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Isolate genome assembly

CHOOSE YOUR OWN ADVENTURE

- Sequencing strategy ? ChobsE o 12 FOSSrE ERpiGs
- longread only BACTERIAL
- Mix ? GENOME ASSEMBLY

BY R. R. WICK

- Assembly strategy ?
- short + long
- long + short

https://qithub.com/rrwick/Trycycler/wiki/Guide-to-bacterial-genome-assembly



https://github.com/rrwick/Trycycler/wiki/Guide-to-bacterial-genome-assembly

Short read or low depth hybrid

Short read only OR hybrid with low depth (<
100x ) long reads

 lllumina only & hybrid :
— short-read first assembly with SPAdes
— use long read to scaffold
— filter low depth reads
— handle plasmids
— circularize & choose “start”
- Long read only
— Long read only with Miniasm (assembly)
— Polishing with Racoon

A. Short read assembly B. Multiplicity
with & SPAdes
contig —d
count 9234 4
N4 ,
&

fcmer size |
optimum

Athorough sweep of k-mer sizes finds an

optimal assembly graph with few dead ends. | | contigs using depth and graph

C. Short read bridging

Unbridged -
=

graph

SPAdes 1+,3+,5+
contig path

Bridged
=> graph

Bridges simplify the graph by resolving

Agreedy algorithm assigns copy numbers to | |repeats between single-copy contigs. Short

read bridges are made from SPAdes paths.

D. Long read bridging
Repeat region in unbridged graph

Consensus read sequence Path finding

Semi-global long read alignment

Trim ends b

Multiple sequence
aignmen &

Consensus G

=

Bridged graph
= o

Bridges made using long reads can resolve larger repeats than short-read bridges. They are made from long reads which align to two or more
single-copy contigs. The bridge sequence comes from the graph path between the two contigs, not the long reads, providing greater accuracy.
When multiple possible bridge paths exist, the best path is chosen based on agreement with the long-read consensus sequence.

E. Bridge application - "\
Yol \
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Bridges are assigned a quality score based on available evidence. They

bridges exist, only the most supported option is used.

are applied to the graph in order of decreasing quality, ensuring that when
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F. Contig merging

sy
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Bridges are merged
with their neighbours.

N

to create long contigs.

G. Polishing

Mismatches and small indels.
2 \ N\

Align short reads A
with m

Polish with =

#®Pilon

The final assembly is polished using the accurate short reads to

reduce the rate of and small insertions/deletions.

Fig1. Key steps in the Unicycler pipeline.
hittps/doi.org/10.1371/journal pcbi.1005595.9001

Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017.



http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005595

Trycycler : Long read only or hybrid
High depth hybrid (>100x) with or without short reads
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Wick RR. Judd LM, Cerdeira LT, Hawkey J. Méric G, Vezina B, Wyres KL, Holt KE. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biology. 2021.
doi:10.1186/s13059-021-02483-z.



https://doi.org/10.1186/s13059-021-02483-z
https://doi.org/10.1186/s13059-021-02483-z

Trvcycler : detailed view (1)

Step 1: Generating assemblies for Trycycler

Assembly A:
contig_1: TCGGCGTGTGGTCTAAAGACTCCGGATGGGGCGTCATGGTTGATTCATCGATAATTTTC
contig_2: AGCGTTGTACG

Assembly B:
contig_1: GACGCCCCCATCCGGAGTCTTTAGGACCACTCGCCGAGAAAAATTATCGATGAATCACCA
contig_2: TTGTAGCGAGCG
contig_3: AAAAAA

Assembly C:
contig_1: GCCGAGAAAAATTATCGATGAATCAACCATGACGCCCCATCCGGAGTCTTTAGACCACCGCC

Assembly D:
contig_1: GATCCGGATGGGGCGTCATGGTTGATTCATCGATAATTTTTCTCGGCGGGTGGTCTAAA
contig_2: AACGCCGCTACAAC

As input, Trycycler takes multiple different assemblies of the same genome. These can be generated
using different assemblers and/or different read subsets.

