seq protocol (Lebrigand et al 2020)
 - A gene-level [gene x cell] matrix count
 - stored in assay "RNA" in Seurat object
 - An isoform-level [isoform x cell] matrix count
 - generated by SiCeLoRe pipeline
 - stored in a separate "isoform" assay
- The method *iso_preprocess()* removes low-expression transcripts and single-isoform genes which are irrelevant for the isoform switch analysis
 head(rownames(seurat@assays\$multi@counts))
- New "multi" matrix stored in a new assay

head(rownames(seurat@assays\$multi@counts))										
#> [1] "BCS1LENST00000359273"	"PPP1R10ENST00000461593"									
#> [3] "OSBPL9ENST00000428468"	"TEFENST00000406644"									
#> [5] "CBX5ENST00000209875"	"TRAP1ENST00000246957"									

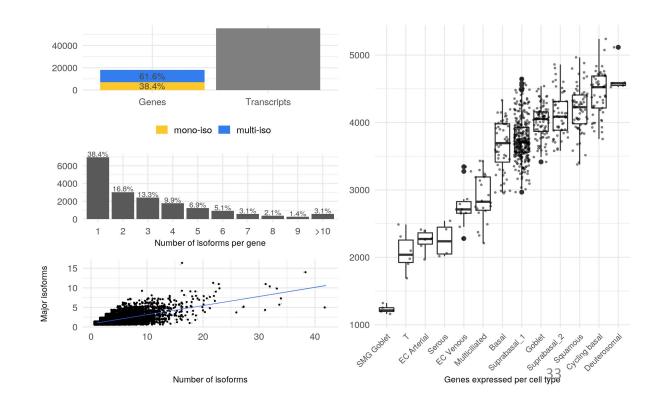
seurat <- iso_preprocess(seurat, assay="ISO", new_assay="multi", filter_threshold=5)</pre>

feature <chr></chr>	gene_id <chr></chr>	transcript_id <chr></chr>	sum <dbl></dbl>	total_gene <dbl></dbl>	n_isofs <int></int>	max_sum <dbl></dbl>	perc <dbl></dbl>	is_major <lgl></lgl>	is_top < g >
KIc2ENSMUST00000156717	KIc2	ENSMUST00000156717	21	175	5	128	12.00000000	FALSE	FALSE
Cyfip1ENSMUST00000163845	Cyfip1	ENSMUST00000163845	1	38	3		2.63157895	FALSE	FALSE
Capn15ENSMUST00000212520	Capn15	ENSMUST00000212520	15	15	1	15	100.0000000	TRUE	TRUE
KIc2ENSMUST00000025798	Klc2	ENSMUST0000025798	22	175	5	128	12.57142857	TRUE	FALSE
OsbpHaENSMUST00000132594	OsbpHa	ENSMUST00000132594	4	98	6	55	4.08163265	FALSE	FALSE
TrabdENSMUST00000169891	Trabd	ENSMUST00000169891	1	175	5	153	0.57142857	FALSE	FALSE
Mocs1ENSMUST00000173033	Mocs 1	ENSMUST00000173033	1	4	2	3	25.00000000	FALSE 3	32 FALSE
AfmidENSMUST00000131268	Afmid	ENSMUST00000131268		1	1		100.0000000	TRUE	TRUE

