
Polishing of genome assemblies

EBAII Assembly & Annotation - Roscoff Juin 2024

Jean-Marc Aury

Laboratoire de Bio-informatique pour la Génomique et la Biodiversité

🔀 jmaury@genoscope.cns.fr

What are you going to learn?

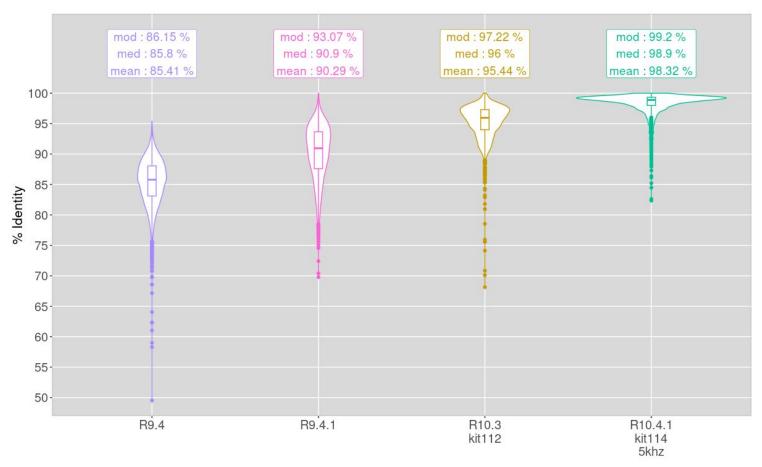
• What is polishing.

- How to spot a potential problem with your assembly consensus.
- How polishing tools work.
- Which are the most common polishing tools.

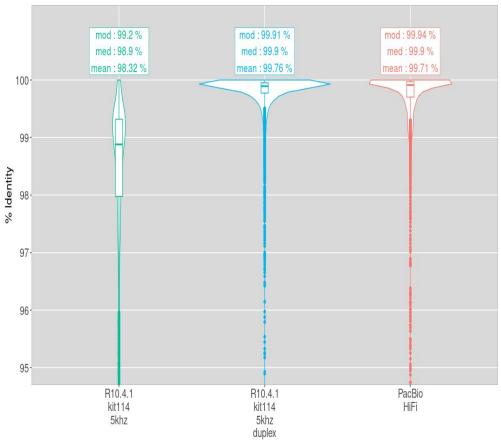
• How to polish a genome assembly.

What is polishing ?

Polishing is an important step in genome assembly that involves inspecting the consensus of a given assembly to detect local errors.


The "polishing" step generally requires high-quality reads (Illumina, MGI or PACBIO HiFi) and a genome assembly.

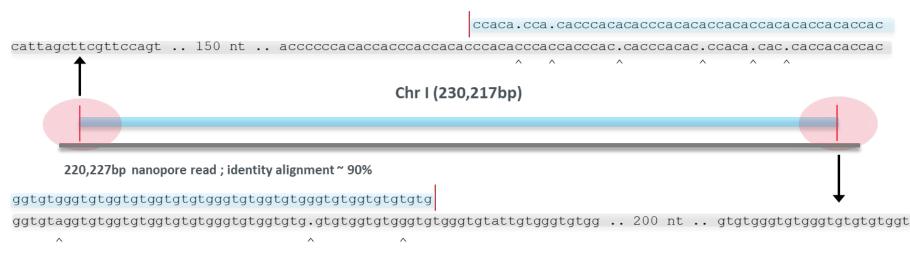
Why do we need to polish our assemblies ?


Due to sequencing error rate, the consensus of a given genome assembly might contains errors : mismatches, insertion or deletion

Insertion or deletion may affect the frame of coding sequences and result in incomplete gene prediction. This problem can be detected with BUSCO.

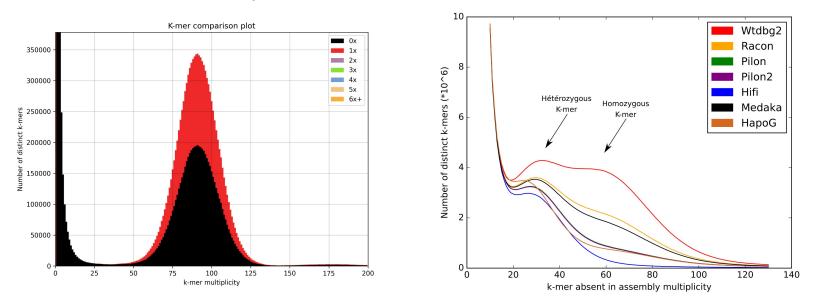
A fast evolving technology

A fast evolving technology



- Sequencing kit114
- R10 Flowcells
- Guppy 6

A fast evolving technology


Chromosomes can be captured entirely, the example read span yeast chromosome 1 from telomere to telomere