Step 3: Reconciling contigs

Normalise strands and fix circularisation:

Cluster 1:
A_contig_1: GAAAATTATCGATGAATCAACCATGACGCCCCATCCGGAGTCTTTAGACCACACGCCGA®
B_contig_1: GACGCCCCCATCCGGAGTCTTTAGGACCACTCGCCGAGAAAAATTATCGATGAATCACCAT
C_contig_1: GCCGAGAAAAATTATCGATGAATCAACCATGACGCCCCATCCGGAGTCTTTAGACCAC o=
D_contig_1: TTTAGACCACCCGCCGAGAAAAATTATCGATGAATCAACCATGACGCCCCATCCGGATC'®

Cluster 2:
A_contig_2: CGTACAACGCT'®
B_contig_2: CGCTCGCTACAA®
D_contig_2: AACGCCGCTAC s

Contig sequences are flipped to their reverse complement as necessary to ensure that all sequences
within each cluster are on the same strand. For circular clusters, sequences are aligned to each other
to repair circularisation issues: trimming overlapping bases or adding missing bases.

Step 2: Clustering contigs

Cluster 1:
A_contig_1: TCGGCGTGTGGTCTAAAGACTCCGGATGGGGCGTCATGGTTGATTCATCGATAATTTTC
B_contig_1: GACGCCCCCATCCGGAGTCTTTAGGACCACTCGCCGAGAAAAATTATCGATGAATCACCA
C_contig_1: GCCGAGAAAAATTATCGATGAATCAACCATGACGCCCCATCCGGAGTCTTTAGACCACCGCC
D_contig_1: GATCCGGATGGGGCGTCATGGTTGATTCATCGATAATTTTTCTCGGCGGGTGGTCTAAA

Cluster 2:
A_contig_2: AGCGTTGTACG
B_contig_2: TTGTAGCGAGCG
D_contig_2: AACGCCGCTACAAC

cluster_2_A_contig_2
cluster_2_B_contig_3
cluster_2_D_contig_2
cluster_3_B_contig_2
cluster_1_A_contig_1
rEr.luster 1_C_contig_1

Cluster 3:
B_contig_3: AAAAAA

cluster_1_D_contig_1

cluster_1_B_contig_1

Contigs from all assemblies are clustered based on their k-mer content. Trycycler makes a tree of the
contig relationships to help users distinguish good clusters (which represent completely assembled
replicons) vs bad clusters (which contain spurious, fragmented or incorrectly assembled sequences).

Rotate to consistent start:

Cluster 1:
A_contig_1: ATGAATCAACCATGACGCCCCATCCGGAGTCTTTAGACCACACGCCGAGAAAATTATCG
B_contig_1: ATGAATCACCATGACGCCCCCATCCGGAGTCTTTAGGACCACTCGCCGAGAAAAATTATCG
C_contig_1: ATGAATCAACCATGACGCCCCATCCGGAGTCTTTAGACCACCGCCGAGAAAAATTATCG
D_contig_1: ATGAATCAACCATGACGCCCCATCCGGATCTTTAGACCACCCGCCGAGAAAAATTATCG

Cluster 2:
A_contig_2: GCT
B_contig_2: GCTCGCTACAA
D_contig_2: GCCGCTACA/

For each circular cluster, a starting sequence is identified (using a standard coding sequence, if
possible) and the sequences are rotated to have a consistent start/end. Each cluster’s sequences
are now ready for global multiple sequence alignment.




Trycycler : detailed view (2)

Step 4: Multiple sequence alignment

Cluster 1:
A_contig_1: ATGAATCAACCATGACGCCCC-ATCCGGAGTCTTTAG-ACCACACGCCGAGAAAA-TTATCG
B_contig_1: ATGAATC-ACCATGACGCCCCCATCCGGAGTCTTTAGGACCACTCGCCGAGAAAAATTATCG
C_contig_1: ATGAATCAACCATGACGCCCC-ATCCGGAGTCTTTAG-ACCAC-CGCCGAGAAAAATTATCG
D_contig_1: ATGAATCAACCATGACGCCCC-ATCCGGA-TCTTTAG-ACCACCCGCCGAGAAAAATTATCG

Cluster 2:
A_contig_2: GCTCG-TACAAC
B_contig_2: GCTCGCTACAAC
D_contig_2: GC-CGCTACAAC

Trycycler uses MUSCLE to produce a global multiple sequence alignment for each of the clusters.

