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Isolate genome assembly

- Sequencing strategy ?
- long read only 
- Mix ?

- Assembly strategy ?
- short + long
- long + short 

https://github.com/rrwick/Trycycler/wiki/Guide-to-bacterial-genome-assembly

https://github.com/rrwick/Trycycler/wiki/Guide-to-bacterial-genome-assembly


Short read or low depth hybrid

Short read only OR hybrid with low depth (< 
100x ) long reads 

• Illumina only & hybrid :
– short-read first assembly with SPAdes
– use long read to scaffold
– filter low depth reads
– handle plasmids
– circularize & choose “start”

• Long read only 
– Long read only with Miniasm (assembly)
– Polishing with Racoon

Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017.

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005595


Trycycler : Long read only or hybrid
High depth hybrid (>100x) with or without short reads

Wick RR, Judd LM, Cerdeira LT, Hawkey J, Méric G, Vezina B, Wyres KL, Holt KE. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biology. 2021. 
doi:10.1186/s13059-021-02483-z.

SPAdes
Unicycler
Flye
Raven
Minasm
…

https://doi.org/10.1186/s13059-021-02483-z
https://doi.org/10.1186/s13059-021-02483-z


Trycycler : detailed view (1)



Trycycler : detailed view (2)



Hybracter

• Automated snakemake 
workflow

• “As easy as Unycycler”
• Assembly + Plasmid

George Bouras, Ghais Houtak, Ryan R Wick, Vijini Mallawaarachchi, Michael J. Roach, Bhavya 
Papudeshi, Louise M Judd, Anna E Sheppard, Robert A Edwards, Sarah Vreugde - Hybracter: 
Enabling Scalable, Automated, Complete and Accurate Bacterial Genome Assemblies. (2024) 
Microbial Genomics doi: https://doi.org/10.1099/mgen.0.001244.

https://doi.org/10.1099/mgen.0.001244
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History



Isolate genomics 
versus 

metagenomics



Introduction



Introduction



A review of methods and databases for metagenomic 
classification and assembly (2019)



• Complexity of the 
ecosystem

• Completeness of 
databases

• Sequencing depth
• Computational and 

storage resources 
required

Challenges



• To detect a species based on marker genes ?

• To cover most of the genome to determine what part of the pangenome is covered by a sample?

• To perform an assembly from a metagenome ?

Depth coverage  

Breadth coverage

Short sequencing reads (22 are aligned on the reference)

Reference (could 
be a genome, a 
gene, a contig)

75b

500b

Coverage requirement (1/5)



• To detect a species based on marker genes ?

• To cover most of the genome to determine what part of the pangenome is covered by a sample ?

• To perform an assembly from a metagenome ?

Coverage requirement

Depth coverage = (75X22)/500 ≈ 3,3X (can be calculated before 
alignment)

Breadth coverage 

Short sequencing reads (22 are aligned on the reference)

Reference (could 
be a genome, a 
gene, a contig)

75b

500b

Coverage requirement (2/5)



• To detect a species based on marker genes ?

• To cover most of the genome to determine what part of the pangenome is covered by a sample ?

• To perform an assembly from a metagenome ?

Depth coverage ≈ 3,3X

Breadth coverage ≈ ?

Short sequencing reads (22 are aligned on the reference)

Reference (could 
be a genome, a 
gene, a contig)

75b

500b

Coverage requirement (3/5)



• To detect a species based on marker genes ?

• To cover most of the genome to determine what part of the pangenome is covered by a sample ?

• To perform an assembly from a metagenome ?

Lander and Waterman (1988)

Depth coverage ≈ 
3,3X

Breadth coverage ≈ 95%

Short sequencing reads (22 are aligned on the reference)

Reference (could 
be a genome, a 
gene, a contig)

75b

500b

0.95

3.3

Coverage requirement (4/5)



• To detect a species based on marker genes ? <0.1-3X

• To cover most of the genome to determine what part of the pangenome is covered by a sample ? 3X

• To perform an assembly from a metagenome ? 5-10X

Lander and Waterman (1988)

Depth coverage ≈ 
3.3X

Breadth coverage ≈ 95%

Short sequencing reads (22 are aligned on the reference)

Reference (could 
be a genome, a 
gene, a contig)

75b

500b

0.95

3.3

Coverage requirement (5/5)



• Complexity of the 
ecosystem

• Completeness of 
databases

• Sequencing depth
• Computational 

resources required

Challenges



• Complexity of the 
ecosystem

• Completeness of 
databases

• Sequencing depth
• Computational 

resources required

Challenges



Taxonomic classification caveats:
• Databanks
• K-mer choice (sensitivity / 

specificity)
• Allow a “fast” overview of 

your data
– Contaminants?
– Host reads?
– unknown rate

2 kinds of approaches:
- kmer-based
- gene markers based

approachs tools galaxy comments

kmer-based Kraken2 ✔ the reference, fast and efficient

Bracken ✔ Bayesian Reestimation of 
Abundance from Kraken

Centrifuge ✔ indexing scheme based on the 
Burrows-Wheeler transform 
(BWT) and the 
Ferragina-Manzini (FM) index, 
optimized specifically for the 
metagenomic classification 
problem

Kaiju ✔ protein level

Sylph X K-mer sketching. Work locally. 
Both fast and accurate

gene markers based

MetaPhlAn4 X
version 2 :✔

MetaPhlAn relies on unique 
clade-specific marker genes 
identified from ~17,000 
reference genomes (~13,500 
bacterial and archaeal, ~3,500 
viral, and ~110 eukaryotic)

Meteor2 X Based on environment specific 
gene catalogs (especially 
human gut).

