

Processing 1

Normalization, scaling and regression

Bastien Job, Gustave Roussy, Villejuif

Nathalie Lehmann, Institut Pasteur

Organisation of the scRNA-seq course

- From raw count matrix to normalised matrix
 - Filtering low quality droplets
 - Filtering dead cells
 - Filtering doublets

Data normalization

- Why do we need to normalize the data?
- What are the methods available?
- Regression of biological biaises

Question!

What do you think of each gene expression in this matrix?

Gène	Cellule 1	Cellule 2	Cellule 3	Cellule 4
Rouge	100	200	300	400
Bleu	50	100	150	200
Vert	10	10	10	10
Jaune	100	100	100	100

Why do we need to normalize our data?

We need to remove **technical biases** in order to...

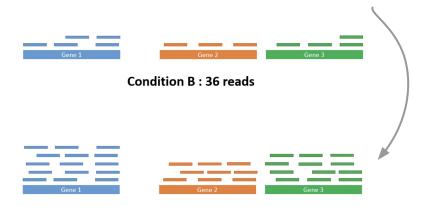
Condition A: 12 reads

Condition B: 36 reads

Why do we need to normalize our data?

We need to remove **technical biases** in order to...

Condition A: 12 reads



The 2 libraries have the **same RNA composition**.

But the condition B has 3 times more reads than the condition A.

We need to correct for differences in **library size**.

Why do we need to normalize our data?

We need to remove **technical biases** in order to...

Normalization allows us to compare cells

Question!

What do you know about normalization?

How many approaches do you think there are?

Plenty of normalization approaches for bulk RNA-seq

- TPM
- CPM
- RPKM
- FPKM
- Global scaling (eg: Upper Quartile)
- Size factors calculation (eg: estimation of library sampling depth):
 - DESeq2
 - edgeR
- ...

Plenty of normalization approaches for bulk RNA-seq

TPM

CPM

RPKM

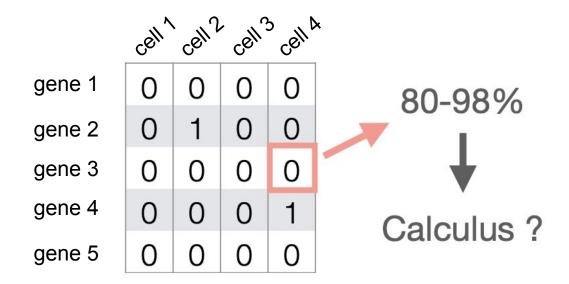
These methods do not apply to single-cell data (or partially)

Global scaling (eg: Upper Quartile)

Size factors calculation (eg: estimation of library sampling depth) :

- DESeq2
- edgeR

This is mostly due to the sparsity of the single-cell data



A sparse matrix is a matrix filled with a LOT of zeros

First, let's take this simple raw count matrix:

Gène	Cellule 1	Cellule 2	Cellule 3	Cellule 4
Rouge	100	200	300	400
Bleu	50	100	150	200
Vert	10	10	10	10
Jaune	100	100	100	100

First, let's take this simple raw count matrix:

Gène	Cellule 1	Cellule 2	Cellule 3	Cellule 4
Rouge	100	200	300	400
Bleu	50	100	150	200
Vert	10	10	10	10
Jaune	100	100	100	100

Our first impressions are like:

Gene rouge : expression is proportional to the sequencing depth

Gene bleu: same as "gene rouge" but with smaller values

Gene vert: expression is low and steady

Gene jaune: expression is steady between the cells

First, let's take this simple raw count matrix:

Gène	Cellule 1	Cellule 2	Cellule 3	Cellule 4
Rouge	100	200	300	400
Bleu	50	100	150	200
Vert	10	10	10	10
Jaune	100	100	100	100

Sequencing depth: **260** 410 560 710

CPM normalized value for gene rouge in cellule 1: 100/260*10⁴= 6250

Let's apply this to all genes:

Gène	Cellule 1	Cellule 2	Cellule 3	Cellule 4
Rouge	6250	6451	6522	6557
Bleu	3125	3226	3261	3279
Vert	625	323	217	164
Jaune	6250	3226	2174	1639

After CPM normalization, we have:

Gene rouge : the expression is actually steady between the cells

Gene bleu: the expression is actually steady between the cells (but lower than gene rouge)

Gene vert : expression decreases
Gene jaune : expression decreases

We applied this formula (we just omitted the log and the pseudo count "+1"):

$$ext{Normalized value}_{g,c} = \log_2 \left(rac{ ext{UMI}_{g,c}}{ ext{TotalUMI}_c} imes ext{ScaleFactor} + 1
ight)$$

Why do we add the log transformation?

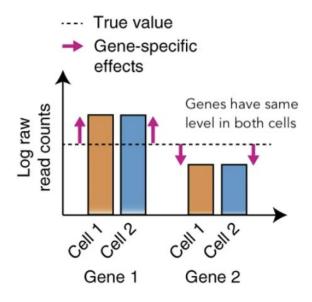
- To reduce the impact of extreme values
- To stabilize the variance
- To have a better biological interpretation
- Improved Model Fit

Question!