Step 6: Generating a consensus

Divide alignment into chunks:
Cluster 1:
A - G - U -
ATGAATC ACCATGACGCCCC. *ATCCGGAL .TCTTTAG. ACCAC XCGCCGAGAAAA, “TTATCG
w7 nc” “_»x G~ N p

\/

Cluster 2:

T =
6CJ CGL “TACAAC

2 R T

The multiple sequence alignment is divided into chunks: “same” chunks where the sequences agree
and “different” chunks where there are multiple possible options.

Step 7: Polishing after Trycycler

Trycycler assembly:

ATGAATCAACCATGACGCCCCATCCGGAGTCTTTAGGACCACTCGCCGAGAAAAATTATCG

Step 5: Partitioning reads

All reads:

CTCGCC AATTAT AGAAAA CTCGCT
GAGAAA TTAGAC AACGCT TCGCTA
AGACCA CGAGAA CCGCCG GACCAC
TCTTTA CACTCG CGGAGT CGCTCG
ATCAAC GCTCGC GAAAAA AACCAT
GTCTTT CCGCTA GTACAA CACCAT
ACCACA TACAAC TGACGC CCCATC
ATGACG CGCCGA CTACAA ACGCCG
TCCGGA AAAAAT GCTACA GGAGTC
CATGAC GCCCCA ACAACG GATGAA

Cluster 1 reads:
CTCGCC AATTAT AGAAAA GAGAAA
TTAGAC AGACCA CGAGAA CCGCCG
GACCAC TCTTTA CACTCG CGGAGT
ATCAAC GAAAAA AACCAT GTCTTT
CACCAT ACCACA TGACGC CCCATC
ATGACG CGCCGA TCCGGA AAAAAT
GGAGTC CATGAC GCCCCA GATGAA

Cluster 2 reads:

CTCGCT AACGCT TCGCTA CGCTCG
GTACAA GCTCGC CCGCTA TACAAC
CTACAA ACGCCG GCTACA ACAACG

Reads are aligned to each contig sequence and assigned to the cluster to which they best align.

Choose best option for each chunk:
Cluster 1:

x Ay PR ” Gy ;T\
ATGAATC ACCATGACGCCCC ATCCGGA TCTTTAG‘G,ACCAC CGCCGAGAAAA‘A ’TTATCG

Cluster 2:

T
6C7 CG, TACAAC

e

For each “different” chunk, the most popular option is chosen (as defined by the minimum total
Hamming distance to other options). When there is a tie, reads are aligned to each alternative to
decide which option to keep (the one with the best total read alignment score).

After long-read polishing:

After short-read polishing: ATGAATCAACCATGACGCCCCCATCCGGAGTCTTTAGGACCACTCGCCGAGAAAATTATCG

ATGAATCAACCATGACGCCCCCATCCGGAGTCTTTAGGACCACTCGCCGAGAAAAATTATCG

GCTCGCTACAAC
Platform-specific long-read polishing (e.g. Medaka for ONT
GCTCGCTAGAAC sequencing or GenomicConsensus for PacBio sequencing)
can reduce the number of small-scale errors in the Trycycler
assembly. If available, short-read polishing (e.g. with Pilon)
GCTCGCTAGAAC can further reduce small-scale errors.



