

alliance nationale pour les sciences de la vie et de la santé

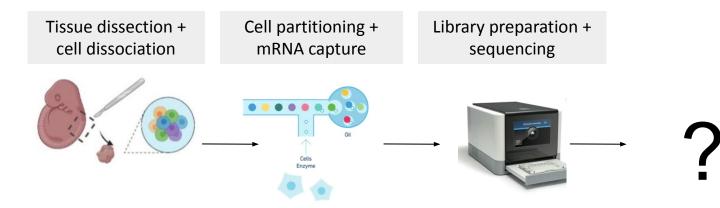
From reads mapping to count matrix

Nathalie Lehmann, Institut Pasteur, Paris

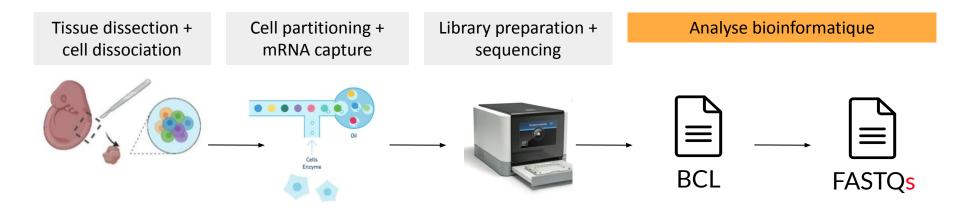
Eulalie Liorzou, Institut Pasteur, Paris

École de bioinformatique AVIESAN-IFB-INSERM 2023

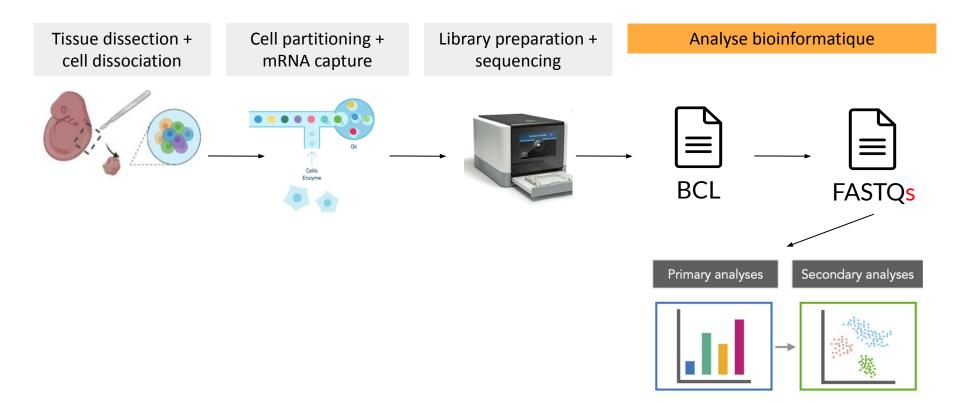
Recap of 10x scRNAseq library preparation



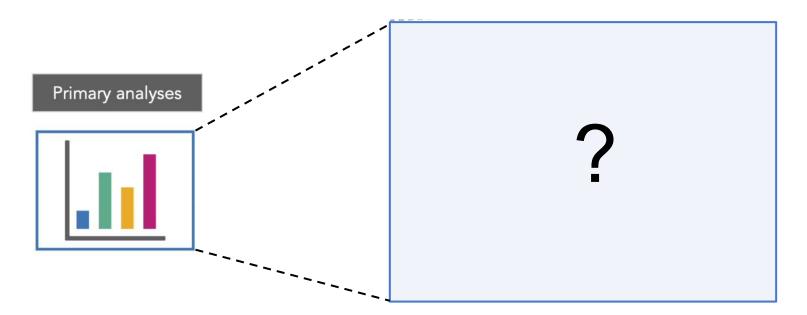
Recap of 10x scRNAseq library preparation