Isoswitch – Isoform characterization

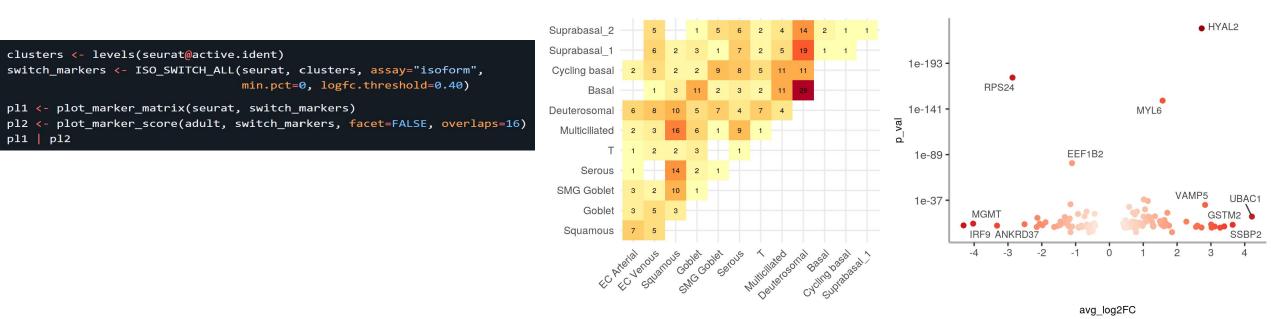
- 1. Input data setup & pre-processing
- 2. Isoform characterization
 - The method *iso_compute_stats()* parses the isoform raw count matrix
 - returning a data frame with stats on the expression of each transcript
 - The method *plot_assay_stats()* plots a summary to describe succintly the isoform distribution in the dataset
 - number of genes,
 - number of transcripts,
 - distribution of isoforms and
 - number of genes per cell type

stats	s <- iso_o	compute_st	ats(s	seurat@a	assays <mark>\$</mark> multi@cou	unts)	%>% arrange	e(gene_i	d)
head((stats, <mark>n</mark> =	-4)							
#>		feat	ure g	gene_id	transcript_i	d sum	total_gene	n_isofs	<pre>max_sum</pre>
#> 1	A1BGENS	ST00000596	924	A1BG	ENST00000596924	15	8	2	5
#> 2	A1BGENS	ST00000598	345	A1BG	ENST0000059834	53	8	2	5
#> 3	A2MENS	ST00000495	709	A2M	ENST00000495709	9 10	14	2	10
#> 4	A2MENS	ST00000318	602	A2M	ENST00000318602	2 4	14	2	10
#>	perc	is_major	is_to	ор					
#> 1	62.50000	TRUE	TRL	JE					
#> 2	37.50000	TRUE	FALS	SE					
#> 3	71.42857	TRUE	TRL	JE					
#> 4	28.57143	FALSE	FALS	SE					
plot_	_assay_sta	ats(seurat	, "is	soform")					



Isoswitch – Isoform switch detection

- 1. Input data setup & pre-processing
- 2. Isoform characterization
- 3. Isoform switch detection
 - "Isoform switch" refers to an event where two isoforms of the same gene are considered markers of different clusters.
 - The marker search is implemented on the method **ISO_SWITCH_ALL()** and are based on Seurat's FindMarkers function.
 - Returns a data frame of transcripts identified as markers of a given cluster for a given gene, one transcript per row.



Isoswitch – Gene reports

Code -

- Input data setup & pre-processing 1.
- Isoform characterization 2.
- Isoform switch detection 3.

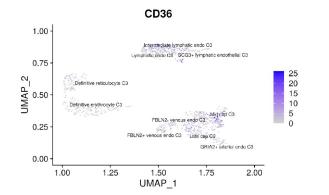
Gene reports 4.

- After identifying genes of interest, two ways to produce ٠ gene-level reports:
 - The *isoswitch_report()* method produces a compact plot of the gene.
 - The *render_html_gene_report()* method renders an html version of the report

CD36 gene report

Description

The protein encoded by this gene is the fourth major glycoprotein of the platelet surface and serves as a receptor for thrombospondin in platelets and various cell lines. Since thrombospondins are widely distributed proteins involved in a variety of adhesive processes, this protein may have important functions as a cell adhesion molecule. It binds to collagen, thrombospondin, anionic phospholipids and oxidized LDL. It directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes and it binds long chain fatty acids and may function in the transport and/or as a regulator of fatty acid transport. Mutations in this gene cause platelet glycoprotein deficiency. Multiple alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Feb 2014]



