

Gene Set Analysis

Thibault Dayris, Jean-Pascal Meneboo, Audrey Onfroy

École de Bioinformatique IFB-INSERM 2024

Introduction

So far...

Copy the support to your folder

Execute the commands below in the <u>terminal</u>, to (1) create a directory in your \$HOME and (2) copy-paste the data there.

mkdir -p /shared/projects/<YOUR_PROJECT>/TP_GSEA

cp -r /shared/projects/2422_ebaii_n1/atelier_rnaseq/3_GSEA/*
 /shared/projects/<YOUR_PROJECT>/TP_GSEA

Now we use only RStudio and the **console**.

In the ~/TP_GSEA folder,
open the GSEA_TP.R file
(or GSEA_TP.Rmd).

Packages of interest

For this session, we use the following packages:

library(clusterProfiler)
library(enrichplot)
library(org.At.tair.db)

Make enrichment analysis

Awesome graphs

A. Thaliana annotation

Input data

We have a large table with many **columns**:

```
deseq_genes = read.table(
    file = "tables/KOvsWT.complete.txt",
    sep = "\t",
    header = TRUE
)
```

```
colnames(deseq_genes)
```

[1]	"Id" "KO2"	"WT1" "KO2"	"WT2" "popm_WT1"	"WT3" "noom WT2"	"K01" "nonm WT2"
[0]					
				Dasemean	WI "www.alwa"
[10]	KU "weed=""	FoldChange	IOgzFoldChan	ige stat	pvalue "dianonaion"
	padj "hataCanal		αιsprit	alspmap	dispersion
[26]	"betaconv"	"maxcooks"			

Input data

We have a large table with many rows:

nrow(deseq_genes)

[1] 27655

head(deseq_genes\$Id)

[1] "gene:AT1G01010" "gene:AT1G01020" "gene:AT1G01030" [4] "gene:AT1G01040" "gene:AT1G01050" "gene:AT1G01060"

Gene identifiers

Data associated with gene: AT1G61580 ?

We extract the row corresponding to this Id:

deseq_genes[deseq_genes\$Id == "gene:AT1G61580",]

		Id	baseMe	ean	. I	ИТ КО	FoldChan	ge log2Fo	ldChange	
5120	gene:AT10	361580	173.	19	. 21	128 128	0.5	38	-0.766	
	stat		pvalue		pad	j dis	pGeneEst	dispFit		
5120	-4.48	7.46594	47e-06	0.0001	15672	24	0	0.0311		
	dispMAP	disp	ersion	betaCo	nv r	maxCoo	ks			
5120	0.0149	(0.0149	TR	UE	0.02	22			

Data associated with gene: AT1G61580 ?

We extract the row corresponding to this Id:

deseq_genes[deseq_genes\$Id == "gene:AT1G61580",]

		Id	baseMea	n	WT	KO F	oldChang	<mark>ge</mark> log2Fo	ldChange
5120	gene:AT10	61580	173.19)	218	128	0.58	88	-0.766
	stat	1	pvalue	р	adj	disp(GeneEst	dispFit	
5120	-4.48	7.46594	17e-06 🛛 🛛 🛛 🛛	.0001156	5724		0	0.0311	
	dispMAP	dispe	ersion b	etaConv	max	cooks			
5120	0.0149	e	0.0149	TRUE	(0.0222			

Someone to explain these terms?

Data associated with gene: AT1G61580 ?

We extract the row corresponding to this Id:

deseq_genes[deseq_genes\$Id == "gene:AT1G61580",]

		Id	baseM	ean .	•••	WT	ко	FoldChan	<mark>ge</mark> log2Fo	oldChange
5120	gene:AT10	G61580	173	.19 .	••	218	128	0.5	88	-0.766
	stat		pvalue		ра	adj	disp	GeneEst	dispFit	
5120	-4.48	7.4659	947e-06	0.000)1156	5724		0	0.0311	
	dispMAP	disp	persion	betaC	Conv	max	<cook< td=""><td>S</td><td></td><td></td></cook<>	S		
5120	0.0149		0.0149	Т	RUE	6	0.022	2		

The ld of the gene is gene:AT1G61580.