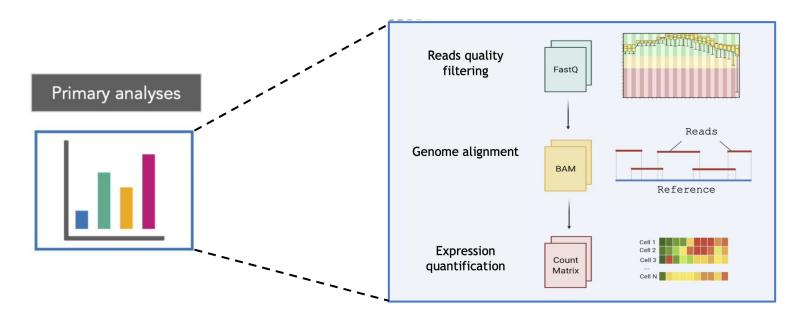
Recap of 10x scRNAseq library preparation



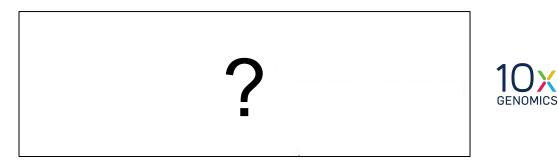
What are the main steps before getting to the count matrix ?



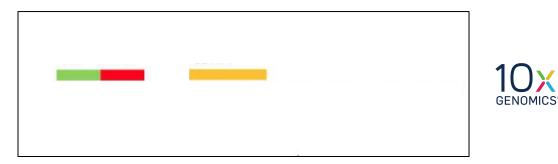
What are the main steps before getting to the count matrix ?



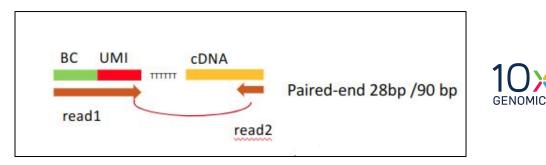
The sequenced library



The sequenced library



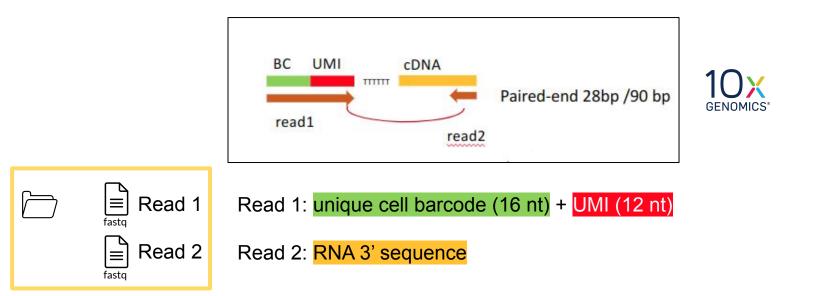
The sequenced library



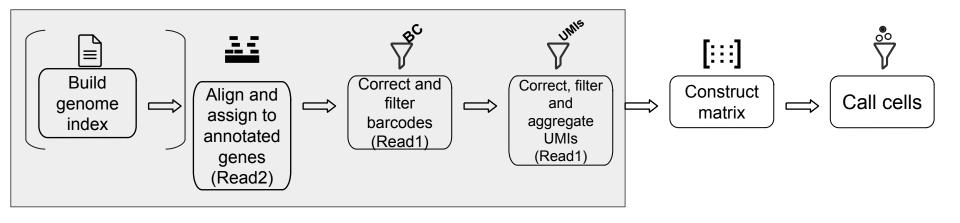
Read 1: unique cell barcode (16 nt) + UMI (12 nt)

Read 2: RNA 3' sequence

The sequenced library



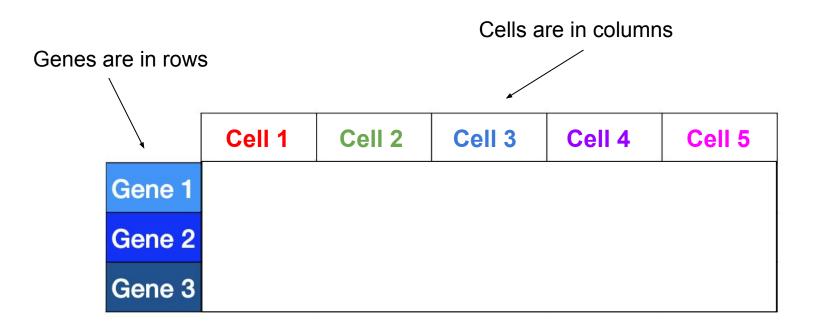
Primary analysis : overview of the workflow