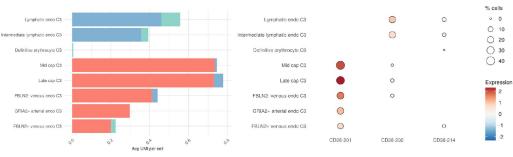
Isoforms

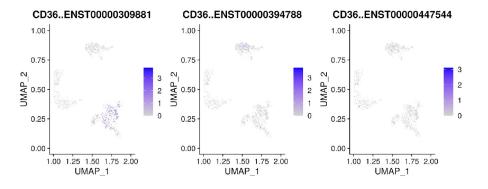
CD36-201	>	₩ ⊢→-₩ ⊢→-₩-	\rightarrow		CD36-201
80600000	80620000	80640000		80660000	80680000

Stats on raw UMI counts:

id	transcript_id	biotype	cds_length	sum	total_gene	perc is	_major	is_top
CD36-201	ENST00000309881	protein_coding	1419	327	483	67.701863 TR	UE	TRUE
CD36-202	ENST00000394788	protein_coding	1419	130	483	26.915114 TR	UE	FALSE
CD36-214	ENST00000447544	protein_coding	1419	26	483	5.383023 FA	LSE	FALSE

Cell-type expression:





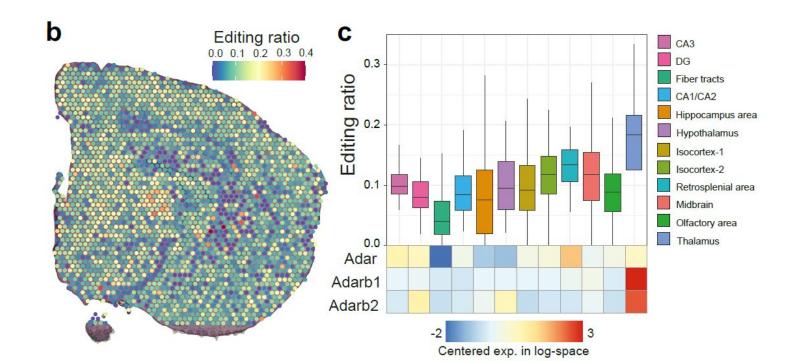
Switches

CD36

0000	ENGT00000000004	Mid and CO	4.55- 00	4.0	ENIGTO0000001700	Lumphatia anda C0		E 05+ 40	4.4
geneld	t1	c1	p1	log2fc1	t2	c2	35	p2	log2fc2
1 switches	s found for CD36								

A-to-I RNA editing explored thanks to long-read

- SiCeLoRe pipeline allows to explore Single Nucleotide Variation (SNV)
- Exploration of 5 817 adenosine-to-inosine (A-to-I) RNA editing sites (Ramaswami et al., 2013 (RADAR), Licht et al., 2019)
 - Principal source of transcript sequence heterogeneity in the mammalian transcriptome
 - Involved in proper neuronal function and reported in neurological and neurodegenerative diseases (epilepsy, developmental disorders...)
- New assay 'Atol' in Seurat object, containing exonic editing sites (_snpmatrix.csv) :
 - <u>count</u> = non edited UMI count = nbrA
 - <u>data</u> = edited UMI count = nbrG (equal to I)
 - <u>scale.data</u> = editing ratio = nbrG / (nbrG + nbrA)



Cell type deconvolution tools

Article | Published: 02 May 2022

Spatially informed cell-type deconvolution for spatial transcriptomics

<u>Ying Ma</u> & <u>Xiang Zhou</u> ⊠

Nature Biotechnology 40, 1349–1359 (2022) Cite this article

36k Accesses | 137 Citations | 60 Altmetric | Metrics

Article | Published: 18 February 2021

Robust decomposition of cell type mixtures in spatial transcriptomics

Dylan M. Cable, Evan Murray, Luli S. Zou, Aleksandrina Goeva, Evan Z. Macosko, Fei Chen 🖂 & Rafael A. Irizarry 🖂

SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes 3

Marc Elosua-Bayes, Paula Nieto, Elisabetta Mereu, Ivo Gut, Holger Heyn 💌

Comprehensive mapping of tissue cell architecture via integrated single cell and spatial transcriptomics

Vitalii Kleshchevnikov, Artem Shmatko, Emma Dann, Alexander Aivazidis, Hamish W King, Tong Li, Artem Lomakin, Veronika Kedlian, Mika Sarkin Jain, Jun Sung Park, Lauma Ramona, Elizabeth Tuck, Anna Arutyunyan, Roser Vento-Tormo, Moritz Gerstung, Louisa James, Oliver Stegle,

Omer Ali Bayraktar

Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram

Tommaso Biancalani 🖾, Gabriele Scalia, Lorenzo Buffoni, Raghav Avasthi, Ziqing Lu, Aman Sanger, Neriman Tokcan, Charles R. Vanderburg, Åsa Segerstolpe, Meng Zhang, Inbal Avraham-Davidi, Sanja Vickovic, Mor Nitzan, Sai Ma, Ayshwarya Subramanian, Michal Lipinski, Jason Buenrostro, Nik Bear Brown, Duccio Fanelli, Xiaowei Zhuang, Evan Z. Macosko & Aviv Regev 🖂

CellDART: Cell type inference by domain adaptation of single-cell and spatial transcriptomic data

Sungwoo Bae, Kwon Joong Na, Jaemoon Koh, Dong Soo Lee, Hongyoon Choi, Young Tae Kim doi: https://doi.org/10.1101/2021.04.26.441459

Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography

Alma Andersson 🖾, Joseph Bergensträhle, Michaela Asp, Ludvig Bergensträhle, Aleksandra Jurek, José Fernández Navarro & Joakim Lundeberg 🖾

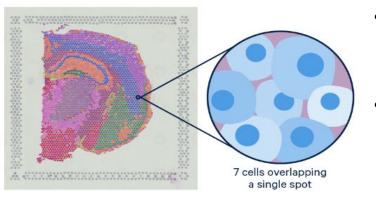
Article | Open access | Published: 29 April 2022

Reference-free cell type deconvolution of multicellular pixel-resolution spatially resolved transcriptomics data