What about scaling ???

Why do we scale?

To be able to improve comparability between genes



Examples of biological biases that you may want to correct :

- Amplification
- RNA capture efficiency
- Gene length
- GC content

How do we scale?

Let's scale gene rouge:

Gène	Cellule 1	Cellule 2	Cellule 3	Cellule 4
Rouge	6250	6451	6522	6557
Bleu	3125	3226	3261	3279
Vert	625	323	217	164
Jaune	6250	3226	2174	1639

Mean expression of gene rouge = 25780 / 4 = 6445 Standard deviation $\sigma \approx 137.3$

How do we scale?

Let's scale gene rouge :

Mean expression of gene rouge = 25780 / 4 = 6445Standard deviation $\sigma \approx 137.3$

Use the formula:

$$ext{Scaled_value}_i = rac{ ext{Value}_i - \mu}{\sigma}$$

Calculations for each cell:

For
$$6250: \quad \frac{6250 - 6445}{137.3} = \frac{-195}{137.3} \approx -1.42$$

For
$$6451$$
: $\frac{6451 - 6445}{137.3} = \frac{6}{137.3} \approx 0.04$

For
$$6522$$
: $\frac{6522 - 6445}{137.3} = \frac{77}{137.3} \approx 0.56$

For
$$6557: \quad \frac{6557 - 6445}{137.3} = \frac{112}{137.3} \approx 0.82$$

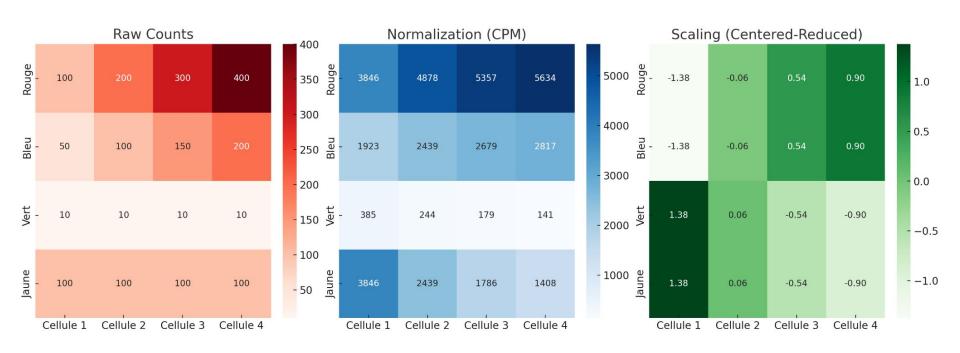
This is the z-score!

Key points of scaling

 Scaling ensures that the values have a mean of 0 and a standard deviation of 1

 This transformation makes genes with different ranges comparable across cells or datasets

Visualisation of the impact of each transformation



When to avoid scaling?

Be careful! Scaling may not always be necessary...

When to avoid scaling?

Be careful! Scaling may not always be necessary...

For example:

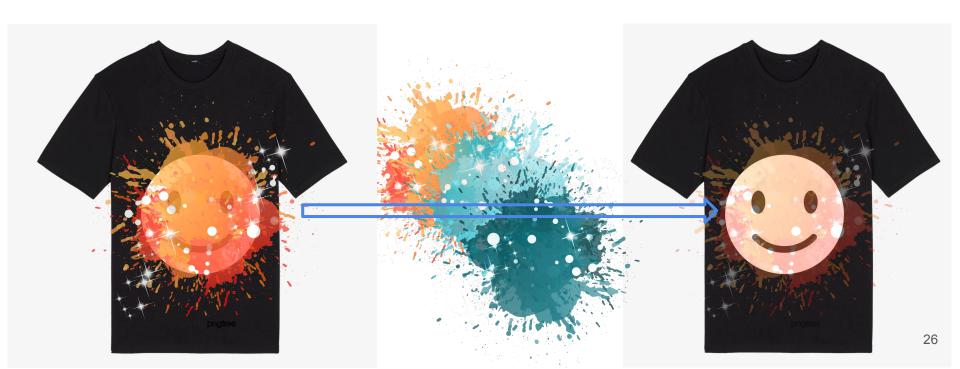
- In differential expression analysis, raw or log-normalized counts are used since absolute expression levels matter.
- For some downstream analyses like gene set enrichment analysis (GSEA), raw expression values are often more meaningful.

HO NO!

- Some close relative offered you your favorite gear : a nice T-shirt with a cool design
- Unfortunately your 5-years old inadvertently tainted it with its paint flask...
- Hopefully, you know a skilled team of cleaners right around the corner (who actually are bioinformaticians in disguise! *wink wink*)
- They explain you they learned how to clean stains by accumulating knowledge, having cleaning tons of them in several contexts.