Organisation of the scRNA-seq course

- From cells to nucleotide sequences (reads)
 - focus on the 10X genomics technology
 - how are the reads organised
- Preprocessing : from reads to raw count matrix
 - quality check (FASTQC)
 - mapping (STAR)
 - how is annotation used
 - barcode and UMI treatment
 - visualizing the reads
 - constructing the count matrix
 - o call cells / empty droplets filtering

What is the count matrix ?

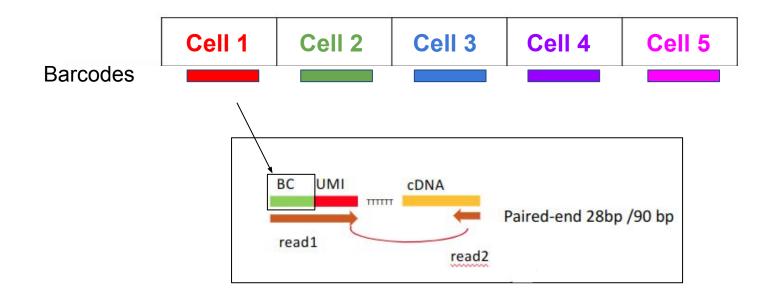


What is the count matrix ?

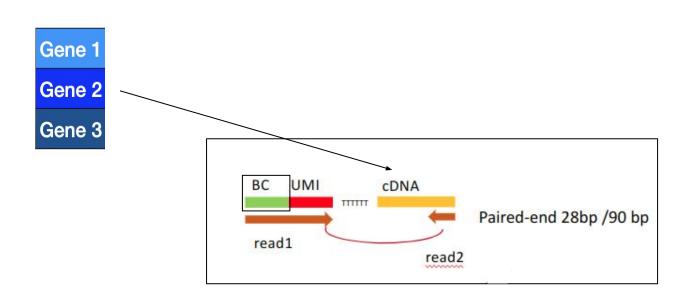
				Cells are in columns										
Genes	are in rows	6												
		Cell 1	Cell 2	Cell 3	Cell 4	Cell 5								
	Gene 1	0	0	0	0	0								
	Gene 2	1	0	4	2	0								
	Gene 3	0	8	1	0	1								

Content of the table : gene counts (expression levels)

Each cell is represented by a valid barcode (read1)

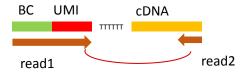


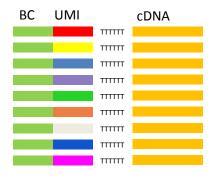
Each read2 is assigned to a gene after the mapping

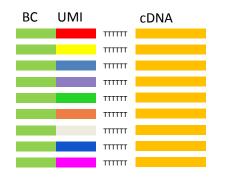


Structure of a GFF3 file (annotation file)

Gene 1 Gene 2 Gene 3	# gffr	ensGene.v101 ensGene.v101 ensGene.v101 ensGene.v101	es data/raw/ref gene transcript exon gene transcript exon exon transcript exon exon exon exon	ferences/annotation 5273 10061 5273 10061 5273 10061 1430 13328 1430 4395 1430 1820 4017 4395 3983 13328 3983 4098 6175 6179 13238 13328	ns/ucsc/g - - - - - - - - - - - - - - - - - - -	galGal - - + + + + + + + + +	6.ensGe	general informations ne.gtf -o- ID=ENSGALG00000054818.1;Name=IMPDH1 ID=ENSGALT00000098984.1;Parent=ENSGALG00000054818.1 Parent=ENSGALT00000098984.1 ID=ENSGALG00000049712.1;Name=ENSGALG00000049712.1 ID=ENSGALT00000097407.1;Parent=ENSGALG00000049712.1 Parent=ENSGALT00000097407.1 ID=ENSGALT00000097407.1 Parent=ENSGALT00000093532.1;Parent=ENSGALG00000049712.1 Parent=ENSGALT00000093532.1 Parent=ENSGALT00000093532.1 Parent=ENSGALT00000093532.1
chromoso		notation sour / version	type rce	start / end	S	tran	d	attributes (eg. gene names, gene ID)