Brendan F. Miller, Feiyang Huang, Lyla Atta, Arpan Sahoo & Jean Fan

Nature Communications 13, Article number: 2339 (2022) Cite this article

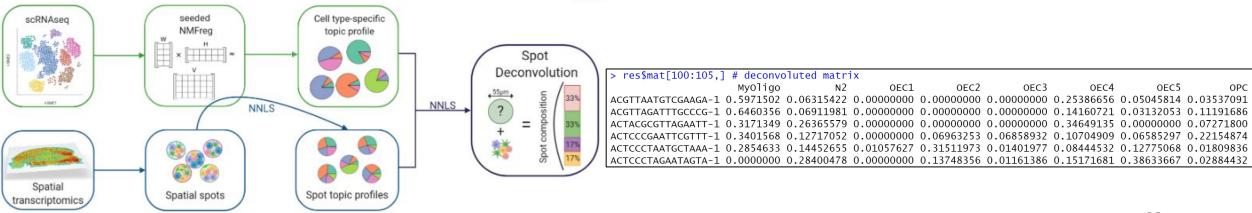
Spots deconvolution with SPOTlight



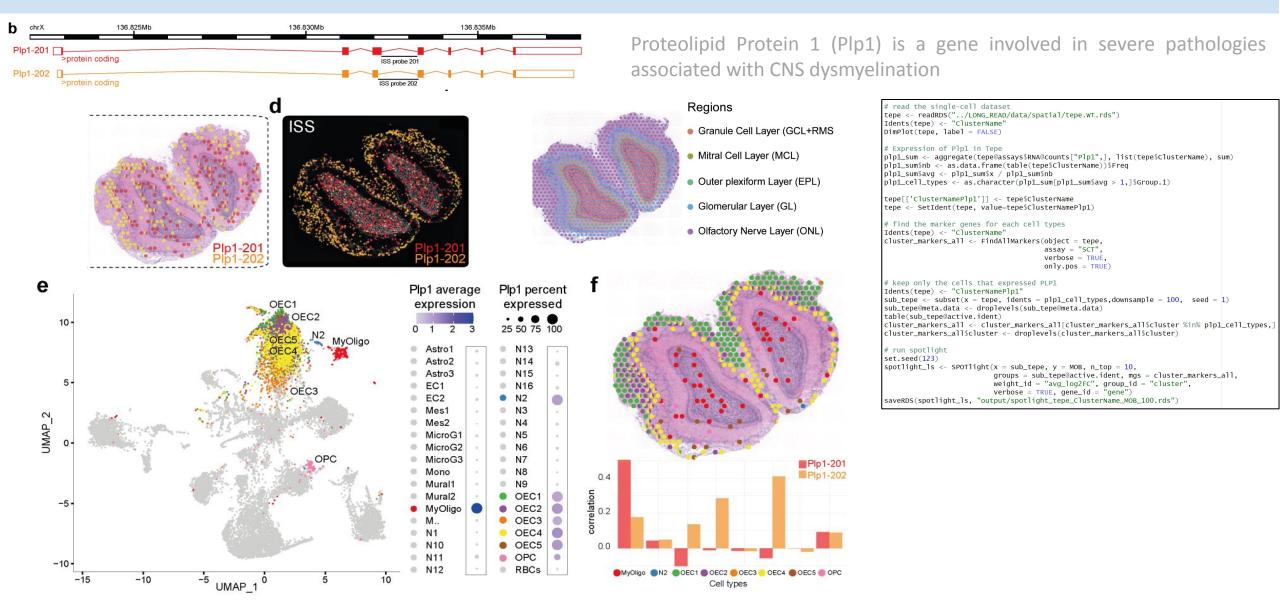
- Tool that enables the deconvolution of cell types and cell type proportions present within each capture location comprising mixtures of cells.
- Based on learning topic profile signatures for each cell type and finding which combination of cell types fits best the spot we want to deconvolute.

The minimal unit of data required to run SPOTlight are:

- ST matrix with the expression, raw or normalized (rows = genes and columns = capture locations)
- Single cell matrix with the expression, raw or normalized (rows = genes and columns = cells)
- Vector indicating the cell identity for each column in the single cell expression matrix



Spots deconvolution with SPOTlight



Used a single-cell dataset : Tepe et al., Cell report, 2018 (GSE121891)

Spatial Isoform Transcriptomics (SiT)

- Accurate single-cell and spatial transcriptomics using Nanopore long-read sequencing is feasible
- Long reads sequencing reveals transcript diversity that is missed with standard short reads workflows
- Single Nucleotide Variation calls (SNV, editing) in single-cell and in a spatial context can be achieve
- More analysis on this dataset this afternoon...

 The spatial landscape of gene expression isoforms in tissue

 sections ∂

 Kevin Lebrigand, Joseph Bergenstråhle, Kim Thrane, Annelie Mollbrink, Konstantinos Meletis,

 Pascal Barbry ☎, Rainer Waldmann, Joakim Lundeberg Author Notes

 Nucleic Acids Research, Volume 51, Issue 8, 8 May 2023, Page e47, https://doi.org/10.1093/nar/gkad169

 Published: 17 March 2023 Article history ▼

https://github.com/ucagenomix/SiT

- Why single cell long read is usefull?
- Preprocessing and comparison of tools.
- Spatial isoform transcriptomics.
- Demo: scRNAseq long read data pre-processing.