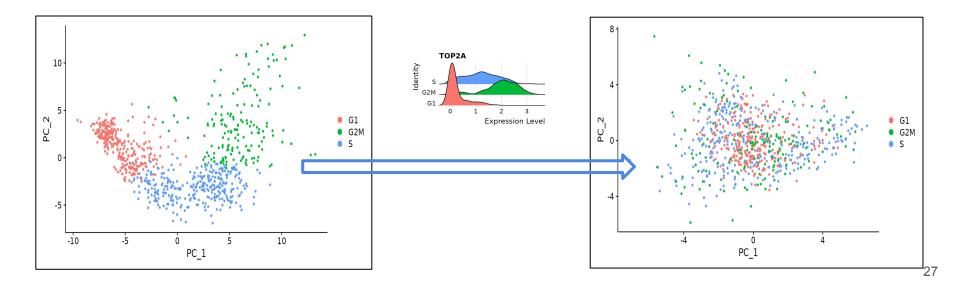
Cleaners to the rescue

• By compiling this amount of knowledge, they could produce a specific cleaning protocol to the kind of staining affecting your Tee, subtracted the former to the latter, revealing the object of desire



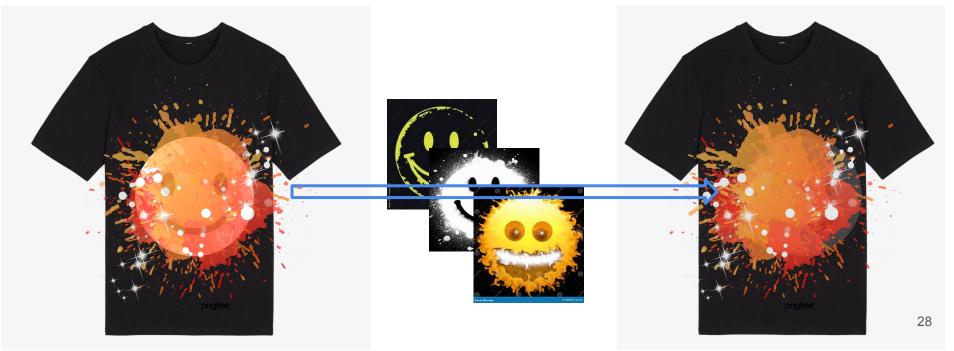
Let's get back to reality

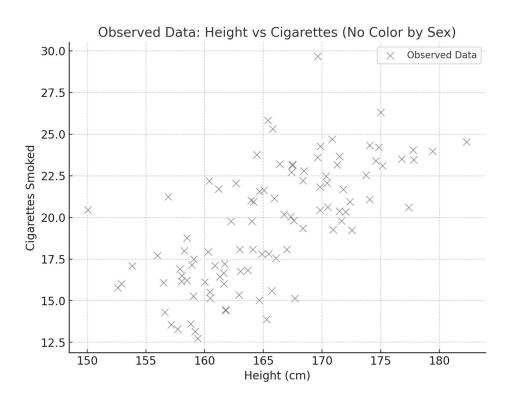
 This is what is performed in the cell cycle example, thanks to acquired data on the cell-cycle -specific gene expression, and regression

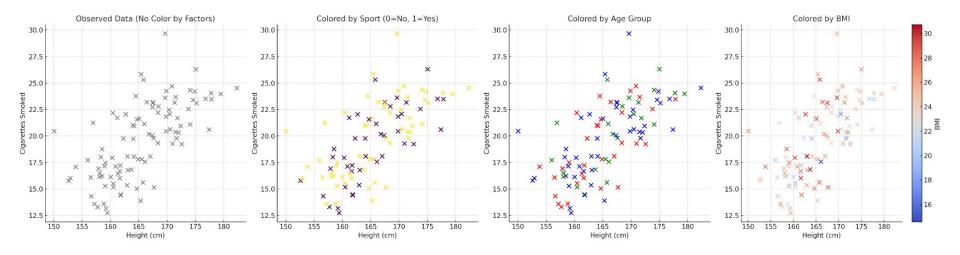


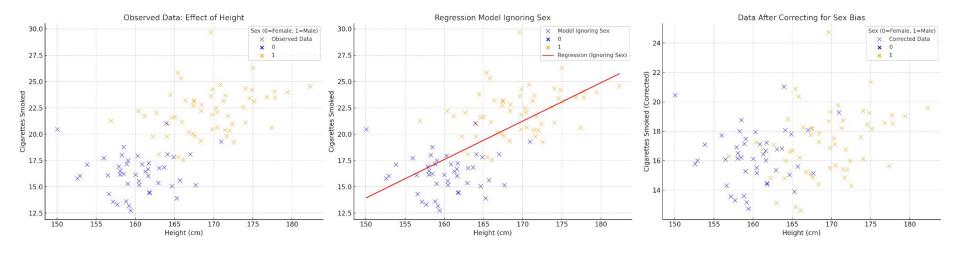
The devil may be in the bottle

- But what would happen if by bad luck, the cleaner team trained themselves on stains that unfortunately look a bit to much like your pattern?
- The same way you increased signal by removing some noise on the former example, one may perform the complete opposite if one doesn't pay attention
- Probably because in this specific context, what you thought was noise, wasn't









Acknowledgements

Some illustrations/slide were created by Marine Aglave