Read length from Nanopore and community

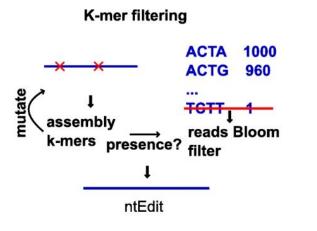
Each kmer of your readset should also be found in your genome assembly
 => Generate a KAT plot

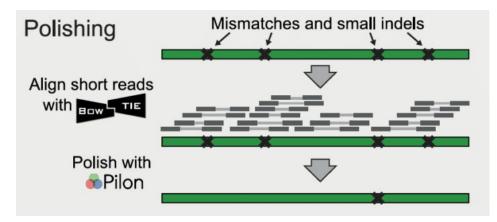
Errors in your consensus can affect gene prediction
 => Launch BUSCO and look at the "Complete", "Fragmented" and "Missing" scores

```
# BUSCO version is: 5.2.2
# The lineage dataset is: eukaryota_odb10 (Creation date: 2020-09-10, number of
genomes: 70, number of BUSCOs: 255)
# Summarized benchmarking in BUSCO notation for file
/env/export/bigtmp2/jmaury/ebaii/nanopore_assembly_flye/Assembly/Flye/nanopore.fasta
# BUSCO was run in mode: genome
# Gene predictor used: metaeuk
```

```
***** Results: *****
C:57.3%[S:57.3%,D:0.0%],F:12.2%,M:30.5%,n:255
146 Complete BUSCOs (C)
146 Complete and single-copy BUSCOs (S)
0 Complete and duplicated BUSCOs (D)
31 Fragmented BUSCOs (F)
78 Missing BUSCOs (M)
255 Total BUSCO groups searched
```

Quality score calculated by Merqury (using short-reads) will be low
 => Launch Merqury and look at the Quality Value

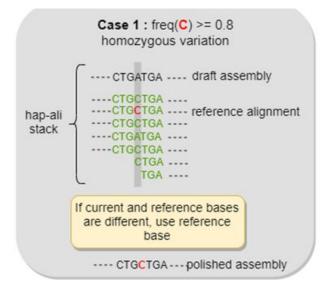

 $Q = -10 \log_{10} P$ (Q= Quality value and P= basecalling error probability)


10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10 Kb	99.99%
50	1 in 100 Kb	99.999%

[jmaury@inticns] ## cat flye/Merqury/merqury.qv

nanopore 4338717 9512352 17.1099 0.0194539

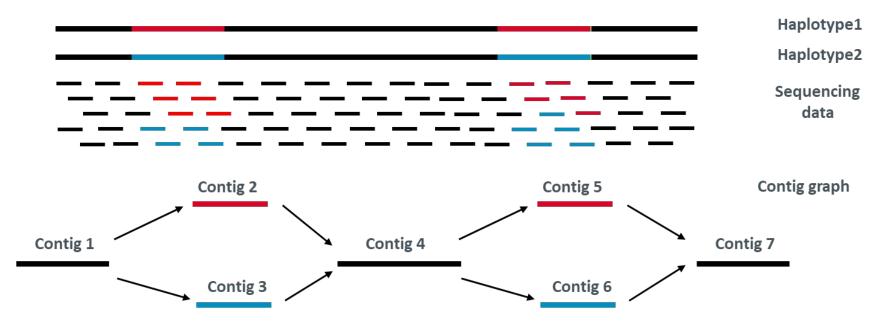
- Two different strategies:
 - kmer-based approach : faster, but less accurate
 - alignment-based approach : slower, but more accurate



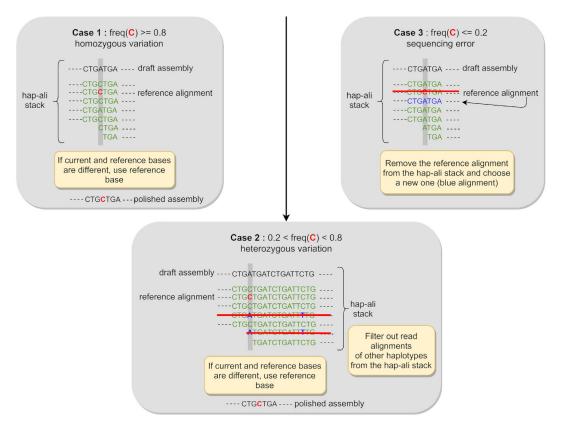
https://thesequencingcenter.com/knowledge-base/complete-genome-assembly/

