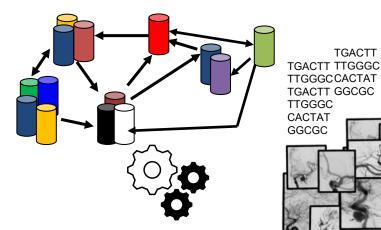


A decade after the reproducibility crisis: Toward reusable data analysis workflows


Sarah Cohen-Boulakia

LISN – Laboratoire Interdisciplinaire des Sciences du Numerique

Université Paris-Saclay

Illustration of data analysis

Data Sources

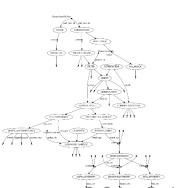
Distributed heterogeneous network

> 1,000 (NAR)

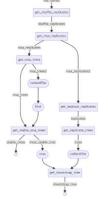
Distributed Heterogeneous

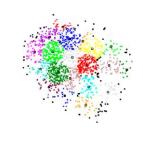
> 30,000

(bio.tools)



Which input dataset did I use? What configuration? Which tool versions?


Analysis Pipelines


Combination of tools various environments & platforms

> 7,000 workflows (GitHub, GitLab,)

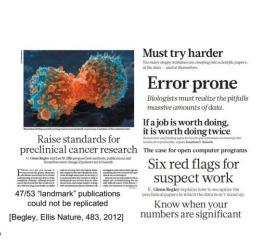
TGACTT

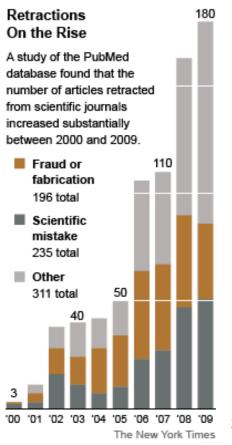
The Reproducibility Crisis

Each community has its reference papers

Nekrutenko & Taylor - Nature Genetics (2012)

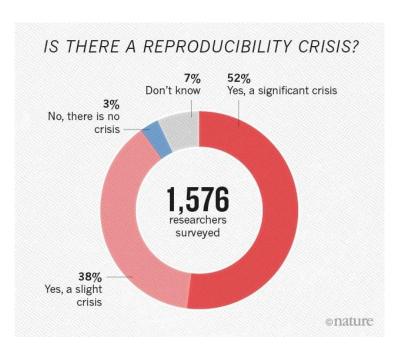
50 papers using the Burrows-Wheeler Aligner
31/50 (62%) provide no information
no version of the tool no parameters
no genomic reference sequence
7/50 (14%) provide all the necessary details

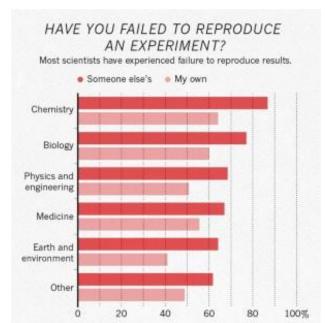

Alsheikh-Ali et al, PLoS one (2011)


10 papers in the top-50 IF journals → 500 papers 149 (30%) were not subject to any data availability policy (0% data available) Of the remaining 351 papers

208 papers (59%) did not adhere to the data availability instructions

143 make a statement of *willingness* to share


47 papers (9%) deposited full primary raw data online



Survey Nature - 1,500 scientists lift the lid on reproducibility (2016)

The crisis has affected all disciplines

Types of Reproducibility

Empirical Reproducibility

Detailed information on experiments

Note: The researcher controls the experimental setting

Their expertise may play a role

Record of data and data collection methods

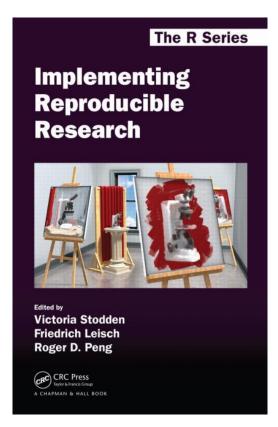
Observational Reproducibility

Detailed information on observations

Note: The researcher does not control the setting – they observe

Record of data and data collection methods

Statistical Reproducibility


Detailed information on the choice of statistical tests, model parameters, decision thresholds, etc.

Pre-registration of the study design to prevent p-value manipulation and other manipulations

Computational Reproducibility

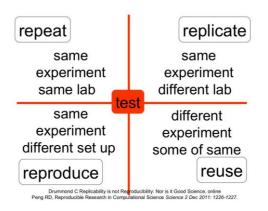
Detailed information on code, software, hardware, and implementation details.