The mean expression in the WT (resp. KO) is 218 (resp. 128).

The fold change in expression is 0.588 (= 128/218).

The adjusted p-value almost equals to 1e-04, which means that it is very likely that the difference of expression is related to the KO/WT status.

Name associated with AT1G61580 Id?

		Home He	p Contact Ab	out Us Subscribe	Login Register	r	
tair	Enter search text					Gene	÷ Q
Advanced Sea	arch • Browse •	Tools *	Portals -	Download -	Submit -	News -	Stocks *
Summary	Locus: AT1G61	580					
Transcripts	Summary						
Maps and Mapping Data	Gene Model Type	protein_coding					
Sequences	Other Names	ARABIDOPSIS RI	BOSOMAL PROTE	IN 2, ARP2, R-PROTEI	N L3 B, RIBOSOMA	L PROTEIN UL3	Y, RPL3B, UL3Y
Protein Data	Description	Ribosomal protein	involved in defense	e response to bacteria.			
Expression	Add My Commen	n ts t Show Comment	5				
Gene Ontology	Update History	vailable	_				
Homology	Date last modified	2024-10-19					2
Germplasm and Clones	TAIR Accession	Locus:2200873					

arabidopsis,org

Id associated with ARP2 name?

Your query for genes where gene name, description, phenotype, locus name, uniprot id or GenBank accession contains the term ARP2 resulted in 16 matches

arabidopsis.org

Disp	playing 1	- 16 of 16 resu	
Sel	ect All	Clear Selected	
No		Locus	escription (?)
1		AT2G38440	her Names: ATSCAR2;DIS3;IRREGULAR TRICHOME BRANCH1;ITB1;SCAR HOMOLOG 2;SCAR2;WAVE4 codes a subunit of the WAVE complex. The WAVE complex is required for activation of ARP2/3 complex which functions in actin microfilament cleation and branching. Mutations cause defects in both the actin and microtubule cytoskeletons that result in aberrant epidermal cell expansion. itb1 utants showed irregularities in trichome branch positioning and expansion. The SHD domain of this protein binds to BRK1 and overexpression of the ID domain results in a dominant negative phenotype. The mRNA is cell-to-cell mobile.
2		AT5G65274	her Names: RP2/3 complex 16 kDa subunit (p16-Arc);(source:Araport11)
з С	□ hr3	AT3G27000 chr1	her Names: ACTIN RELATED PROTEIN 2; <mark>ARP2</mark> ;AT <mark>ARP2</mark> ;WRM;WURM codes a protein whose sequence is similar to actin-related proteins (ARPs) in other organisms. its transcript level is down regulated by light and is pressed in very low levels in all organs examined.
4		AT1G61580	her Names: ARABIDOPSIS RIBOSOMAL PROTEIN 2;ARP2;R-PROTEIN L3 B;RIBOSOMAL PROTEIN UL3Y;RPL3B;UL3Y 13

ARP2 in the world...

ARP2 is not only related to A. thaliana !

Search results

Items: 1 to 20 of 38040

See also 254 discontinued or replaced items.

