
2025 November 27th

Improving the FAIRness of

Your GitLab

MESSAK Imane
CNRS—IFB
0000-0002-1654-6652

ROUSSEAU Baptiste
CNRS—IFB
0009-0002-1723-2732

DENECKER Thomas
CNRS—IFB
0000-0003-1421-7641

https://orcid.org/0000-0002-1654-6652
https://orcid.org/0009-0002-1723-2732
https://orcid.org/0000-0003-1421-7641

2

FAIR principles

Findable Accessible Interoperable Reusable

3

FAIR principles

Findable

Persistent IDentifier (PID)

Allows for the stable and unique identification of web
resources

There are many forms, the best known of which is the DOI

A PID creates a unique and persistent hyperlink

PIDs facilitate data citation

Metadata

Metadata finely describe the ressource (data).

Examples of metadata: title, author, publication date.

Metadata facilitate searching (sort by, filter, categories,...)

Be generous in your description of your data !

 Data Repository

Data must be deposited in a data repository

A repository is a web service for hosting, searching, and
downloading data

Repositories offer services such as PID assignment, secure
storage, a licence, long-term archiving, ...

Metadata with PID

The metadata describing the data are often separate files.

By adding the PID to the metadata, the link between the data
and the metadata becomes explicit.

Metadata Data

PID

4

FAIR principles

Standard protocol

Data must be retrievable via a standardized
communication protocol

A communication protocol is a set of procedures for
communication between machines.

Examples: HTTP (for web pages) and FTP (for files)

Free and Open protocol

Freely usable and interoperable

Facilitating free access to data

HTTP, FTP, SMTP

Microsoft Exchange Server

Metadata access

Maintain access to metadata even if the data is no
longer accessible

Data can disappear, metadata will therefore be very
useful for understanding why and taking precautions (in

the event of damage, for example).

Authentification

Accessible ≠ free and open

“As open as possible, as closed as necessary”

Authentication may be necessary for sensitive data
(personal data, national security, …)

Secure protocol (HTTPS, SFTP)

Accessible

5

FAIR principles

Controlled vocabulary

Use a controlled vocabulary to index and find
knowledge

A controlled vocabulary is a list of predefined terms

Commun language for machines

FAIR vocabulary

A vocabulary that respects the FAIR principles must be
used (ie: PID)

Linked Metadata

Link data to enrich their context

The FAIR principles rely on the Web of data (RDF)

Links between data follow a three-part structure
(triplet): subject, predicate, object

Repositories like Nakala use RDF technology to link data

Interoperabl

e

FAI
R

6

FAIR principles

Metadata with attributes

Data must be described with metadata and relevant
attributes.

Provide as much information as possible on the context
of data production/collection

All information are important, even those that seem
unnecessary !

Licence

In France, publicly funded research data must be open
and freely reusable (with some exceptions)

Add a license even to say that they are freely accessible
and reusable

Choosing the right license isn't always easy, but there
are a number of resources to help you find your way

around

Community Standards

Use community standards to facilitate data reuse

Use open file formats to make your data available to
your peers

Provenance

how were the data obtained?

Tools used, parameters used, associated data, degree of
uncertainty, etc.

Add READ ME, notebook, requirement file, …

Reusable

cc

7

Reminder of the good practices

Versioning Archiving
Versioning /

sharing
Sharing

…

8

The README is the first thing users and

contributors see → it's your project’s entry

point.

A README file is essential for guiding users,

documenting the project, encouraging

contribution, and promoting development

best practices.

README

Resources: https://www.makeareadme.com/

 https://readme.so/

https://www.makeareadme.com/
https://readme.so/

9

License

Why add a license?

▪ Grants users legal clarity on how they can use, share, or
modify your code

▪ Essential for reuse and open collaboration

What happens when you add a code with no license, by default:

- Nobody has legal permission to use, modify, or share it, not

even for personal or academic use.

- The code is considered “all rights reserved” under copyright

law.

- Even open access (e.g. on GitHub) does not mean open

source.