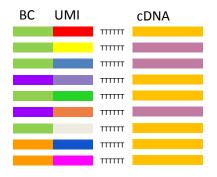


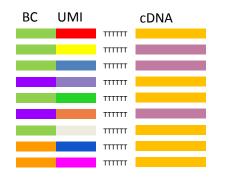




One cell (1 BC)

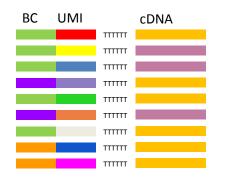
One gene, detected 9 times (1 cDNA - 9 UMI)





3 cells (3 BC)

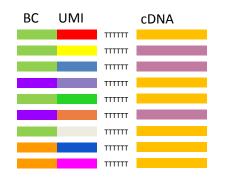
2 genes (2 cDNA)



3 cells (3 BC)

2 genes (2 cDNA)

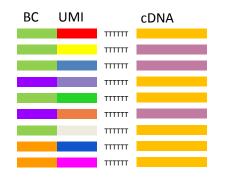
In practice, the count in the matrix corresponds to the number of UMI per barcode per gene



3 cells (3 BC)

2 genes (2 cDNA)

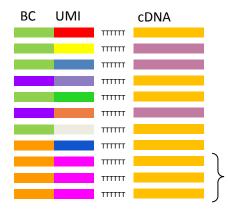
	Cell 1	Cell 2	Cell 3
Gene 1			
Gene 2			



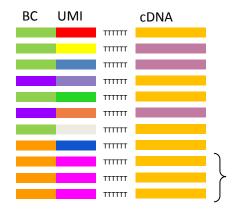
3 cells (3 BC)

2 genes (2 cDNA)

	Cell 1	Cell 2	Cell 3
Gene 1	3	1	2
Gene 2	2	1	0

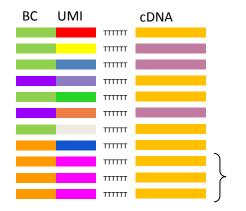


?



Reads with the same BC+UMIs are assigned to the same gene (originate from 1 unique RNA molecule) : they count as 1

The UMIs are used to correct for amplification artefacts

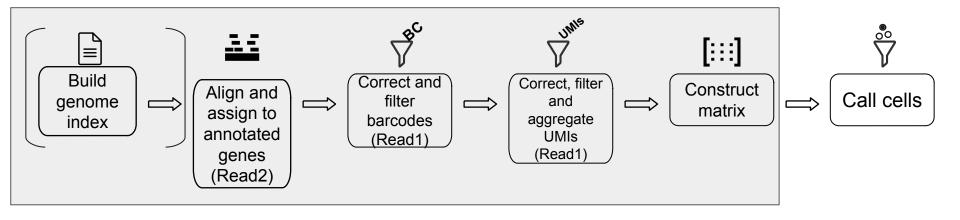


Reads with the same BC+UMIs are assigned to the same gene (originate from 1 unique RNA molecule) : they count as 1

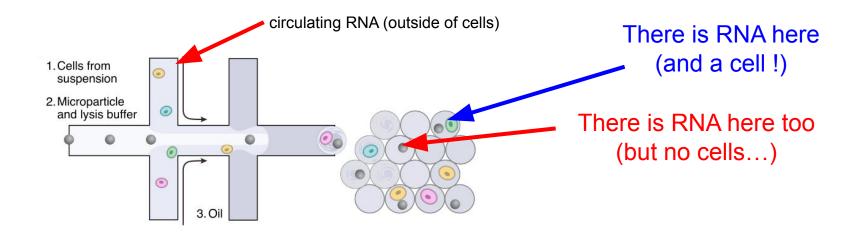
	Cell 1	Cell 2	Cell 3
Gene 1	3	1	2
Gene 2	2	1	0

Same count matrix as before

Primary analysis : overview of the workflow



Counting the cells



- A million of droplets to recover ~10k cells
- Problem : RNA from dead cells circulates and is encapsulated in droplets
- Question : how to differentiate between "real cells" and "droplets with RNA" ?