https://www.ncbi.nlm.nih.gov/gene/?term=ARP2

<< First < Prev Page 1 of 1902 Next > Last >>

Name/Gene ID	Description	Location	Aliases
D: 851532	actin-related protein 2 [Saccharomyces cerevisiae S288C]	Chromosome IV, NC_001136.10 (399340400638)	YDL029W, ACT2
D: 32623	Actin-related protein 2 [Drosophila melanogaster (fruit fly)]	Chromosome X, NC_004354.4 (1654829016553968, complement)	Dmel_CG9901, ARP14D, ARP2, Actr14D, Arp14D, Arp14d, CG9901, Dmel\CG9901, arp2
D: 5802965	ARP2/3 actin-organizing complex actin-related protein subunit Arp2 [Schizosaccharomyces pombe (fission yeast)]	Chromosome I, NC_003424.3 (47830224784765)	SPOM_SPAC11H11.06, SPAC22F8.01
D: 822317	actin related protein 2 [Arabidopsis thaliana (thale cress)]	Chromosome 3, NC_003074.8 (99524799955982, complement)	AT3G27000, ACTIN RELATED PROTEIN 2, ATARP2, WRM, WURM, actin related protein 2
D arp2 ID: 80877320	ARP2/3 actin-organizing complex subunit Arp2 [Schizosaccharomyces osmophilus]	Chromosome 2, NC_079239.1 (29768852978114)	SOMG_03844
			111/200 1000

AT1G61580 in the world...

However, AT1G61580 is unique.

Search results

Items: 2

Showing Current items.

https://www	.ncbi.nlm.r	<u>nih.gov/gen</u>	<u>e/?term=AT´</u>	<u>IG61580</u>

100	1,00
	Ж
	6

Name/Gene ID	Description	Location	Aliases
D: 842454	R-protein L3 B [Arabidopsis thaliana (thale cress)]	Chromosome 1, NC_003070.9 (2272056022723152, complement)	AT1G61580, ARABIDOPSIS RIBOSOMAL PROTEIN 2, ARP2, R-protein L3 B, RIBOSOMAL PROTEIN L3, T25B24.7, T25B24_7
D RP1 ID: 840916	ribosomal protein 1 [<i>Arabidopsis</i> <i>thaliana</i> (thale cress)]	Chromosome 1, NC_003070.9 (1626655316268945)	AT1G43170, ARP1, F1I21.1, F1I21_1, RPL3A, emb2207, embryo defective 2207, ribosomal protein 1

AT = Arabidopsis Thaliana

- 1 = Chromosome number
- G = Protein coding gene

61580 = Unique gene identifier, given from top to bottom of chromosome

Gene name vs Gene identifier

	Gene name/symbol ARP2	Gene identifier AT1G61580		
Benefits	human understandable	 unique in a database stable over the genome versions 		
Limits 🡎	not unique, neither to an organism, nor to a genomic location, nor over time	 not easily readable each database as its own identifier 		
Please use for:	lab meetingnice-looking graphs	analysisinteraction with database		

Clean gene identifiers

Why cleaning is required ?

The Id column is polluted by "gene:"

head(deseq_genes\$Id)

[1] "gene:AT1G01010" "gene:AT1G01020" "gene:AT1G01030"
[4] "gene:AT1G01040" "gene:AT1G01050" "gene:AT1G01060"

For a computer, gene:AT1G01010 is not AT1G01010.

Clean gene identifiers

We need a raw gene identifier:

Let's check the output:

head(deseq_genes\$Id)

[1] "AT1G01010" "AT1G01020" "AT1G01030" "AT1G01040" "AT1G01050" "AT1G01060"

Conversion

Conversion...

When interacting with databases, you may need TAIR ID, Ensembl ID, ENTREZ ID, UniProt ID... For instance, we could convert TAIR ID to ENTREZ ID and gene symbol:

```
# Translate TAIR ID to ENTREZ ID
annotation = clusterProfiler::bitr(
 geneID = deseq_genes$Id,  # Our gene list
 fromType = "TAIR",
                          # We have TAIR ID
 toType = c("ENTREZID", "SYMBOL"), # What we want
 OrgDb = org.At.tair.db) # Our annotation
# Add the translation to the result table
deseq genes with symbol = merge(
 x = deseq genes,
 y = annotation,
 by.x = "Id",  # In deseq_genes, TAIR IDs are stored in the Id column
 by.y = "TAIR") # In annotation, TAIR IDs are stored in the TAIR column
```

Some IDs correspond to several symbols... (1/2)

Check the size of the merged table and the original one:

<pre>dim(deseq_genes)</pre>
[1] 27655 27
<pre>dim(deseq_genes_with_symbol)</pre>
[1] 38947 29

Why?

