
Practical work

Monomer

IFB training - AlphaFold and beyond - 10th to 12th December 2025

Copy your AlphaFold3 weights and create links to database in your home:

- create a ‘af3_datadir’ directory in your home and copy your weights there (af3.bin.zst)
- in this directory, create symbolic links to the AlphaFold3 database:

ln -s /lustre/fsmisc/dataset/Alphafold3/* ./

2

AlphaFold3 weights

MassiveFold works with 4 conda environments already installed on Jean Zay.
- Load MassiveFold 1.5

module load massivefold/1.5.0

N.B.: all MassiveFold 1.5.x versions work with the same conda environments (v1.5.0 on Jean Zay, for instance),
you can see the environments used by massiveFold (mf-***) with conda env list

To avoid any problem of storage and inode, navigate to the scratch storage $CCFRSCRATCH
cd $CCFRSCRATCH

But the scripts have to be installed:

- Clone the git and install for Jean Zay

git clone https://github.com/GBLille/MassiveFold.git
cd MassiveFold
git checkout v1.5.6
./install.sh

Don’t hesitate to visualize the help for the scripts (bash or python) :

./install.sh --help 3

Install MassiveFold

https://github.com/GBLille/MassiveFold.git
http://install.sh

MassiveFold
├── install.sh => to setup massivefold pipeline (create the files to run massivefold)
├── ...
├── examples
├── massivefold => contains the scripts for MassiveFold (inc gathers_runs.py & massivefold_plots.py)
└── massivefold_runs => where to run MassiveFold
 ├── AFmassive_params.json => parameter file for AFmassive runs
 ├── ColabFold_params.json => parameter file for ColabFold runs
 ├── AlphaFold3_params.json => parameter file for AlphaFold3 runs
 ├── headers/
 ├── alignment.slurm => SLURM header for the alignments (on CPU nodes)
 ├── jobarray.slurm => SLURM header for prediction batches (on GPU nodes)
 └── post_treatment.slurm => SLURM headers for post-treatment
 ├── input/ => fasta files
 ├── log/ => log files for each job (useful to debug in case of crashes)
 ├── output/ => output files, organized in subfolders 1) fasta file name, 2) run name
 └── run_massivefold.sh => to run MassiveFold (check ./run_masivefold.sh -h)

4

Architecture

http://install.sh

A0A2U7UDN4 is an unknown viral protein for which we are going to model the structure with
AlphaFold2 (AFmassive), ColabFold and AFmassive, then choose the best prediction and try to
identify a specific fold.

- Copy the fasta files from ‘$ALL_CCFRWORK/input’ to your input directory
rsync -avx $ALL_CCFRWORK/training_Alphafold_202512/input/* $CCFRSCRATCH/MassiveFold/massivefold_runs/input/

It includes the sequence of the viral protein A0A2U7UDN4.fasta

>tr|A0A2U7UDN4|A0A2U7UDN4_9VIRU DUF5848 domain-containing protein OS=Pandoravirus neocaledonia OX=2107708 GN=pneo_cds_858 PE=4 SV=1
MRCAPGPFRAAMSAGASILTGPDCRLLIVGLYTSDSHGPLAADRQCTTRTSWWPKDVAQW
QSVSAAAAQCLLRNGLVLGTAKGSRDASLLGPVMYDAMGRTMEAADARLIGVAMATAPVV
PCYGGAETRATSDVTVVDKARTVHTFATDETADEWLAFCRLVALRDATLWRALSVDPSAY
GERGAHVATSILRSEEAIARRRRFDPALVDADEIAALRRAFVAAADGHRLATPLDLGF

- To avoid the Multiple Sequence Alignment (MSA) step, which may last several hours for some
sequences, copy also the content of the ‘$ALL_CCFRWORK/training_Alphafold_202512/msas/’ folder
to your ‘output’ folder:
rsync -avx $ALL_CCFRWORK/training_Alphafold_202512/msas/* $CCFRSCRATCH/MassiveFold/massivefold_runs/output/

They are also available here (all_msas.zip):
https://nextcloud.univ-lille.fr/index.php/s/dnQLmBywbcQdx56 5

Prepare files 1/6

https://nextcloud.univ-lille.fr/index.php/s/dnQLmBywbcQdx56

- Edit the ‘AFmassive_params.json’ file and check the parameters.

In the “massivefold” section, modify the pkl format to “light”, let “models_to_use” to “”.

"massivefold": {
 "run_massivefold": "run_AFmassive.py",
 "run_massivefold_plots": "../massivefold/massivefold_plots.py",
 "data_dir": "$DSDIR/Alphafold-2024-04",
 "uniref_database": "",
 "jobfile_headers_dir": "./headers",
 "jobfile_templates_dir": "../massivefold/parallelization/templates",
 "output_dir": "./output",
 "logs_dir": "./log",
 "input_dir": "./input",
 "scripts_dir": "../massivefold/parallelization",
 "models_to_use": "",
 "pkl_format": "light"
 },

pkl files can also be lighten later with the ‘lighten_output.py’ script

massivefold/parallelization/lighten_output.py --help

6

Prepare files 2/6

- Edit the ‘AFmassive_params.json’ file and check the parameters.

In the “custom_params” section, set your project ID and the gpu to “h100”.

Set "jeanzay_jobarray_time" to 1:00:00.