Hybracter
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(Hybracter Hybrid Only)
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Introduction to shotgun
metagenomics
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Isolate genomics

versus

metagenomics

(A)

Biological sample collection

—

Culture-dependent methods
(isolate genomics)

—

Culture-independent methods

(metagenomics)
— Complex microbial
K = == (K e community
SR S
Microbial pure cluture u gg; = gp
(isolated colony on pertri-dishes - Sp: 3 R
grown in selective media)
DNA DNA extraction
extraction
MOOWAT MO SMADDDAD. _MDDADDLPIN
M f ] (X MARDDATD. MDD
MDAV _/DAADTAIRIN ALY IALN
Genomic DNA(isolated) Metagenomic DNA

'

Metagenomic
DNA sequencing

IL ¢
; DNA sequencing l

Raw sequencing reads
Raw sequencing reads

Data processing
IL

‘ Quality control l

Quality control

“4—4—

Clean reads Clean reads




Introduction

16S metagenomics

Metagenomics

Metatranscriptomics

Whois there? 16SrDNA
What can they do? DNA
mRNA
Proteins

What are they doing?

Metaproteomics

Metabolites

Metametabolomics




Introduction

16S metagenomics

Metagenomics

Whois there? 16SrDNA
What can they do? DNA
mRNA
Proteins

What are they doing?

Metatranscriptomics

Metaproteomics

Metabolites

Metametabolomics




A review of methods and databases for metagenomic
classification and assembly (2019)

Table 1. Metataxonomics, metagenomics and meta-transcriptomics strategies

Technique

Advantages and challenges

Main applications

Metataxonomics
using amplicon
sequencing of the
16S or 18S rRNA
gene or ITS

Metagenomics using
random shotgun
sequencing of
DNA or RNA

Meta-transcriptom-
ics using sequenc-
ing of mRNA

+ Fast and cost-effective identification of a wide
variety of bacteria and eukaryotes

— Does not capture gene content other than the
targeted genes

— Amplification bias

— Viruses cannot be captured

+ No amplification bias

+ Detects bacteria, archaea, viruses and
eukaryotes

+ Enables de novo assembly of genomes

— Requires high read count

— Many reads may be from host

— Requires reference genomes for classification

+ Identifies active genes and pathways

— mRNA is unstable

— Multiple purification and amplification steps
can lead to more noise

* Profiling of what is present
* Microbial ecology
*rRNA-based phylogeny

* Profiling of what is present across all domains
* Functional genome analyses

* Phylogeny
* Detection of pathogens

* Transcriptional profiling of what is active




(B)

;_ Processed metagenomic reads j
C h a I Ie nges Assembly-based approach (MAGs) Reference-based approach
L]

b

v

|
1 ]

77

Assembled contigs —
Reference database

 Complexity of the | e |
ecosystem pul el i e

 Completeness of Bl - —
databases Gene predlicton _l,Gene e Refarca  Refernce

* Sequencing depth === B2 l

* Computational and e

Aligned reads

storage resources L e l
required :

Reconstruction of complex Reconstruction of known genomes
and unknown genomes



Coverage requirement (1/5)

* To detect a species based on marker genes ?

* To cover most of the genome to determine what part of the pangenome is covered by a sample?
e To perform an assembly from a metagenome ?

751} Short sequencing reads (22 are aligned on the reference)

— — Depth coverage
\500b
Breadth coverage

Reference (could
be a genome, a
gene, a contig)



Coverage requirement (2/5)

* To detect a species based on marker genes ?

* To cover most of the genome to determine what part of the pangenome is covered by a sample ?
e To perform an assembly from a metagenome ?

75b‘ Short sequencing reads (22 are aligned on the reference)

——— ¢ T——  ——— | Depth coverage = (75X22)/500 = 3,3X (can be calculated before
T = alignment)
\500b
Breadth coverage

Reference (could
be a genome, a
gene, a contig)

Coverage requirement



Coverage requirement (3/5)

* To detect a species based on marker genes ?

* To cover most of the genome to determine what part of the pangenome is covered by a sample ?
e To perform an assembly from a metagenome ?

751} Short sequencing reads (22 are aligned on the reference)

E— — Depth coverage = 3,3X
\ 500b
Breadth coverage = ?

Reference (could
be a genome, a
gene, a contig)



Coverage requirement (4/5)

* To detect a species based on marker genes ?