Some IDs correspond to several symbols... (1/2)

Check the size of the merged table and the original one:

head(deseq_genes_with_symbol[, c("Id", "SYMBOL", "ENTREZID")])

	Id	SYMBOL	ENTREZID
1	AT1G01010	ANAC001	839580
2	AT1G01010	NAC001	839580
3	AT1G01010	NTL10	839580
4	AT1G01020	ARV1	839569
5	AT1G01030	NGA3	839321
6	AT1G01040	ASU1	839574

Database

Why database ?

We are studying plants. Which genes are expressed in the roots ?

	Planteome	Home	Search +	Browse	Tools & R	esource	es About			Quick se
Information about Annotat	ions search 🛛									
Filter results Total annotation(s): (27947)			Tota Res	I annotation(s ults count 10	:): 27947; showi	ng: 1-10 Object	Direct	«First C Bookn Ontology	<prev mark<="" td=""><td>lext> Last»</td></prev>	lext> Last»
root				Object ATCSLB05	Object name	Type protein	annotation <i>root</i> hair	(aspect) Bio	extension	Taxon Arabidopsis
User filters		×					elongation	process (P)		thaliana
+ taxon_label: Arabidopsis thaliana			AT4G35720	AT4G35720	protein	root development	Bio process (P)		Arabidopsis thaliana	

https://browser.planteome.org/amigo/search/annotation?g=root

We cannot look individually at all these genes.

But ! We can look at gene sets, which are annotated to represent something.

What is a gene set ?

A gene set is nothing more than a group of genes belonging to the same...

Which databases ?

https://www.gsea-msigdb.org/gsea/msigdb/human/annotate,jsp

There are many many (many) databases. Some are accessible in the <u>M</u>olecular <u>Sig</u>nature <u>D</u>ata<u>b</u>ase (MSigDB).

- KEGG
- PID

...

Reactome

- https://www.genome.jp/ke no link
- https://reactome.org/
- WikiPathways <u>https://www.wikipathways.org/</u>
- Gene Ontology (GO)<u>https://geneontology.org/</u>
 - Molecular Functions (MF)
 - Cellular Components (CC)
 - Biological Processes (BP)

These database (may) store redundant informations.

Which databases ?

MSigDB also exists as a R package: msigdbr, which is useful for versioning.

BigDB is centered on *Homo sapiens*, with orthologs mapped for *Mus musculus* only.

https://igordot.github.io/msiadbr/

And for A. thaliana ?

Organisme database: From BioConductor, you may find a lot of organism annotations.

https://bioconductor.org/packages/devel/BiocViews.html#Organism

Install a package from BioConductor

If the package is not yet installed, you can install it:

```
# If needed, install (once) BiocManager
if (!require("BiocManager", quietly = TRUE)) {
    install.packages("BiocManager")
    }
BiocManager::install(version = "3.19")
# Install package from BioConductor
BiocManager::install("org.At.tair.db")
```

For this session, the package has already been installed (and we already load it):

```
library("org.At.tair.db")
```

Over Representation Analysis

Over Representation Analysis

ORA stands for Over Representation Analysis.

Given a list of differentially expressed genes, search the gene sets containing these genes, and run an enrichment test on each of them.

Make ORA without programming ?

This is possible if you work with MSigDB, for *H. sapiens* or *M. musculus*.

but we are going to use R...

Genes of interest

How many genes are in the table ? This is N, the number of genes in the universe.

<pre>dim(deseq_genes)</pre>					
[1] 27655	29				

We select differentially expressed genes. There are **n** genes of interest.

```
de_genes = deseq_genes[deseq_genes[, "padj"] <= 0.001, ]
de_genes = de_genes[!is.na(de_genes[, "log2FoldChange"]), ]
dim(de_genes)</pre>
```

[1] 1807 27

Enrichment analysis using the GO:CC database

We would like to perform the ORA against the gene set in the **Gene Ontology**, **Cellular Components** gene sets database, which is stored in the org.At.tair.db database.

```
ego = clusterProfiler::enrichGO(
    gene = de genes$Id,
                                  # gene list
    universe = deseq_genes$Id,  # all genes
                           # annotation
    OrgDb = org.At.tair.db,
    keyType = "TAIR",
                                  # nature of the genes ID
    ont = "CC",
                                  # Cellular Components
    pvalueCutoff = 1,
                                  # significance threshold (take all)
    pAdjustMethod = "BH",
                                  # p-value adjustment method
    readable = TRUE
                                  # For human beings
```

Enrichment analysis using the GO:CC database

What is stored in the ego object?