Amarasinghe, S.L., Su, S., Dong, X. et al. Opportunities and challenges in long-read sequencing data analysis. Genome Biol 21, 30 (2020). https://doi.org/10.1186/s13059-020-1935-5

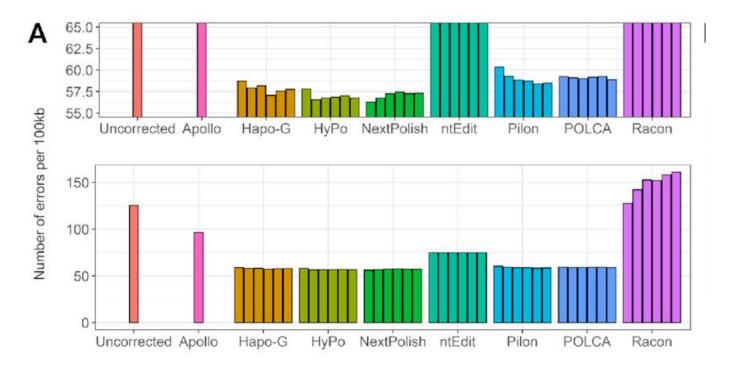
- Generally, they inspect the nucleotide one by one, and provide a correction for each nucleotide of the input assembly.
 - these algorithms are not able to properly process diploid genomes
 - => switch from one haplotype to another