* To cover most of the genome to determine what part of the pangenome is covered by a sample ?
e To perform an assembly from a metagenome ?

breadth = -1.000 * e”(-0.883 * coverage) + 1.000
R2 = 0.99998
75b‘ Short sequencing reads (22 are aligned on the reference) &=, eewwv v~~~ v~

038
E— Depth coverage =
A 3,3X 06

500b 04
Breadth coverage = 95%

Reference (could
be a genome, a
gene, a contig) 00,

breadth

0.2

2 33 4 6 8 10
coverage

Lander and Waterman (1988)



Coverage requirement (5/5)

* To detect a species based on marker genes ? <0.1-3X

* To cover most of the genome to determine what part of the pangenome is covered by a sample ? 3X
* To perform an assembly from a metagenome ? 5-10X

breadth = -1.000 * e”(-0.883 * coverage) + 1.000
R2 = 0.99998
75b‘ Short sequencing reads (22 are aligned on the reference) &=, eewwv v~~~ v~

038
E— Depth coverage =
A 3.3X 06

500b 04
Breadth coverage = 95%

Reference (could
be a genome, a
gene, a contig) 00,

breadth

0.2

2 33 4 6 8 10
coverage

Lander and Waterman (1988)



Challenges

 Complexity of the
ecosystem

 Completeness of
databases

* Sequencing depth

 Computational
resources required

B)

Assembly-based approach (MAGs)

;_ Processed metagenomic reads

"

Reference-based approach

v

Assembled contigs

l Contig binning

Taxonomic
profiling

Reconstruction of complex
and unknown genomes
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L
Reference database

|

Reference Reference
genome 1 genome 2

l Mapping

=

Aligned reads

Taxonomic
quantification

Reconstruction of known genomes




Challenges

 Complexity of the
ecosystem

 Completeness of
databases

* Sequencing depth

 Computational
resources required
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Reconstruction of complex
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Reconstruction of known genomes




Taxonomic classification
and quantification

Taxonomic classification caveats:

e Databanks

* K-mer choice (sensitivity /
specificity)

e Allow a “fast” overview of

your data
— Contaminants?
— Host reads?
— unknown rate

2 kinds of approaches:

- kmer-based
- gene markers based

S

kmer-based

gene markers based

Kraken2

Bracken

Centrifuge

Kaiju

Sylph

MetaPhlAn4

Meteor2

X
version 2 :v/

the reference, fast and efficient

Bayesian Reestimation of
Abundance from Kraken

indexing scheme based on the
Burrows-Wheeler transform
(BWT) and the
Ferragina-Manzini (FM) index,
optimized specifically for the
metagenomic classification
problem

protein level

K-mer sketching. Work locally.
Both fast and accurate

MetaPhlAn relies on unique
clade-specific marker genes
identified from ~17,000
reference genomes (~13,500
bacterial and archaeal, ~3,500
viral, and ~110 eukaryotic)

Based on environment specific
gene catalogs (especially
human gut).



Kraken?2

* Avery popular taxonomic Query sequence
affiliation tool. —_eY——
* Very fast —_—— }
Method: B K-merto LCAmapping
.. Chop genomes into k-mers and ‘(pre'°°m"“ted"atab“e’ Sl
link to a taxonomic id.
2. Chop reads into k-mers and E"n
search for exact hits in database and ancestors
5. Search for highest-weighted Taemainyies
root-to-leaf paths and assign the S et

taxonomic id of the lowest node
to read



Braken

- Kraken classifies reads using the LCA approach
— Some reads are shared

- Braken distributes abondancies from Kraken results using a
Bayesian statistical method

_ M tubercuI05|s_ Kraken
— M tuberculosis complex-‘ g

M bOVIS_ BDracKken

—
True number

Mycobacterium ———————M avium complex Mavium_
==




Centrifuge

- Similar to Kraken but few differences :
— Memory efficient (within species compression)
— Allow multiple assignments per read
— K-mer extension : a bit more accurate
— Not as fast as Kraken



Kalju
. Kaiju databanks
* An equivalent of
Kraken, but with
Completely assembled and annotated reference genomes of

SO m e pa r‘t i C u I a riti eS . refseq Archaea, Bacteria, and viruses from the NCBI RefSeq 63M 43 (55)
L]