Documenting how the data was produced

Levels of Reproducibility: Framework (proposal)

Level 1

Repeat


Complete traceability

Exact repetition

Same data

Redo – Reexecute

Goal: capture as much information as possible to explain a result

Level 2

Replicate

Some variations are allowed Same results – similar data Goal: test the limits of an approach

Levels of Reproducibility: Framework (proposal)

Level 1

Repeat

Complete traceability

Exact repetition

Same data

Redo – Reexecute

Goal: capture as much information as possible to explain a result

Level 3

Reproduce

Same result - same inference

But the means/procedures/methods/data may have changed

repeat

same
experiment
same lab

same
experiment
different lab

same
experiment
different set up

reproduce

replicate

same
experiment
different set up
reproduce

replicate

same
experiment
different set up
reproduce

replicate
experiment
different lab

Level 2

Replicate

Some variations are allowed

Same results – similar data

Goal: test the limits of an approach

Reuse

Adapted to new needs

Partial reuse – in another context

A different result may be obtained

→ <u>Cumulative Science</u>

Outline

Context of Reproducibility

Zoom into computational reproducibility in bioinformatics

Reproducibility networks

Scripts and computational reproducibility?

Providing scripts is an excellent first step
Using git/github for versioning, collaborative development
But

No clear distinction between steps of the analysis piece of codes, methods/functions ... and execution of the analysis

data sets used as inputs and then produced

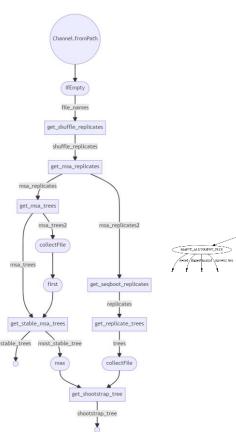
Major steps of the analysis may be difficult to get No solution for data management Naming convention for produced files, storage...

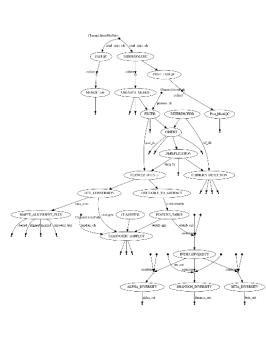
→ Difficult to share, exchange and reuse (repurpose)

Scientific Workflow Management Systems

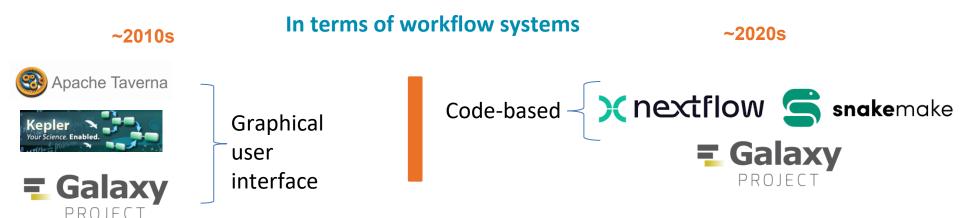
"Data analysis pipeline"
Data flow driven

Encapsulation of scripts in *processors*Algebraic transformation of data in *operations*Modularity


WF specification: connected tools steps of the analysis


Possible subworkflow - encapsulation

Systems:



Many changes in the last 15 years in repro solutions...

Many changes in the last 15 years...

~2010s

In terms of workflow systems

~2020s

Graphical user interface

In terms of users

End users & Developers **Biologists & Computer scientists** Bioinformaticians trained to develop More Python less Java

Reprohackathons

Reprohackathons: promoting reproducibility in bioinformatics through training

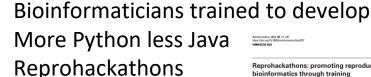
Many changes in the last 15 years...

~2010s

In terms of workflow systems

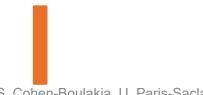
~2020s

Graphical user interface



In terms of users

End users & Developers **Biologists & Computer scientists**



In terms of means to share workflows

~2010s

Workflows were dependent of web services

Workflow decay

~2020s

Workflows are dependent of libraries

~2010s

Workflows were dependent of web services

Workflow decay Workflow rerun (as a black box)

~2020s

Workflows are dependent of libraries

Containers-based solutions help a lot!

~2010s Workflow decay Workflows were dependent of web services Workflow rerun (as a black box) Workflow replicate & reproduce ~2020s

Workflows are dependent of libraries

Containers-based solutions help a lot!

With a lot of efforts, it is now possible! (data availability remains problematic)

~2010s

Workflows were dependent of web services

Workflow replicate & reproduce

Workflow decay

Workflow rerun

(as a black box)

Workflow reuse (in part)

~2020s

Workflows are dependent of libraries

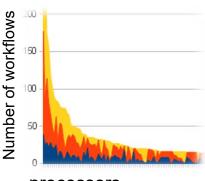
Containers-based solutions help a lot!