View(ego)

head(ego@result, 3)

ID	Description	GeneRatio	BgRatio	RichFactor	FoldEnrichment	zScore	pvalue
G0:0055035 G0:0055035 plastid th	nylakoid membrane	74/1785	357/26909	0.2072829	3.124804	10.772584	1.033262e-18
G0:0009535 G0:0009535 chloroplast th	nylakoid membrane	73/1785	349/26909	0.2091691	3.153238	10.792105	1.042123e-18
GO:0019867 GO:0019867	outer membrane	85/1785	477/26909	0.1781971	2.686333	9.904966	5.207312e-17
p.adjust qvalue	geneID C	ount					
GO:0055035 1.443340e-16 1.310881e-16	5	74					
GO:0009535 1.443340e-16 1.310881e-16	5	73					
G0:0019867 3.606064e-15 3.275125e-15	···	85					

Visualization

We want to visualize these results. Let's try two visualization methods.

Visualization : Barplot

The results may change depending on the packages version.

Visualization : Dotplot

The results may change depending on the packages version.

What about roots ?

We are looking for enrichment in "root" terms. Are they in the output ?

[1] "root hair"

ego@result[ego@result\$Description == "root hair",]

ID	Description	GeneRatio	BgRatio	RichFactor	FoldEnrichment	zScore
GO:0035618 GO:0035618	root hair	5/1785	23/26909	0.2173913	3.277189	2.912161
pvalue	e p.adjust	qvalue			geneID	Count
GO:0035618 0.01573318	0.1562631	0.1419224	MATE/	ATCNGC6/PRX	44/AtSFH1/PRX73	5

Enrichment analysis using the GO:BP database

We would like to perform the ORA against the gene set in the **Gene Ontology**, **Biological Processes** gene sets database, which is stored in the org.At.tair.db database.

```
ego = clusterProfiler::enrichGO(
    gene = de genes$Id,
                                       # gene list
    universe = deseq genes$Id,
                                       # all genes
    OrgDb = org.At.tair.db,
                                       # annotation
    keyType = "TAIR",
                                        # nature of the genes ID
    ont = "BP",
                                        # Biological Processes
    pvalueCutoff = 1,
                                        # significance threshold (take all)
    pAdjustMethod = "BH",
                                        # p-value adjustment method
    readable = TRUE
                                        # For human beings
```

Roots are there !

We are looking for enrichment in "root" terms. Are they in the output ?

root_names

```
[1] "root morphogenesis"
                                                  "lateral root development"
    "root epidermal cell differentiation"
                                                  "post-embryonic root development"
 [3]
                                                  "root hair cell differentiation"
    "root hair cell development"
 [5]
    "lateral root morphogenesis"
                                                  "post-embryonic root morphogenesis"
 [7]
                                                  "lateral root formation"
    "root hair elongation"
 [9]
[11] "root hair cell tip growth"
                                                  "root hair initiation"
[13] "regulation of root meristem growth"
                                                  "root meristem growth"
                                                  "regulation of lateral root development"
[15] "primary root development"
[17] "regulation of root development"
                                                  "root cap development"
[19] "regulation of post-embryonic root development" "regulation of root morphogenesis"
[21] "maintenance of root meristem identity"
```

Make the graphs for root-related terms

The showCategory can be either a number of gene sets to display or the specific names of gene sets of interest.

Visualization : Barplot

The results may change depending on the packages version.