RAM in GB

Option Description Sequences’ .
(makedb)

database.
-_ Data ba Se Of Representative set of genomes from the proGenomes
progenomes ) 41.8M 30 (35)
. database and viruses from the NCBI RefSeq database.
p rOte I C Seq u e n Ces viruses Only viruses from the NCBI RefSeq database. 0.37M 0.3 (0.3)
-_ S u p pOSEd to be plasmids Plasmid sequences from the NCBI RefSeq database. 2M 1.3 (2)
m O re Se n Sltlve fungi Fungi sequences from the NCBI RefSeq database. 3.2M 3(4)
. — Subset of NCBI BLAST nr database containing all proteins J96M 165 (175
-_ Tra nS I ate rea d S | n belonging to Archaea, Bacteria and Viruses. {179)
H H Like option -s nr and additionally include proteins from fungi
a ” SIX rea d I ng nr_euk and microbial eukaryotes, see taxon listin bin/kaiju- 213M 117 (194)
H taxonlistEuk.tsv .
frames, split at
Protein sequences from all Mar databases. Subsets can be co o
Sto p COd ons L chosen by mar_ref , mar_db , or mar_mag . ' es)

rvdb Protein sequences from RVDB-prot 4.6M 4 (149)



Sylph

Based on k-mer sketching to approximate ANI (Average
Nucleotide Identify) calculation against reference genomes

Easy to use

Easy to install

Works on a laptop

Pretty accurate

https://github.com/bluenote-1577/sylph

Still on BioRiv :
https://www.biorxiv.org/content/10.1101/2023.11.20.567879v?2



https://github.com/bluenote-1577/sylph
https://www.biorxiv.org/content/10.1101/2023.11.20.567879v2

MetaPhlAn4

Relies on :
— 5.1M unique clade-specific marker genes identified

— from ~1M microbial genomes
 ~236,600 references
771,500 metagenomic assembled genomes

— spanning 26,970 species-level genome bins
— 4,992 of them taxonomically unidentified at the species level

associated to HUMANN 3.0 for functional profiling (high coverage)
StrainPhlAn for strain-level analyses (high coverage)
PanPhlAn for pangenome-level analyses (high coverage)



Meteor2

Developed by MetaGenoPolis (INRAE)
https://github.com/metagenopolis/meteor

Relles on available gene catalogs :
human gut 10.4M of genes clustered in 1 990 species pangenome
* human oral 8.4M of genes clustered in 853 species pangenome
e cat gut 1.3M of genes clustered in 344 species pangenome

* human skin 2.9M of genes clustered in 392 species pangenome
* brown rat gut 5.9M of genes clustered in 1627 species pangenome
* chicken gut 5.9M of genes clustered in 13.6M 2420 species pangenome
pig gut 9.3M of genes clustered in 1523 species pangenome
nghly accurate quantification (unpublished)

Able to remove host contaminations



Species
B Strain A
M Strain B
M Strain C
B Strain D

Nl

Taxonomic and

functional profiling

Kraken2
Centrifuge
HUMANN
MetaPhlAn
MEGAN
Kaiju

Statistical analyses

species count (k)

reads (M)

Post quality
control

Sequencingeffort
Phyloseq

Taxon abundance

| =
e . 0
‘. -
.. ....:::..‘.
.‘ , :

DNA concentration

Contamination
analysis

SourceTracker
Decontam

Lt &

Lt 5

l ‘Ji

- 1 B

LT

Statistical
analysis

EdgeR
DESeq2
limma
LEfSe
MaAsLin
ANCOM-BC



I. Contamination issues (1/2)

Host contaminations

*dilution effect (costly) ool |galaxy Jcomments

. . . .
ethlcal COﬂSIderatlon Kneaddata X remove rRNA and host
(human) (human and mouse) reads

SortmeRNA v remove rRNA reads, slow...