With a lot of efforts, it is now possible! (data availability remains problematic)

In code-based workflow systems, it is as easy as reusing the code of somebody else ©

Very difficult in practice Plumbing workflows

Workflow reuse status



2014

1,700 workflows
Taverna
10 242 processors (analysis steps)
Centralized in myExperiment

Re-use rates have a Zipf-like distribution

The top ten authors published 62% of all workflows

2023

2,443 workflows

Nextflow & Snakemake

15 540 processors (analysis steps)

Distributed in github

Developing and reusing bioinformatics data analysis pipelines using scientific workflow systems

M Djaffardjy, G Marchment, C Sebe, R Blanchet et al Computational and Structural Biotechnology Journal 21, 2075-2085

Still low reuse

The top ten authors published 15% of all workflows

Higher reuse (as a black box) of processors from nf-core (repo of high quality)

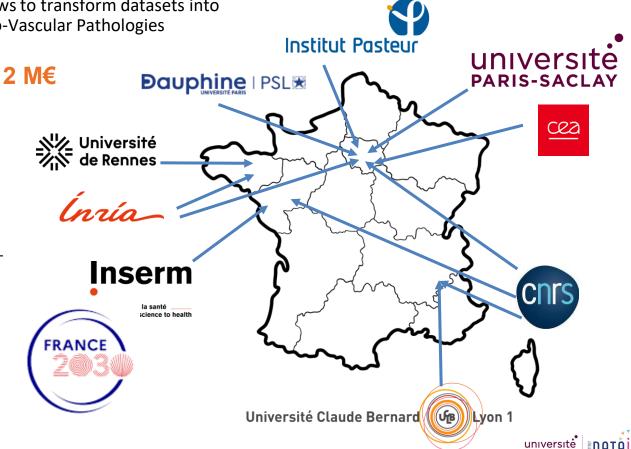
Example of a project: ShareFAIR

ShareFAIR: Sharing reliable workflows to transform datasets into gold standards: Application to Neuro-Vascular Pathologies

PEPR Digital Health

Coordinator

Sarah Cohen-Boulakia

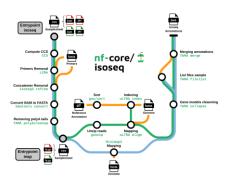

Management structure

Université Paris-Saclay

Partners

- Université Paris-Saclay
- O Université Paris Dauphine PSL
- Institut Pasteur
- Université Lyon
- Université Rennes
- o Inria
- o CEA
- CNRS, INSERM (ITX)

Duration: 48 mois



Exploiting the 3 forms of workflow

Code: GitHub

Originality of ShareFAIR 3 views of workflows

Graph: workflow structure

Text: scientific paper

- Automatic generation of metro map view based on the code of any Nextflow workflow (with Nextflow / nf-core groups) – G. Marchment
- Alignment of commands names extracted from code and tool names extracted for paper with NLP technics – C. Sebe

Outline

Context of Reproducibility

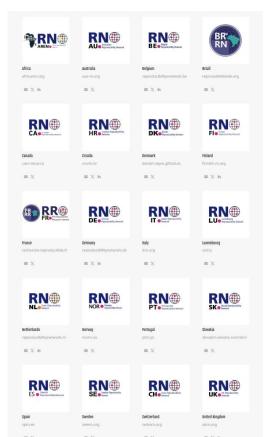
Zoom into computational reproducibility in bioinformatics

Reproducibility networks

NETWORKS

Global Networks

Outside the UK? Find a Reproducibility Network in your area


See full Global Networks Statement

Global Reproducibility Networks

A Reproducibility Network (RN) is a national, peer-led consortium of researchers that aims to promote and ensure rigorous research practices by establishing appropriate training activities, designing and evaluating research improvement efforts, disseminating best practice and working with stakeholders to coordinate efforts across the sector. RNs aim for broad disciplinary representation and an intensive interdisciplinary dialogue (e.g., with funding agencies, publishers, learned societies and other sectoral organisations, as well as researchers from all disciplines and across all career stages).

To reach as many researchers as possible, and to operate as efficiently as possible, we are keen to support other countries interested in creating similar networks. If you are interested in setting up a national RN, or finding out who in your country is working towards this, please email: contact@ukrn.org.

The Reproducible Research Network (France)

March 2022: First days of the network

Brings together 260+ members (individuals)

Connected with existing networks, including French ones (LORIER, INSERM)

Comité de pilotage

ëlle Krummeich — Laboratoire IDEES UMR6266

Nicolas P. Rougier — Institute of Neurodegenerative Disease

Ongoing structuring

European relations committee

Exchanges: Summer schools – meetings – joint workshops

Animation committee

Webinars – seminars – events...

Bibliographic monitoring committee and Institutional relations committee

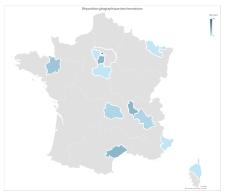
Several working groups: Training WG – Notebook WG...