This creates uncertainty and discourages reuse, collaboration, and

reproducibility, especially in science and open-source communities. source: https://choosealicense.com/no-permission/

https://choosealicense.com/no-permission/

10

A code of conduct helps to create a

positive and respectful environment

where all community members can

contribute meaningfully and feel safe.

Where to find one for your repository ?
https://www.contributor-covenant.org/version/2/1/cod

e_of_conduct/

Code of Conduct

https://www.contributor-covenant.org/version/2/1/code_of_conduct/
https://www.contributor-covenant.org/version/2/1/code_of_conduct/

11

A CONTRIBUTING file serves as a valuable
resource for guiding contributors, clarifying
expectations, promoting collaboration, and
fostering a positive and inclusive community
around the project.

What to include:

● How to submit an issue / MR
● Commit message guidelines
● Testing, CI, review process

Documentation
https://docs.github.com/fr/communities/setting-up-your-project-for
-healthy-contributions/setting-guidelines-for-repository-contributors

Contributing file

https://docs.github.com/fr/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors
https://docs.github.com/fr/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors

12

CodeMeta

What is CodeMeta?

▪ A JSON-LD vocabulary / schema to describe

software metadata.

▪ Helps make your software more findable, citable,

and interoperable

How to use it:

▪ Use the CodeMeta generator

(https://codemeta.github.io/codemeta-generator/)

or manually create a codemeta.json at the repo

root

▪ Include key metadata: authors, license, repository

URL, keywords, CI info

https://codemeta.github.io/codemeta-generator/?utm_source=chatgpt.com

13

Conventional Commits

A convention for commit messages using prefixes such as feat:, fix:, docs:, chore:, etc.

Why it’s useful ?

▪ Provides a structured commit history

▪ Enables automation (e.g., changelog generation, release versioning)

All you have to do is write your commits following the Conventional Commits

https://www.conventionalcommits.org/en/v1.0.0/

<type>[optional scope]: <description>

[optional body]

[optional footer(s)]

Example

feat: allow provided config object to extend other configs

https://www.conventionalcommits.org/en/v1.0.0/

14

Release

15

Release

Goal

Provide users with a version of your code that has been fixed in time and labeled.

All steps are detailed here

https://docs.gitlab.com/user/project/releases/

https://docs.gitlab.com/user/project/releases/

16

Release

Semantic of a release number

1.0.0

MAJOR.MINOR.PATCH

MAJOR : changes not backwards-compatible

MINOR : new/modified functionalities, backwards-compatible

PATCH : bug fixes, backwards-compatible More details : https://semver.org/

https://semver.org/

17

Make a release

18

Semantic-release

19

semantic-release automates the whole package release workflow, including determining the

next version number, generating the release notes, and publishing the package.

Documentation available here: https://semantic-release.gitbook.io/semantic-release

Semantic-release

Source: https://medium.com/@gordon.messmer/semantic-releases-part-1-an-example-process-7b99d6b872ab

https://semantic-release.gitbook.io/semantic-release
https://medium.com/@gordon.messmer/semantic-releases-part-1-an-example-process-7b99d6b872ab

20

Semantic-release

How to set it up in GitLab CI:

1. Use a .gitlab-ci.yml with a release job that
runs semantic-release when on a release
branch (e.g., main)

2. Provide a GitLab Token (GL_TOKEN or
GITLAB_TOKEN) in CI so semantic-release
can push tags and create releases

3. Use the @semantic-release/gitlab plugin to
publish GitLab releases

Example of gitlab-ci.yml file

21

Release: Why conventional commits is useful

▪ Commit messages structured like

let semantic- release know whether to create a patch, minor or major
release.

▪ This helps remove guesswork and ensure automated version bumping is
consistent.

 fix: .. or feat: … + Breaking changes

22

Releases

Release and changelog

Changelog file

Thank you for your
attention !