External contaminants QC:
* negative controls
* mapping on suspected
contaminant
e taxonomic affiliation

Samfpllng) extraction
e.g feces and
preparation

— external
contamination




I. Contamination issues (2/2)

*  From samples processed at the same time

* well-to-well contaminations :
— Overestimation of diversity
— Can mute the main signal

—> well-to-well contamination

— CroCoDeEL

* Find contamination pattern in gut microbiome

study

* Goulet et al. (JOBIM 2024, in preparation)

* https://github.com/metagenopolis/CroCoDeEL
— SCRuB:

* Works across multiple ecosystems

* Can decontaminate samples

* Need blank controls



https://github.com/metagenopolis/CroCoDeEL

Metagenomics assembly



Metagenomics assembly
Objectives

e Reconstruct genes and organisms from complex mixtures

* Dealing with the ecosystem’s heterogeneity, multiple
genomes at varying levels of abundance

* Limiting the reconstruction of chimeras



General assembly strategies

(a) Overlap, Layout, Consensus assembly (b) De Bruijn graph assembly
(i) Find overlaps (i) Make kmers
mm Readl: TTCTAAGT Read2: CGATTCTA  Read3: GATTGTAA
[ Readl ] [ Read?2 ] [ Read3 ] Kmers: TTC Kmers: CGA Kmers: GAT

TCT GAT ATT

v CTA ATT
TAA TTC
ARG TCT GTA
AGT CTA TAA

(i) Layout reads
(ii) Build graph

w

(iiii) Build consensus
CGATTCTA

carncran S-E @B D@

CGATTCTAAGT CGATTCTAAGT

(iii) Walk graph and output contigs




Metagenome assembly specificity

Coverage :

— Widely different abundance levels of various species in a
microbial sample result in a highly nonuniform read coverage
across different genome

— Coverage of most species in a typical metagenomic data set is
much lower.

Interspecies repeats :Various species within a microbial
community often share highly conserved genomic regions in
Mixture : many bacterial species in a microbial sample are
represented by strain mixtures, that is, multiple related
strains with varying abundances



Individual assembly or co-assembly ?

Usefull to reduce differences in coverage between samples

Pros of co-assembly Cons of co-assembly

More data Higher computational overhead
Better/longer assemblies Risk of shattering the assembly

Access to lower abundant organisms Risk of increased contamination



Co-assembly

Co-assembly is reasonable if:

 Same samples

* Same sampling event

* Longitudinal sampling of the same site
* Related samples

If it is not the case, individual assembly should be prefered. In
this case, an extra step of de-replication should be used



Software

Metagenomic assembly software :
* Generic tool with a meta option :

— SPAdes and metaSPAdes [Bankevich et al. 2012]
* Tools requiring less memory :

— MEGAHIT [Li et al. 2015]

* Long read / Hybrid assemblies use different algorithms and
strategies and are still a research question

— metaFLYE, SPAdes ...



Workflow

Benchmark

Results

FASTQ

Datasets: short-, linked-
and long-reads

A\ simulation
1. CAMI,
2. CAMly,
3. CAMly;
4. CAMI,

. Mock communities
5. ATCC20
6.ZYMO

() Human gut microbiomes
7.51
8.52
9.P1
10. P2

Assemblers

Short-read assemblers
1. MEGAHIT
2. IDBA-UD
3. metaSPAdes

Linked-read assemblers
4. cloudSPAdes
5. Athena

Long-read assemblers
6. Canu
7. metaFlye
8. Lathe
9. NECAT (ONT)
10. MECAT2 (PacBio)
11, wtdbg2
12. Shasta

Hybrid assemblers
13. DBG20OLC
14. metaFlye-subassemblies
15. hybridSPAdes
16. Unicycler
17. MaSuRCA
18. OPERA-LG
19. OPERA-MS
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Some results

Our results showed that the short-read assemblers
generated the lowest contig contiguity and [Near
Complete MAGs]. MEGAHIT outperformed IDBA-UD and
metaSPAdes on the deeply sequenced datasets (>100X),
and metaSPAdes obtained better results than MEGAHIT
and Iﬁ)BA UD on low-complexity datasets (depth <
100X

Hybrid assemblies demonstrated higher (or at least
similar) [Genome fraction] and [total assembly length]
than short- and long-read assemblies, and generated
higher [High Quality] and [Near Complete] than
long-read assemblies