 Need to filter the count matrix to retain the droplets most likely containing a true cell, removing the "empty" droplets containing only ambient RNA

- Need to filter the count matrix to retain the droplets most likely containing a true cell, removing the "empty" droplets containing only ambient RNA
- **Problem**: we have no prior knowledge about whether a barcode corresponds to cell-containing or empty droplets. We need to call cells from empty droplets based on the observed expression profiles.

?

- Need to filter the count matrix to retain the droplets most likely containing a true cell, removing the "empty" droplets containing only ambient RNA
- **Problem**: we have no prior knowledge about whether a barcode corresponds to cell-containing or empty droplets. We need to call cells from empty droplets based on the observed expression profiles.
- **Principle** : true cells will contain many different RNA molecules, compared to empty droplets containing few ambient RNA

=> translates into : barcodes associated to many UMI are more likely to be true cells than barcodes associated to few UMIs

Identification of the "true" cells depends on UMI diversity

	Cell 1	Cell 2	Cell 3
Gene 1	3	1	2
Gene 2	2	1	0
Total	5	2	2

1 UMI = 1 single RNA molecule

Identification of the "true" cells depends on UMI diversity

Gene 1	30	1	2	1	0	6	7	0	0	2	0	9	2	0	0	1	2
Gene 2	8	1	0	4	0	2	1	4	1	3	0	3	15	1	0	1	0
Total	38	2	2	5	0	8	8	4	1	5	0	12	17	1	0	2	2

Identification of the "true" cells depends on UMI diversity

Gene 1	30	1	2	1	0	6	7	0	0	2	0	9	2	0	0	1	2
Gene 2	8	1	0	4	0	2	1	4	1	3	0	3	15	1	0	1	0
Total	38	2	2	5	0	8	8	4	1	5	0	12	17	1	0	2	2

"Low UMI cells" ~ "empty droplets"

Identification of the "true" cells depends on UMI diversity

Gene 1	30	1	2	1	0	6	7	0	0	2	0	9	2	0	0	1	2
Gene 2	8	1	0	4	0	2	1	4	1	3	0	3	15	1	0	1	0
Total	38	2	2	5	0	8	8	4	1	5	0	12	17	1	0	2	2

"Low UMI cells" ~ "empty droplets"

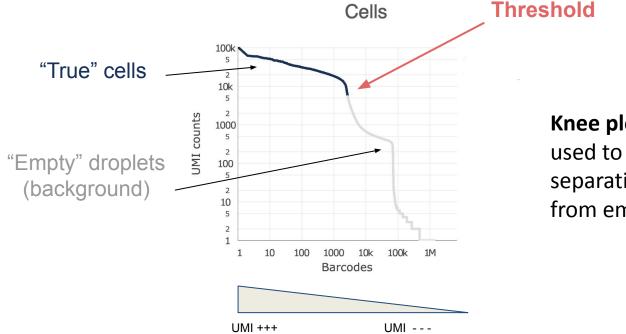
Identification of the "true" cells depends on UMI diversity

Gene 1	30	1	2	1	0	6	7	0	0	2	0	9	2	0	0	1	2
Gene 2	8	1	0	4	0	2	1	4	1	3	0	3	15	1	0	1	0
Total	38	2	2	5	0	8	8	4	1	5	0	12	17	1	0	2	2

"Low UMI cells" ~ "empty droplets"... ???

How do we set the threshold between "true" cells and "droplets" ?