Newsletter – Monitoring – link with the network – event organization

30 disciplines: Computer Science 20% –

Bioinformatics 10% – Physics 8% –

Neurosciences 8%...


5 Computer scientists (multidisciplinary)

2 psychologists

2 geographers

Example Action – Mapping Trainings (ongoing)

Questionnaire sent to members of the network 16 training modules + 2 MOOCs Taught in pluridisciplinarity

Objectives

Map existing training programs
Content sharing
Create a network for training the trainers
Dedicated website with available resources

Network Life – Ongoing and Upcoming Actions

https://www.recherche-reproductible.fr

Conférences

Oct 3, 2025 Replication Games - Paris

Apr 3, 2025 Journées du Réseau Français de Recherche Reproductible

Dec 17, 2024 Journées Ardoise : ouverture des codes sources et logiciels de la recherche

Égalité Fraternité

Programme des séminaires à venir pour l'année 2024 - 2025

- 6 Mai 2025, 14h: Présentation du réseau anglais (UKRN), organisation, fonctionnement et initiatives, Etienne Roesch
- 23 Mai 2025, 14h: Reproductibilité et environnements de développement, Pol Dellaiera
- 13 Juin 2025, 16h :{rix}, un paquet R qui s'appuie sur Nix ,Bruno Rodriguez.

Formations

ANF "Reproductibilité computationnelle des résultats de publications scientifiques, pratiques et outils", 1-3 Juillet 2025.

Le mouvement pour la science ouverte a depuis quelques années pris une ampleur inédite. Les questions autour de la reproductibilité des résultats de publications scientifiques s'inscrivent naturellement dans cette dynamique. Elles sont d'une importance capitale pour assurer la transparence de la science, la confiance de la société, et sont en lien fort avec les problématiques d'éthique de la science. Dans ce cadre, le service formation du CNRS et CNRS Mathématique (INSMI) proposent propose pour la deuxième année consécutive une formation autour du logiciel libre. Cette formation s'inscrit dans cette évolution, afin de donner aux participantes et aux participants tous les éléments pour aller dans le sens de plus de reproductibilité. Plus d'informations et inscriptions sur le site de la conférence. (Une priorité sera donnée aux membres des laboratoires de mathématiques.)

Comment nous contacter?

Pour entrer en contact avec des membres du réseau : envoyez nous un courriel à

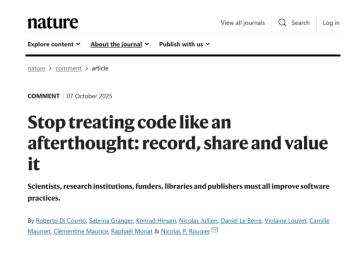
Pour intégrer le réseau : vous pouvez vous abonner à la liste de diffusion sur la pag https://groupes.renater.fr/sympa/info/recherche-reproductible

Conclusion

No cumulative science without reproducibility

Compared to 15 years ago: many technical solutions exist to the reproducibility crisis

Challenges now lie in shifting from redo to reuse


reusing code

understanding code

documenting (at various levels of

granularity) code

Such problems need to be treated in a multidisciplinary way within computer science: data science – graphs – NLP – visualization – software engineering...

Thanks!

References

Extracting Information in a Low-Resource Setting: Case Study on Bioinformatics Workflows

C Sebe, S Cohen-Boulakia, O Ferret, A Névéol

IDA - International Symposium on Intelligent Data Analysis, 274-287, 2025

Reproducibility in Named Entity Recognition: A Case Study Analysis

CC Villarmin, S Cohen-Boulakia, N Naderi

2024 IEEE 20th International Conference on e-Science (e-Science), 1-10

BioFlow-Insight: facilitating reuse of Nextflow workflows with structure reconstruction and visualization

G Marchment, B Brancotte, M Schmit, F Lemoine, S Cohen-Boulakia

NAR Genomics and Bioinformatics 6 (3), Igae092

Representing bioinformatics Nextflow workflows in RO-Crate: challenges and opportunities

G Marchment, M Schmit, C Sebe, F Lemoine, H Ménager, ... Semantic Web Applications and Tools for Health Care and Life Sciences

Towards improving workflows reproducibility: Extracting information on workflows from text and code repositories

C Sebe, F Lemoine, A Gaignard, O Ferret, S Cohen-Boulakia, A Névéol

31st Annual Intelligent Systems For Molecular Biology (ISMB Workshop)

Developing and reusing bioinformatics data analysis pipelines using scientific workflow systems

M Djaffardjy, G Marchment, C Sebe, R Blanchet, K Belhajjame, ...

Computational and Structural Biotechnology Journal 21, 2075-2085

Reprohackathons: promoting reproducibility in bioinformatics through training

T Cokelaer, S Cohen-Boulakia, F Lemoine Bioinformatics 39 (Supplement 1), i11-i20