"custom_params": {
 "jeanzay_gpu": "h100",
 "jeanzay_project": "<project>",
 "jeanzay_account": "<project>@h100",
 "jeanzay_gpu_with_memory": "h100",
 "jeanzay_alignment_time": "10:00:00",
 "jeanzay_jobarray_time": "1:00:00"
 },

7

Prepare files 3/6

- Edit the ‘AFmassive_params.json’ file and check the parameters.

In the “AFM_runs” section, set "model_preset" to “monomer_ptm”.

"AFM_run": {
 "db_preset": "full_dbs",
 "dropout": "false",
 "dropout_structure_module": "false",
 "dropout_rates_filename": "",
 "max_recycles": "20",
 "early_stop_tolerance": "0.5",
 "max_template_date": "2024-08-31",
 "bfd_max_hits": "100000",
 "mgnify_max_hits": "501",
 "uniprot_max_hits": "50000",
 "uniref_max_hits": "10000",
 "model_preset": "monomer_ptm",
 "templates": "true",
 "stop_recycling_below": "0",
 "min_score": "0",
 "max_score": "1"
},

8

Prepare files 4/6

- Edit the ‘AFmassive_params.json’ file and check the parameters.

In the “plots” section, remove “recycles” (not available for monomers):

"plots": {
 "MF_plots_top_n_predictions": "25",
 "MF_plots_chosen_plots": "coverage,DM_plddt_PAE,CF_PAEs,score_distribution"
 }

- More plots can be generated later if necessary with the ‘massivefold_plots.py’ script:

massivefold/massivefold_plots.py --help

9

Prepare files 5/6

- Because we are going to run the jobs on H100 GPUs, edit the ‘jobarray.slurm’ header file in the
‘massivefold_runs/headers” folder and uncomment the line related to H100

to run on H100:
module purge
module load arch/h100

N.B.: if you had to run on A100, you should uncomment these lines and let the H100 ones
commented

to run on A100:
module purge
module load arch/a100

To run on V100, let them all commented.

10

Prepare files 6/6

- Run MassiveFold with AFmassive

./run_massivefold.sh -s input/A0A2U7UDN4.fasta -r afm_default -p 5 -b 5 -f AFmassive_params.json

- Show the running jobs

squeue --me -o "%.18i %.9P %.60j %.8u %.2t %.10M %.6D %R %.8Q %.10l %.10P" --sort=-p

- In case of crashes

scancel -u <user>

or
scancel <jobid>

and check the logs in

massivefold_runs/log/<fasta_name>/<run_name>

11

Run MassiveFold

- Edit the ‘ColabFold_params.json’ file and check the parameters.
- Set “pkl_format” to “light”
- Set the “custom_params”
- In the “CF_run” params, set “model_preset” to “monomer_ptm”

"CF_run": {
 "model_preset": "monomer_ptm",
 "use_dropout": "false",
 "num_recycle": "20",
 "recycle_early_stop_tolerance": "0.5",
 "stop_at_score": "100",
 "disable_cluster_profile": "false",
 "pair_strategy": "greedy"
 },

- In “plots”, remove “recycles”
- Run MassiveFold with ColabFold:

./run_massivefold.sh -s input/A0A2U7UDN4.fasta -r cf_default -p 5 -b 5 -f ColabFold_params.json

12

Same work for ColabFold

- Edit the ‘AlphaFold3_params.json’ file and check the parameters.
- Set “pkl_format” to “light”
- Set the “custom_params”
- In the “AF3_run” params:

- in “fasta_chains”, set the chain type (here “protein”) the same number of time as the number
of chains in the fasta file (here one time for a monomer)

- set “model_preset” to “monomer_ptm”

"AF3_run": {
 "fasta_chains": ["protein"],
 "ligand": [
 {"ccdCodes": [""], "smiles": ""}
],
 "modifications": [
 [{"type": "", "sequence": "", "positions": []}]
],
 "model_preset": "monomer_ptm",
 "max_template_date": "2024-11-28",
 "num_diffusion_samples": "5",
 "unpairedMsa": "true",
 "pairedMsa": "true",
 "templates": "true"
 }, 13

Same work for AlphaFold3

Then run MassiveFold with AlphaFold3:

./run_massivefold.sh -s input/A0A2U7UDN4.fasta -r af3_default -p 5 -b 5 -f AlphaFold3_params.json

N.B.: Only the plddt and PAE plots are generated for AF3. The number can be set to 25.

14

Same work for AlphaFold3

- Retrieve the results from the cluster to your local computer to visualize them

- Alternatively, you can get them here

https://nextcloud.univ-lille.fr/index.php/s/dnQLmBywbcQdx56

N.B.: it is possible to relax a structure or a set of structures with ‘colabfold_relax’ available in the
‘mf-colabfold-1.5.5’ conda environment

conda activate mf-colabfold-1.5.5
colabfold_relax --help

15

Results

https://nextcloud.univ-lille.fr/index.php/s/dnQLmBywbcQdx56

Compare the results for the 3 tools, looking at the ‘ranking_debug.json’, ‘ranking_ptm.json’ and the plots.

=> Which tool seems to give the best predictions ?

ranking confidence: 79.37
ranking ptm: 0.81

ranking confidence: 66.63
ranking ptm: 0.71

ranking confidence: 0.50
ranking ptm: 0.39

16

Results

With the goal to identify a well known fold, take the most confident prediction and send it to
FoldSeek, both using 3Di/AA or TM-align.

https://search.foldseek.com/search

Using in particular CATH50 and PDB100,
Which fold do you find ?

Find a PDB where this fold exists.

17

Foldseek

https://search.foldseek.com/search