Practical session (Afternoon)

ARTICLE

https://doi.org/10.1038/s41467-020-17800-6 OPEN

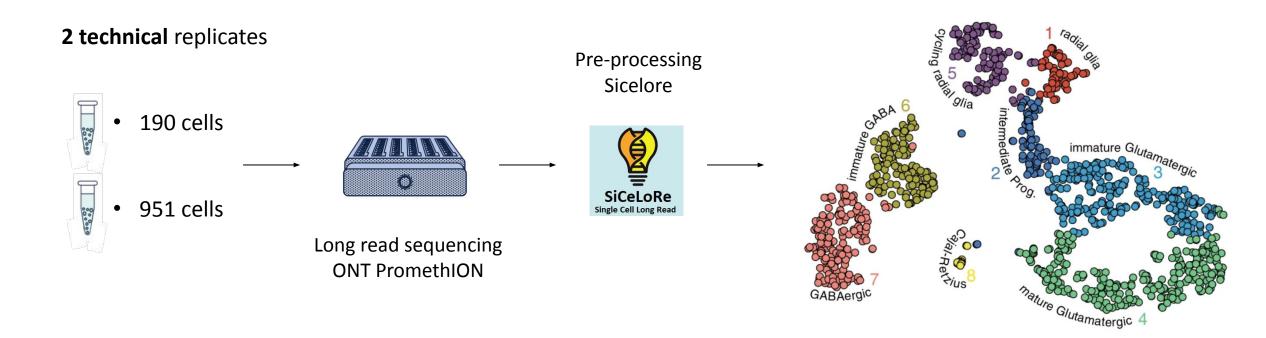
High throughput error corrected Nanopore single cell transcriptome sequencing

Kevin Lebrigand[™], Virginie Magnone¹, Pascal Barbry[™] & Rainer Waldmann[™]

Check for updates

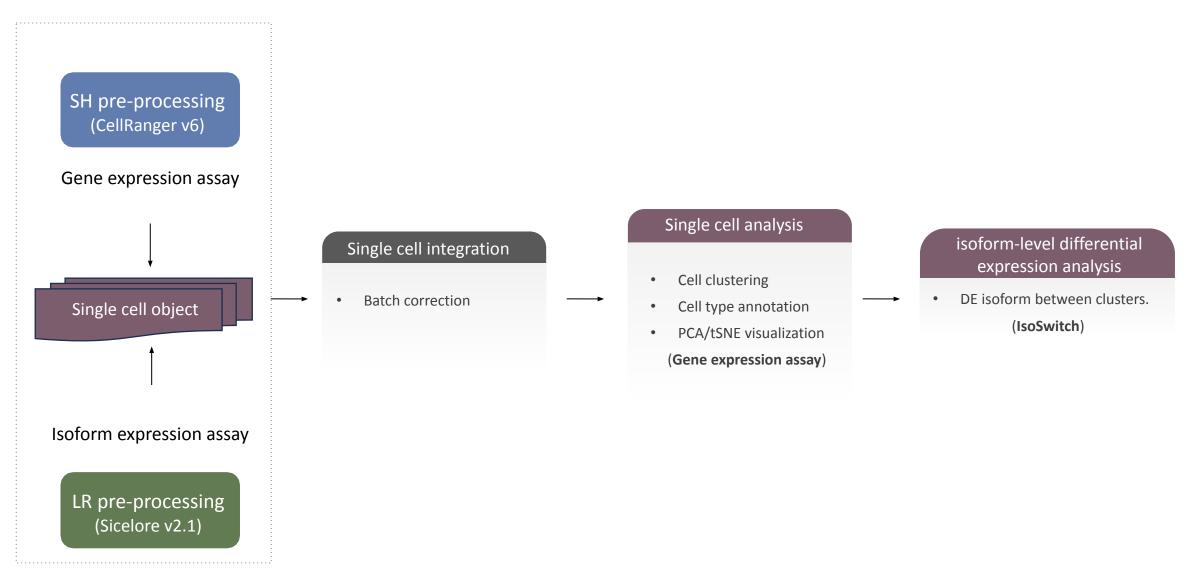
Practical session (Afternoon)

Identification of transcript isoforms in full-length E18 mouse brain transcriptome



Aim 1: Searching for genes with a transcript isoform expression that differed between clusters (Isoform switch).