Taxonomic classification 
and quantification



• A very popular taxonomic 
affiliation tool. 

• Very fast
Method:

1. Chop genomes into k-mers and 
link to a taxonomic id.

2. Chop reads into k-mers and 
search for exact hits in database

3. Search for highest-weighted 
root-to-leaf paths and assign the 
taxonomic id of the lowest node 
to read

Kraken2



Braken

• Kraken classifies reads using the LCA approach
– Some reads are shared

• Braken distributes abondancies from Kraken results using a 
Bayesian statistical method



Centrifuge

• Similar to Kraken but few differences : 
– Memory efficient (within species compression)
– Allow multiple assignments per read
– K-mer extension : a bit more accurate
– Not as fast as Kraken



• An equivalent of 
Kraken, but with 
some particularities:
– Database of 

proteic sequences
– Supposed to be 

more sensitive
– Translate reads in 

all six reading 
frames, split at 
stop codons

Kaiju
Kaiju databanks



Sylph

• Based on k-mer sketching to approximate ANI (Average 
Nucleotide Identify) calculation against reference genomes

• Easy to use
• Easy to install
• Works on a laptop
• Pretty accurate
• https://github.com/bluenote-1577/sylph 
• Still on BioRiv : 

https://www.biorxiv.org/content/10.1101/2023.11.20.567879v2 

https://github.com/bluenote-1577/sylph
https://www.biorxiv.org/content/10.1101/2023.11.20.567879v2


MetaPhlAn4

• Relies on :
– 5.1M unique clade-specific marker genes identified 
– from ~1M microbial genomes 

• ~236,600 references
• 771,500 metagenomic assembled genomes

– spanning 26,970 species-level genome bins
– 4,992 of them taxonomically unidentified at the species level

• associated to HUMAnN 3.0 for functional profiling (high coverage)
• StrainPhlAn for strain-level analyses (high coverage)
• PanPhlAn for pangenome-level analyses (high coverage)



Meteor2

• Developed by MetaGenoPolis (INRAE)
• https://github.com/metagenopolis/meteor 
• Relies on available gene catalogs :

• human gut 10.4M of genes clustered in 1 990 species pangenome
• human oral 8.4M of genes clustered in 853 species pangenome
• cat gut 1.3M of genes clustered in 344 species pangenome
• human skin 2.9M of genes clustered in 392 species pangenome
• brown rat gut 5.9M of genes clustered in 1627 species pangenome
• chicken gut 5.9M of genes clustered in 13.6M 2420 species pangenome
• pig gut 9.3M of genes clustered in 1523 species pangenome

• Highly accurate quantification (unpublished)
• Able to remove host contaminations



Statistical analyses



Host contaminations
• dilution effect (costly)
• ethical consideration 

(human)

External contaminants QC:
• negative controls
• mapping on suspected 

contaminant
• taxonomic affiliation

⚠ Contamination issues (1/2)

tool galaxy comments

Kneaddata X remove rRNA and host 
(human and mouse) reads

SortmeRNA ✔ remove rRNA reads, slow…



• well-to-well contaminations :
– Overestimation of diversity
– Can mute the main signal

– CroCoDeEL 
• Find contamination pattern in gut microbiome 

study
• Goulet et al. (JOBIM 2024, in preparation)
• https://github.com/metagenopolis/CroCoDeEL

– SCRuB :
• Works across multiple ecosystems
• Can decontaminate samples
• Need blank controls 

⚠ Contamination issues  (2/2)

https://github.com/metagenopolis/CroCoDeEL


Metagenomics assembly



Metagenomics assembly
Objectives

• Reconstruct genes and organisms from complex mixtures

• Dealing with the ecosystem’s heterogeneity, multiple 
genomes at varying levels of abundance

• Limiting the reconstruction of chimeras



General assembly strategies



Metagenome assembly specificity

• Coverage :
– Widely different abundance levels of various species in a 

microbial sample result in a highly nonuniform read coverage 
across different genome

– Coverage of most species in a typical metagenomic data set is 
much lower.

• Interspecies repeats :Various species within a microbial 
community often share highly conserved genomic regions  in

• Mixture : many bacterial species in a microbial sample are 
represented by strain mixtures, that is, multiple related 
strains with varying abundances 



Usefull to reduce differences in coverage between samples

Pros of co-assembly Cons of co-assembly

More data Higher computational overhead

Better/longer assemblies Risk of shattering the assembly

Access to lower abundant organisms Risk of increased contamination

Individual assembly  or co-assembly ?