Visualization : Dotplot

The results may change depending on the packages version.

Summary

We used our genes of interest (differentially expressed) and gene sets from a database.

However, we do not know:

- if the gene sets are enriched in the WT or in the KO
- if the gene sets contain highly (or lowly) differentially expressed genes

In the next analysis, the genes will be ranked by order of *importance*.

Gene Set Enrichment Analysis

Gene Set Enrichment Analysis

To perform a Gene Set Enrichment Analysis (GSEA), we need to give "a list of weighted ranked genes in order to compute a running enrichment score."

```
colnames(deseq_genes)
```

[1]	"Id" "KO3"	"WT1" "norm.WT1"	"WT2" "norm.WT2"	"WT3" "norm.WT3'	"K01" " "norm.K0	"KO2" 1" "norm.KO2"
[13]	"norm.K	03" <mark>baseMe</mark>	an" "WT"	"KO" "	'FoldChange"	"log2FoldChange"
[19]	"stat"	"pvalue	" "padj"	"dispGene	Est" "dis	pFit" "dispMAP"
[25]	"disper	sion" "be	taConv"	"maxCooks'		

Using KO and WT as weights

We have to weight each genes.

We could use the columns WT and KO, running twice the GSEA, and comparing the enrichment scores. It works, it is used in current publications. Highly expressed genes have a very very high impact on the enrichment score.

By doing so, we could conclude something like:

"Root morphogenesis has a higher/lower enrichment score in WT rather than in KO."

Using log2FoldChange as weights

We have to weight each genes.

We could use the column log2FoldChange and look at the enrichment score.

By doing so, we could conclude something like:

"Root morphogenesis has up/down regulated genes with an enrichment score of XXX." or "Genes in Root morphogenesis are usually up/down regulated in KO plants."

Note: We <u>do not use FoldChange</u> to perform a GSEA because they are all > 0 and we will always see an enrichment.

Using pvalue as weights

NO ! NO ! USE ADJUSTED P-VALUES !

Using padj as weights

We have to weight each genes.

We could use the column padj and look at the enrichment score.

It works, but almost never published since it answers the very same questions as ORA:

"Does Root morphogenesis contains differentially expressed genes in an unusual quantity?"

Using stat as weights

We have to weight each genes.

We could use the column stat and look at the enrichment score.

Briefly, stat considers both the log2FoldChange and the padj. It answers the very same question as log2FoldChange weights, but includes:

- the confidence we have in the differential expression between KO and WT, and,
- the change of expression between conditions.

This is almost never done, but fellow bio-statisticians tell me it is better than log2FoldChange alone.

We are going to use stat today, because we trust bio-statisticians.

A ranked list of genes of interest

We prepare the data:

```
# Get the weights
geneList = as.numeric(de_genes$stat)
# Get genes identifiers
names(geneList) = de_genes$Id
# Sort the list
geneList = sort(geneList, decreasing = TRUE)
```

head(geneList)

AT2G17820 AT5G19600 AT2G25760 AT3G19670 AT3G48110 AT5G11800 18.377 16.078 16.002 15.616 15.249 14.443

GSEA using the GO:BP database

We would like to perform the GSEA against the gene set in the **Gene Ontology**, **Biological Processes** gene sets database, which is stored in the org.At.tair.db database.

```
# ranked gene list
# Biological Processes
# annotation
# nature of the genes ID
# p-value adjustment method
# significance threshold (take all)
# fix randomness for permutations
```

1 Very very (very) important to set a seed if you want replicable results.

GSEA using the GO:BP database

What is stored in the gsea object?