Downstream analysis for differential expressed Isoform



For each sample

Demo: pre-processing raw ONT reads using Sicelore 2.1 workflow

• With Nextflow on Roscoff server :

> git clone https://github.com/ucagenomix/sicelore-2.1.git

> cd sicelore-2.1

> module purge

> module load nextflow/24.04.1 samtools/1.21 minimap2/2.28 spoa/4.1.4

> nextflow run sicelore-nf/main.nf

• With Nextflow and conda :

> git clone https://github.com/ucagenomix/sicelore-2.1.git

> cd sicelore-2.1

> nextflow run sicelore-nf/main.nf -profile conda

Workshop session

Interactive Apps	RStudio Server: Slurm
Servers	This app will launch an RStudio server inside a SLURM job.
👼 JupyterLab: Slurm	R version
👽 RStudio Server: Slurm	4.2.3 ~
≺ Vistual Studio Code: Slurm	Reservation
	sincellte2024 ~
	Account
	sincellte2024
	Partition
	fast ~
	Number of CPUs
	10
	You should reserve at least 2 CPUs to have enough resources for RStudio server and R.
	Amount of memory
	20G

4.2.3 **R version**: **Nb of CPUs:** 10 Memory: 40G Nb of hours: 2

1- cp notebook (3 files):

cp -r /shared/projects/sincellte2024/04_thursday/ scripts_long_read/\$HOME

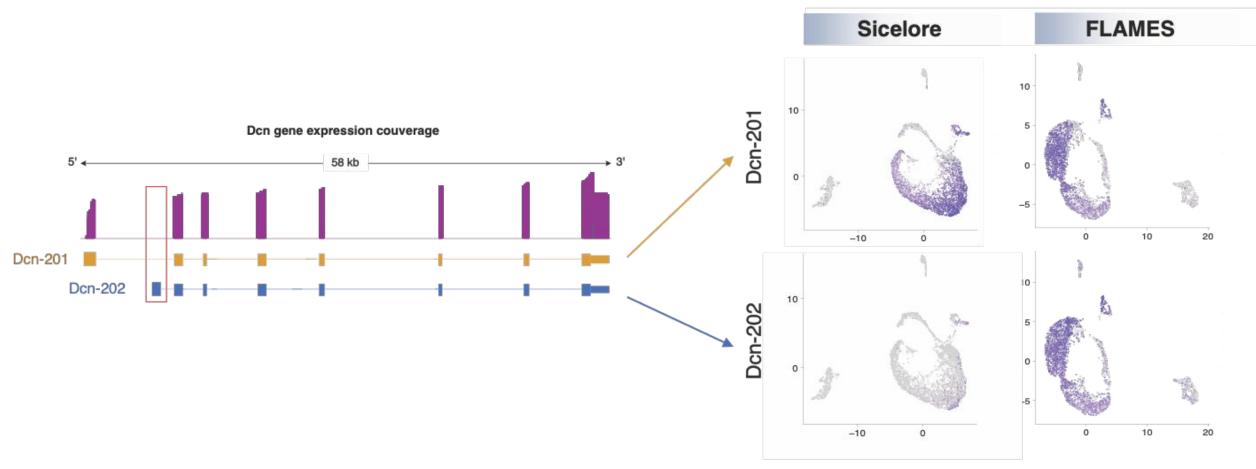
PS Don't copy all the data!

Ressources:

- https://www.isomics.eu/index.html
- <u>https://github.com/ucagenomix/sicelore/tree/master</u>
- https://github.com/ucagenomix/sicelore-2.1
- https://github.com/ucagenomix/isoswitch
- https://github.com/ucagenomix/SiT

Biological results at the isoform level

Comparison of isoform identification and quantification between Sicelore and FLAMES.



· Sicelore accurately detects and quantifies isoforms.