Co-assembly is reasonable if:

• Same samples

• Same sampling event

• Longitudinal sampling of the same site

• Related samples

If it is not the case, individual assembly should be prefered. In 
this case, an extra step of de-replication should be used

Co-assembly



Software

Metagenomic assembly software :
• Generic tool with a meta option : 

– SPAdes and metaSPAdes [Bankevich et al. 2012]

• Tools requiring less memory : 
– MEGAHIT [Li et al. 2015]

• Long read / Hybrid assemblies use different algorithms and 
strategies and are still a research question
– metaFLYE, SPAdes …



Benchmark

[Zhang et al. 2023]



Some results

Our results showed that the short-read assemblers 
generated the lowest contig contiguity and [Near 
Complete MAGs]. MEGAHIT outperformed IDBA-UD and 
metaSPAdes on the deeply sequenced datasets (>100X), 
and metaSPAdes obtained better results than MEGAHIT 
and IDBA-UD on low-complexity datasets (depth < 
100X).

Hybrid assemblies demonstrated higher (or at least 
similar) [Genome fraction]  and [total assembly length]  
than short- and long-read assemblies, and generated 
higher [High Quality] and [Near Complete] than 
long-read assemblies

 Short-read assemblers were unable to assemble any 
genomes of low-abundance microbes
 



Assessment of assembly quality

MetaQUAST [Mikheenko et al. 2015] to evaluate and compare 
metagenome assemblies
MetaQUAST :
• De novo metagenomic assembly evaluation
• [Optionally] identify reference genomes from the content of 

the assembly
• Reference-based evaluation
• Filtering so-called misassemblies based on read mapping
• Report and visualization



De novo metrics

Evaluation of the assembly based on:

• Number of contigs greater than a given threshold (0, 1kb, …)

• Total / thresholded assembly size

• Largest contig size

• N50 : the sequence length of the shortest contig at 50% of the total assembly 
length, equivalent to a median of contig lengths. (N75 idem, for 75%)

• L50 : the number of contigs at 50% of the total assembly length. (L75 idem, for 
75%)



Reference-based metrics

• Metrics based on the comparison with reference genomes.

• Reference genomes are given by the user or automatically 
constitued by MetaQuast based on comparison of rRNA genes 
content of the assembly and a reference database (Silva).

• Complete genomes are then automatically downloaded.



Binning :
- grouping similar contigs together into 

metagenomic assembled genomes 
(MAG)

- In other words : 
- A MAG represents a microbial genome 

by a group of sequences from genome 
assembly with similar characteristics 

Binning is a good compromise when the 
assembly of whole genomes is not feasible.

Concoct, SemiBin

Binning



MetaBAT [Khang et al. 
2019 ] is a tool for 
reconstructing 
genomes from 
complex microbial 
communities.

Approach



For the evaluation of bins, we will use completeness and contamination estimated by CheckM [Parks et 
al. 2015]
• Use of collocated sets of genes that are ubiquitous and single-copy within a phylogenetic lineage.

– completeness: estimated completeness of genome as determined from the presence/absence of marker 
genes and the expected colocalization of these genes 

– contamination: estimated contamination of genome as determined by the presence of multi-copy marker 
genes and the expected colocalization of these genes

– strain heterogeneity: estimated strain heterogeneity as determined from the number of multi-copy marker 
pairs which exceed a specified amino acid identity threshold (default = 90%). High strain heterogeneity 
suggests the majority of reported contamination is from one or more closely related organisms (i.e. 
potentially the same species), while low strain heterogeneity suggests the majority of contamination is from 
more phylogenetically diverse sources

Threshold depends on the type of assembly.
On metagenomics , usually :  completeness  >90% , < 5% conta, <= 0.5 hetereogenity
Pasolli et al. 2019,Bowers et al., 2017 

Bins evaluation



Anvi’o
https://anvi-server.org/merenlab/infant_
gut_metagenomics_sharon_et_al_2015 

https://anvi-server.org/merenlab/infant_gut_metagenomics_sharon_et_al_2015
https://anvi-server.org/merenlab/infant_gut_metagenomics_sharon_et_al_2015


What’s next ?

Galaxy training on

- Assembly of metagenomics data 
- assembly, QC, QC with reference

- Binning of metagenomics data
- Binning with metabat2

https://training.galaxyproject.org/training-material/topics/microbiome/tutorials/metagenomics-assembly/tutorial.html
https://training.galaxyproject.org/training-material/topics/microbiome/tutorials/metagenomics-binning/tutorial.html
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 Take home message

• Shotgun metagenomics is still an ongoing active 
bioinformatics research field

• Numerous software dedicated to assembly, binning, 
functional annotation are actively developed

• Depending on the ecosystem , one can have different 
approaches :
– mapping on a reference database

– assembly and mapping

• The biological question must determine the analysis



 Need help?

• Any question at help-migale@inrae.fr

• Need tool? https://migale.inrae.fr/ask-tool

• Need more resources? https://migale.inrae.fr/ask-resources

• Need more help than just one question? 
https://migale.inrae.fr/ask-data-analysis

https://migale.inrae.fr/ask-tool
https://migale.inrae.fr/ask-resources
https://migale.inrae.fr/ask-data-analysis
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