Identification of the "true" cells depends on UMI diversity



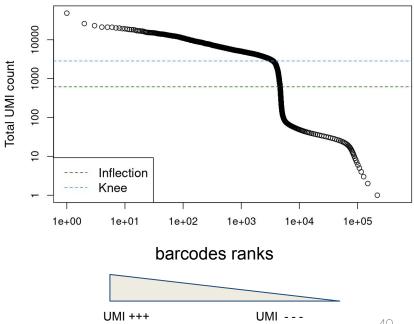
Knee plot :

used to find the threshold separating the "true" cells from empty drops

The knee plot (or *barcode rank plot*) is used for filtering the droplets

Steps :

- Keep all barcodes over first knee point 1.
- 2. Deduce background from low content droplets
- 3. Select droplets under knee point if the composition is very different from the background (cells with low-content RNA)



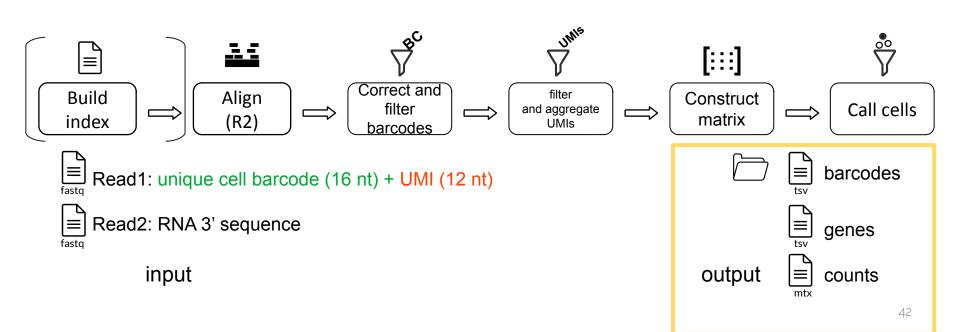
Cellranger

$$\left[\begin{array}{c} \blacksquare \\ \blacksquare \end{array}\right] \stackrel{\text{\tiny left}}{=} \Rightarrow \stackrel{\text{\tiny pc}}{\bigtriangledown} \Longrightarrow \stackrel{\text{\tiny ums}}{\bigtriangledown} \Longrightarrow \left[\vdots \vdots \right] \Rightarrow \stackrel{\text{\tiny pc}}{\bigtriangledown}$$

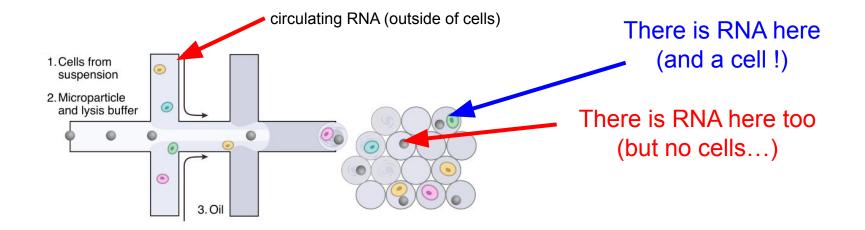
- Final number of cells can be < targeted cells
- With 10x Genomics data, cell capture is usually around 50% 60%
- A second round of cell filtering step is necessary. It is performed at the beginning of the data analyses (we will see that later in the course)

Output of CellRanger

Principle







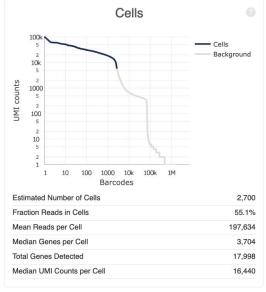
- Ambient RNA may also be encapsulated within droplets containing a cell ("true cells")
- There are tools that allow to correct for this biais
- Ex : *SoupX* that infers ambient RNA "soup" and removes it from the gene counting

CellRanger output report

Estimated Number of Cells 2,700	100k 5 2
Mean Reads per CellMedian Genes per Cell197,6343,704	10k 5 1000 1000 2 W 100
Sequencing	2 10 5
Number of Reads 533,613,214	2
Valid Barcodes 96.0%	1 1

Sequencing	
Number of Reads	533,613,214
Valid Barcodes	96.0%
Sequencing Saturation	67.7%
Q30 Bases in Barcode	96.1%
Q30 Bases in RNA Read	90.8%
Q30 Bases in UMI	95.2%