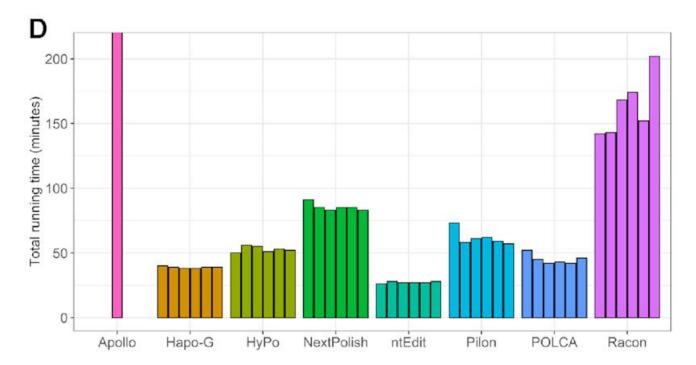


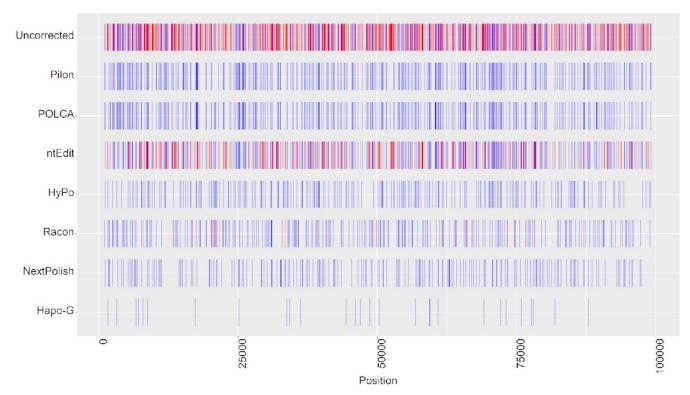
									-					1
														1
			P. Io	bata	trans	crip	ts (or	ises	k=89	+ re	cup	/ ma	pping	i
							-							ļ
		HB	Pori	tes lu	utea									
		HB	Map	pina	of ill	umin	a ge	nom	ic rea	ds			1	1
e	a	t	t	¢	C	a	8	t t	t	c	с	c t		1
	a	t	t	c	< <u>c</u>	a	8	E.	t e	C R	c	t.	t t	
8	a	t	t	¢	e	a	2	t	t	c	c	c t	t	1
				c	c	a				c.		e 1		1
8	a	t	t.	c	- C	a	8	t.	÷	c		c t	t	
8	a	t	t	с	C	a	8	t	t	с				I
e	ð	t	t.	c	c	a	R	t	ŧ.	C.	С	c t	t	1
8	a	t t	t	c c	c c	a a	8	t t	t t	c	C	c t t	t t	
	a	t	t	-	-	a	8	÷	e	•	c	c t	t	
6	a	t	t.	c	¢	a	8	t	ŧ.	¢	c	c t	t	Ì
8	a	t	t.	c	C	a		-	1.00	0	c	c .		
						a	8					c		
g	a	t	t	с	с	a	8	t	te	C.	с	с	t	İ
				- 1			1					- 11-		
8	a	t t	t t	c	c c	a	8	t t	t c	c c	c	c	t.	
8	-	t	t	-	-	a	8	t	te	c	c	C C	t	
8	a	ŧ.	t	c	c	a	8	ŧ	e	C.	с	c	c	1
g	a	t	t	с	C	a	8	.e	t c	c	С	c	t	1
g	a	t t	t t	c c	c c	8 8	8	t t	t C	C C	c	c	t. t	
8	a	ŧ	t										Ĩ	1
g	a	e	E	c		a	2	e	t c	c	c		ŧ	
- ¹		Ť.	-		1			1					1	1
g	a	t	t	с	c	-0	8	E.	t c	c	С	с	t	q
g	a	t	t	c	c	a	8	t	tc	¢	C	c	t	
g	a	t	t	0	c	a	g	t	tc	c	C	c	t	t
e e	a	ŧ	ŧ	с	c	a	8	t	t c	c	с	c	t	ł
8	a	ŧ.	E	c	c	a	8	E	e	c	С	С		
8	a a	t t	t t	c c	0	a	8	t t	te	c c	c c	c	t	
8	- a	t	t	- -	c	-	8	t	tc	c	c	c	t	-
ę	a	t	t	с	с	a	8	ŧ	tc	c	c	с	t	Ī
g		t	t	c	C	a a a	8	t	tic	c	C.		ŧ.	1
8	t	t t	t	c c	e c	a	8	t t	t c	c c	c c	c c	t t	
8	a 0	t	t	-	-	a	8	t	£ 0	c	c	0	-	1
8	a	t	t	c	e	a	8	£	E.	c	c	c		
8	a	ŧ.	t	c	c	a	ę.	E	t c	c	с	c	ŧ.	l
	a	t t	t	с	C	a	8	t t	t c	c c	С	С	t t	
đ	a		t	c	C	a	8				C	c		1
8	a	t	t t	c	6	a	8	t t	te	c c	c	c	t. t	
g	a	t	t			a	8	t.	5 C	с 0	-	-	t	
è	a	t	t	c	>									1
É	a	t	t	C										
<u>e</u>	a	t t	t	с с	0	a a	8	t	t.					
2	a													

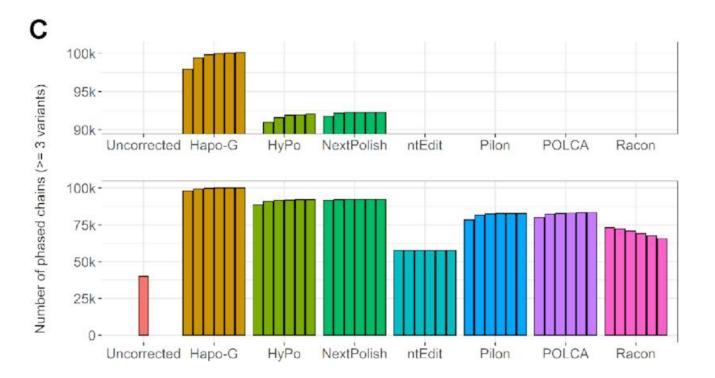

g	a	t	t	c	c	a	g			_		-	t	1
g			U					t	t	C	C	ct		
								_		_				g
	-				C	a	g	t	t	c a		t	t	g
0	a	t	t	С	C	a	g	t	tc	c	C	C	t	g
8	a	t	t	C	C	a	g	t	t	C	С	ct	t	g
g	a	t	t	С	С	a	g	t	t	С	С	ct	t	g
g	a	t	t	C	c	a	g	t	t	C	С	ct	t	g
	a	t	t	c	с	a	8	t	t	c				g
	a	t	t	c	c	a	g	t	t	c	c	ct	t	g
	a	t	t	c	c	a	g	t	t	c	c	ct	t	g
	a	t	t	c	c	a	g	ť	t		c	t	t	g
_	a	t	ť	c	c	a	g	ť	ť	с	c	ct		g
		t	t	c	_	_	<u>8</u>	t	t	c		ct		
	a			-	С	a	8	6	6	C .	С	C L	L.	g
g	a	t	t	C	c	a	1 A		1.00					
						a	g	t	tc	C	C	C	t	g
•••••							••••••			+	+		+	••••
g	a	t	t	C	С	a	g	t	tc	С	С	С	t	g
				1.5										
g	a	t	t	c	c	a	g	t	tc	С	с	C	t	g
2	a	t	t	c	с	a	8	t	tc	с	с	с	t	8
	a	t	t	c	c	a	g	t	tc		c	c	t	g
	a	t	t	c	c	a	g	ť	t	c	c	c	c	1
	a	t	ť	c	c	a	g	ť	tc		c	c	t	g
	_	t												
<u> </u>	a		t	С	С	a	g	t	tc		С	С	t	g
	a	t	t	C	c	a	g	t	t	cg	C	C	t	g
đ.	a	t	t											
g	a	t	t	С	с	a	g	t	tc	С	С	С	t	g
	1		-		1					1		1	1	