24

Practice session

25

Additional slides

26

Releases, on GitHub

27

Release on GitHub

Goal

provide users with a version of your code that has been fixed in time and

labelled. All the steps are detailed here:

https://help.github.com/en/articles/creating-releases

https://help.github.com/en/articles/creating-releases

28

Release on GitHub

Make a release

29

Release on GitHub

First release for test page

30

Semantic-release

How to set it up in GitHub actions:

1. Use a GitHub Actions workflow file (e.g.,
.github/workflows/ci.yml)

2. The GITHUB_TOKEN is automatically
provided by GitHub Actions, so no manual
token setup is required

3. Use the @semantic-release/github plugin
to publish GitHub releases

Example of .github/workflows/ci.yml file

31

Obtain a DOI

32

Obtain a DOI

Digital Object Identifier

Reference system to cite an object (A GitHub project in our case)

https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-an
d-citing-content

https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content
https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content

33

Obtain a DOI

1. Sign in to Zenodo
▪ With your GitHub account

▪ With your ORCID account (add a

”Linked account” to GitHub

afterwards)

2. Go to the Settings page ! GitHub

tab

34

Obtain a DOI

3. In the list below, find the project you want to link to Zenodo. Flip the switch.

4. Create a new release

5. Et voilà !

35

Obtain a DOI

You can add the doi badge in your README

36

Citations

37

You can add a CITATION file to your repository to

help users correctly cite your software.

Example of CITATION.cff

CITATION files

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Lisa"
 given-names: "Mona"
 orcid: "https://orcid.org/0000-0000-0000-0000"
- family-names: "Bot"
 given-names: "Hew"
 orcid: "https://orcid.org/0000-0000-0000-0000"
title: "My Research Software"
version: 2.0.4
doi: 10.5281/zenodo.1234
date-released: 2017-12-18

url: "https://github.com/github-linguist/linguist"

38

ORCID (Open Researcher and

Contributor ID) is a unique digital

identifier assigned to a researcher or

academic contributor. It aims to solve

the problem of name ambiguity in

research, where multiple authors

may share the same name or similar

names.

Focus on ORCID

39

Archive your code

40

Software Heritage – The Universal Software Archive

 is an international initiative to

collect, preserve, and share all publicly available

source code.

Its mission is to ensure that software, as a key

part of our scientific and technological heritage,

remains accessible over time.

By archiving millions of projects from platforms

like GitHub, GitLab, and others, Software

Heritage enables long-term reproducibility,

transparency, and traceability in science and

industry.

Learn more: softwareheritage.org

https://www.softwareheritage.org

41

Obtain a permanent Identifiers (SWHIDs)

42

Go further with Git*…

43

CI / CD - Continuous Integration & Continuous Deployment

CI/CD is a development practice that automates code integration, testing, and deployment.

- Continuous Integration (CI): Automatically tests and integrates code changes to detect issues early.
- Continuous Deployment (CD): Automatically deploys tested code to production or staging

environments.

Both GitHub Actions and GitLab CI/CD provide built-in tools to set up pipelines, run tests, and deploy
applications—helping teams release faster, more reliably, and with less manual work.

44

Docker image & package hosting

https://docs.github.com/en/packages

https://docs.github.com/en/packages

45

Examples

Packages (ie: python)

Container (ie: docker)

46

Project management

47

Github-specific : Discussion

48

Showcase your work

49

Showcase your work

Why ?

- Your project is simpler to share and find

Advantages

- Free hosting of static websites

- Able to convert Markdown into a website

Documentations :

- https://pages.github.com/

- https://docs.gitlab.com/user/project/pages/

https://pages.github.com/
https://docs.gitlab.com/user/project/pages/

50

Showcase your work - In practice

1

2

3

51

Showcase your work - In practice

52

Showcase your work - In practice

53

Showcase your work - In practice

Convert Markdown into HTML !

54

Showcase your work - In practice

Also works directly from HTML

1. Create a folder named ”docs” main file

must be named index.html

2. ”Settings” → ”Options” → ”GitHub

Pages”

Example :

https://ifb-elixirfr.github.io/Wasm4Learn/

https://ifb-elixirfr.github.io/Wasm4Learn/