Mapping	
Reads Mapped to Genome	74.6%
Reads Mapped Confidently to Genome	70.5%
Reads Mapped Confidently to Intergenic Regions	8.7%
Reads Mapped Confidently to Intronic Regions	8.4%
Reads Mapped Confidently to Exonic Regions	53.4%
Reads Mapped Confidently to Transcriptome	50.4%
Reads Mapped Antisense to Gene	1.0%



	Sample
Name	CellRanger_Report_1
Description	
Transcriptome	cellranger_mkref_output_v3_191003
Chemistry	Single Cell 3' v3
Cell Ranger Version	3.0.1

CellRanger output report

- . Turnkey solution
- Many QC-metrics in 1 html summary
- Some secondary analysis
- More complex experiences : VDJ analysis, feature-barcoding
- Versions for ATAC-Seq, multi-omics

- Proprietary
- Only 10X product (cannot customize BC and UMI patterns)
- Not highly configurable
- (A lot of resource and time) but less true for recent versions

There are other alternatives than CellRanger

Advanced

Technical Overview mapper Cell Ranger STARsolo Alevin Kallisto Exact alignment Exact alignment Pseudo mapping Pseudo mapping Mapping scheme Star Star Salmon Kallisto Internal Mapping Mapper performance Reference Genome Genome Transcriptome + Transcriptome Genome Supported 10X Chromium 10X Chromium 10x Chromium 10x Chromium v1 v3, Cel-seq, Celv1 - v3v2:v3, Smart-seq, v2:v3. Drop-seq. sequence Barcode Drop-seq, inDrop Cel-seq, Cel-seq2, seq2, Drop-seq. technology correction and Ouartz-seg2 inDrops v1-v3. SCRB-Seq. filtering SureCell 1-Hamming distance 1-Hamming distance Edit distance 1-Hamming distance Barcode based based calculation based correction Whitelisting Whitelist based Whitelist based Frequency based, Whitelist based Gene discovery no whitelist needed Alternative no ves no no Splicing detection UMI Two round Two round graph based NA correction by correction by correction correction barcode, read count barcode, read count and annotation and annotation MT-content Index Suffix array Suffix array Colored De-Bruijn Colored De-Bruijn Graph Graph Handling of discarded discarded Distributing read discarded count between multimapped genes by EMreads Clustering algorithm Matrix + Bam-File External software Output Gene count matrix Gene count matrix and summary file as and primary results ready for analysis required to create html-file with primary summary gene count matrix DEG results as well as clustering and DEG

analysis

Summary Cell Ranger STARsolo Alevin Kallisto Lowest runtime Similar results with Whitelisting causes astest runtime Cell Ranger that loss or gain of with highest are accomplished barcodes mapping rate, in a shorter time depending on the nore cells are data detected with a small gene content Final barcode set Reports more cells included barcodes with a low gene that are not content present in the whitelist Detection of more genes than all other tools. Highest UMI count for genes not expressed in studied tissue Highly affected by See Cell Ranger Smaller difference See Cell Ranger complete of MT-content annotation between the including mapping with pseudogenes iltered and unfiltered annotation Highest Overlap Very similar to Cell Cell types contain Cell types contain with SCINA Ranger with minor lower amount of the lowest amount lassification differences cells with SCINA of cells with SCINA classification classification No difference No difference No difference No difference letected detected

R. S. Brüning et al., Gigascience (2022)

Take-home messages

- Take time to **visualize the scRNA-seq signal** in a genome browser (IGV)
- Results can be hugely affected by the annotation
- Exotic /poorly-annotated / non-model organisms : generate a new annotation from bulk data with long-read sequencing (or reconstruct with short-reads)

```
[:::]
```

• Count matrix = nb of UMI per barcode (columns) per gene (row)

- Call the cells : remove the empty droplets containing ambient RNA => use of the knee plot to decide on the threshold and obtain the number of "true" cells
- Sometimes, need to lower this threshold for small cells/low-RNA content
- More filters will be applied in the downstream analysis

Acknowledgements

- Slides from Nathalie Lehmann
- ... and originally taken or inspired from Bastien Job
- Some illustrations were created by
 - Kevin Lebrigand
 - Morgane Thomas-Chollier