L

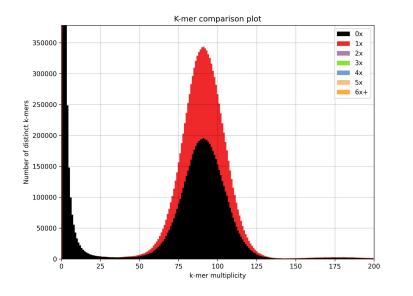

Genome assembly difficulties

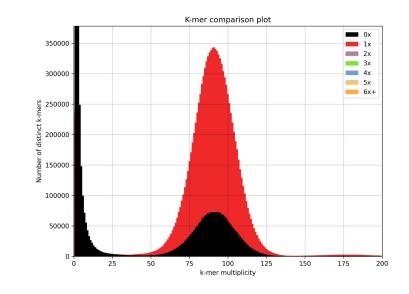

=> Heterozygous regions lead to fragmented assemblies and cause allelic duplication (over-estimate the size of the haploid genome)


Similar results on homozygous genome (Arabidopsis thaliana)


Hapo-G is the faster among mapping-based methods

Hapo-G generates less haplotype switches than other tools




Hapo-G generates less haplotype switches than other tools

Each kmer of your readset should also be found in your genome assembly
 => Generate a KAT plot

=>

Errors in your consensus can affect gene prediction
 => Launch BUSCO and look at the "Complete", "Fragmented" and "Missing" scores

```
***** Results: *****
C:57.3%[S:57.3%,D:0.0%],F:12.2%,M:30.5%,n:255
146 Complete BUSCOs (C)
146 Complete and single-copy BUSCOs (S)
0 Complete and duplicated BUSCOs (D)
31 Fragmented BUSCOs (F)
78 Missing BUSCOs (M)
255 Total BUSCO groups searched
```

```
***** Results: *****
```

```
C:75.3%[S:74.9%,D:0.4%],F:3.5%,M:21.2%,n:255
192 Complete BUSCOS (C)
191 Complete and single-copy BUSCOS (S)
1 Complete and duplicated BUSCOS (D)
9 Fragmented BUSCOS (F)
54 Missing BUSCOS (M)
255 Total BUSCO groups searched
```

Running a polishing in Galaxy

- Upload your genome assembly (fasta file) and data (usually two fastq files) or have access to it locally.
- Select the polishing tool (Hapo-G or Pilon) in the software package list (on the left).
- Select your dataset in the list
- Set parameters (usually first run with default)
- Hit the "execute" button

Running Hapo-G in usegalaxy.fr

Hapo-G genome polishing (Galaxy Version 1.3.3+galaxy0)	☆ ◄
Genome assembly to polish	
D D 10: Polished assembly using Pilon	- 1
(genome)	
Type of data used for polishing	
Short (paired) reads	
	c
Short (paired) reads	
Short (paired) reads collection	
Long reads	
Pre-aligned reads (BAM)	
(pe1)	-
Second set of short reads	
	^ ± 🖻
2: SRR15597408_r1.fastq	
7	
	3
(pe2)	7
Include unpolished sequences in final output	
No	
(-u)	
(10)	

Conclusions

Polishing is needed, at least for genome assemblies based on error-prone reads

Check your assemblies (gene content, kat plot, merqury QV, ...)

Heterozygous regions are challenging, as most algorithms generate switches between haplotypes

Hands-on with S. cerevisiae (~12 Mb, 16 chromosomes)

Your missions is to perform, compare and give information about different assemblies :

- map your reads to the unpolished assembly using bwa-mem
- use different polishing tools (Hapo-G, Pilon),
- compare assemblies (Merqury QV, Busco)

- Processing will be performed using : <u>https://usegalaxy.fr/</u>
- The data files are located at : Libraries / EBAII A&A 2022 / Polishing
- You can access the flye assembly generated using ONT data (file flye_assembly.fasta)

Let's go!