View(gsea)

head(gsea@result, 3)

ID			Desci	ription	setSize	enrichmentScore	NES	pvalue	p.adjust	
GO:0090304 GO:0090304		nucleic acid	metabolic µ	process	269	0.3245700	3.171488	1e-10	7.6125e-09	
GO:0006139 GO:0006139	nucleobase-cont	aining compound	metabolic µ	process	313	0.3082655	3.092426	1e-10	7.6125e-09	
GO:0016070 GO:0016070		RNA	metabolic µ	process	240	0.3140519	3.004704	1e-10	7.6125e-09	
qvalu	e rank		leading_edge	e core	_enrichmer	nt				
GO:0090304 4.565789e-09) 710 tag	s=62%, list=39%	, signal=45%	%		• •				
GO:0006139 4.565789e-09) 710 tag	s=60%, list=39%	, signal=449	%		• •				
GO:0016070 4.565789e-09	635 tag	s=57%, list=35%	, signal=429	%	• •					

Exploration of over-represented gene sets

Let's see the top 8 of the over-represented gene sets:

```
gsea@result %>%
  dplyr::filter(p.adjust < 0.05) %>%
  dplyr::top_n(., n = 8, wt = abs(NES)) %>%
  dplyr::select(Description, NES, p.adjust, setSize)
```

	Description	NES	p.adjust	setSize
GO:0090304	nucleic acid metabolic process	3.171488	7.612500e-09	269
GO:0006396	RNA processing	3.347367	2.342322e-08	49
GO:0016071	mRNA metabolic process	3.384434	2.939140e-08	44
GO:0008380	RNA splicing	3.256452	5.343321e-07	25
GO:0000375	RNA splicing, via	3.174464	1.686242e-06	23
GO:0000377	RNA splicing, via	3.174464	1.686242e-06	23
GO:0000398	mRNA splicing, via spliceosome	3.174464	1.686242e-06	23
GO:0006397	mRNA processing	3.121489	2.064175e-06	29

Gene sets related to roots ?

We filter the results for gene sets containing "root":

			Description	NES	p.adjust	setSize	
G0:0010053 root	epidermal	cell	differentiation	-1.992772	0.01912029	24	
GO:0048765	root hair	cell	differentiation	-1.801858	0.04573408	20	

Visualization

We visualize the GSEA curve using the function gseaplot2 from the package enrichplot.

```
gene_set_name = "root hair cell differentiation"
gene_set_id = which(gsea@result$Description == gene_set_name)
gene_set_id
```

[1] 207

```
enrichplot::gseaplot2(
    x = gsea,
    geneSetID = gene_set_id,
    title = gene_set_name
)
```

Understand the GSEA plot

Understand the GSEA plot

The maximum of the curve defines the **enrichment score** (ES) of the gene list ordered in the gene set. Here, $ES \approx 0.5$.

The algorithm computes the ES for 1000 other ordered lists. These ordered lists are obtained by performing **permutations** in the input list.

An **enrichment p-value** is calculated by comparing the ES value to the distribution of the other 1000 ES obtained from the permutations.

The ES is normalized to a **normalized ES (NES)**, by dividing it by the average of the ES obtained after the permutations.

The algorithm goes through the list, in order of values. Each time it encounters a gene belonging to the gene set, the (green) **enrichment curve** rises. The gene is marked with a **black line** at its rank. Otherwise, the curve goes down.

The genes from the input list are ordered by a numerical value of interest. Here, the log fold change was chosen. The list contains over 16,000 genes.

Visualization

We visualize the GSEA curve associated with our gene set of interest.

With GSEA, you dot not test if a pathway is up or down regulated.

A pathway contains both enhancers and suppressors genes. An up-regulation of enhancer genes and a down-regulation of suppressor genes will lead to a "bad" enrichment score. However, this will lead to a strong change in your pathway activity !

If your favorite pathway does not have a "good enrichment score", it does not mean that pathway is not affected.

Bonus

Multiple GSEA curves on the same graph

We can visualize (but not read ?) multiple results on the same graph.

```
enrichplot::gseaplot2(
    x = gsea,
    geneSetID = c(1:3),
    title = "Most enriched terms"
)
```


Oncoplot / Heatmap

Upset plot

Enrichment map

enrichplot::emapplot(x = ego, showCategory = root_names)

Gene-concept network

Look at:

https://yulab-smu.top/biomedical-knowledge-mining-book/enrichplot.html