Short-read assemblers were unable to assemble any
genomes of low-abundance microbes
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Assessment of assembly quality

MetaQUAST [Mikheenko et al. 2015] to evaluate and compare
metagenome assemblies

MetaQUAST :
* De novo metagenomic assembly evaluation

* [Optionally] identify reference genomes from the content of
the assembly

* Reference-based evaluation
* Filtering so-called misassemblies based on read mapping
* Report and visualization



De novo metrics

Evaluation of the assembly based on:

* Number of contigs greater than a given threshold (0, 1kb, ...)
* Total / thresholded assembly size

* Largest contig size

 N50: the sequence length of the shortest contig at 50% of the total assembly
length, equivalent to a median of contig lengths. (N75 idem, for 75%)

e L50:the number of contigs at 50% of the total assembly length. (L75 idem, for
75%)



Reference-based metrics

* Metrics based on the comparison with reference genomes.

* Reference genomes are given by the user or automatically
constitued by MetaQuast based on comparison of rRNA genes
content of the assembly and a reference database (Silva).

 Complete genomes are then automatically downloaded.



Binning

Binning :
- grouping similar contigs together into

metagenomic assembled genomes
(MAG)

-  In other words :

- A MAG represents a microbial genome
by a group of sequences from genome
assembly with similar characteristics

Binning is a good compromise when the
assembly of whole genomes is not feasible.

Concoct, SemiBin
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Approach

MetaBAT [Khang et al.
2019 ] is a tool for
reconstructing
genomes from
complex microbial
communities.

Preprocessing

% Samp|es from multiple sites or times
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Forming genome bins iteratively



Bins evaluation

For the evaluation of bins, we will use completeness and contamination estimated by CheckM [Parks et
al. 2015]

* Use of collocated sets of genes that are ubiquitous and single-copy within a phylogenetic lineage.

— completeness: estimated completeness of genome as determined from the presence/absence of marker
genes and the expected colocalization of these genes

— contamination: estimated contamination of genome as determined by the presence of multi-copy marker
genes and the expected colocalization of these genes

—  strain heterogeneity: estimated strain heterogeneity as determined from the number of multi-copy marker
pairs which exceed a specified amino acid identity threshold (default = 90%). High strain heterogeneity
suggests the majority of reported contamination is from one or more closely related organisms (i.e.

potentially the same species), while low strain heterogeneity suggests the majority of contamination is from
more phylogenetically diverse sources

Threshold depends on the type of assembly.

On metagenomics, usually : completeness >90% , < 5% conta, <= 0.5 hetereogenity
Pasolli et al. 2019,Bowers et al., 2017



https://anvi-server.org/merenlab/infant

gut_metagenomics_sharon_et_al 2015

Ll


https://anvi-server.org/merenlab/infant_gut_metagenomics_sharon_et_al_2015
https://anvi-server.org/merenlab/infant_gut_metagenomics_sharon_et_al_2015

What’s next ?

Galaxy training on

- Assembly of metagenomics data
- assembly, QC, QC with reference

- Binning of metagenomics data
- Binning with metabat2



https://training.galaxyproject.org/training-material/topics/microbiome/tutorials/metagenomics-assembly/tutorial.html
https://training.galaxyproject.org/training-material/topics/microbiome/tutorials/metagenomics-binning/tutorial.html
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Take home message

Shotgun metagenomics is still an ongoing active
bioinformatics research field

Numerous software dedicated to assembly, binning,
functional annotation are actively developed
Depending on the ecosystem , one can have different
approaches :

— mapping on a reference database

— assembly and mapping

The biological question must determine the analysis



Need help?

Any question at help-migale@inrae.fr
Need tool? https://migale.inrae.fr/ask-tool
Need more resources? https://migale.inrae.fr/ask-resources

Need more help than just one question?
https://migale.inrae.fr/ask-data-analysis



https://migale.inrae.fr/ask-tool
https://migale.inrae.fr/ask-resources
https://migale.inrae.fr/ask-data-analysis
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