Cruising through an ocean of repeats

J.Kreplak

04/06/2024

Why some genomes are big ?

- Genes content can't always explain genome size
- For some large plants genomes, genes can represent less thant 10 % of the genome total size

I just want to annotate genes !

- Genomes contains a variable amount of repeated elements
- They can be simple repetition of ATGC like satellites...
- Or have the structure of a gene !
- Transposable elements (TE), sometimes called, jumping genes, can be expressed and are in a larger numbers than genes
- To annotate « useful » genes, it would be preferable to remove them

Hide everything !

- **Hard-masking** done at first ease computation of sequence comparison algorithms.
- Boundaries between a TE and a gene is sometimes difficult to establish.
- Fear of missing and hard-mask interesting genes or part of them.
- Mapper and Gene prediction software begun to authorize **soft-masking** to become able to rescue poorly annotated repeats into genes.

Ultimate masking flowchart

K-mer based methods

You'll never sleep on this bed

chrom	start	end
contig_1000	3	1703
contig_1001	0	2822
contig_1002	0	598
contig 1004	798	815
	100	
contig_1008	126	655
contig_1008	815	945
contia 1008	1111	1163
contig_1008	1369	3015

chrom	start	end	name	Score	Strand
contig_100					
0	3	1703	repeat-1		+
contig_100					
1	0	2822	repeat-2		+
contig_100		500			
2	0	598	repeat-3		+
contig_100 4	798	815	repeat-4		+
contig_100 8	126	655	repeat-5	_	+
contig_100 8	815	945	repeat-6		+
contig_100 8	1111	1163	repeat-7	_	+
contig_100 8	1369	3015	repeat-8		+

0-based coordinates

BED6

The arithmetic of coordinates

On galaxy, you can use **Operate on Genomics Intervals** tools and **Bedtools** to play with coordinate.

FASTA ACAGACTGGTATGAAGGTGGCCACAATTCAGAAAGAAAAAAAGAAGAGG

BED

maskfasta

FASTA' ACANNNNGGTANNNNNNGGCCACANNNNNNAAGAANNNNNAGAGC

Dark matter ?

- We masked our genome but we don't know anything about what we masked
- HOWEVER repeats aren't dark matter !
- It could be interesting to have a method that can give you information about what your are masking

Why TE are hard to annotate ?

RepeatMasker

- RepeatMasker use a library to annotate repeats
- A library contains transposable elements found in one or several organisms
- As they are repeats, if you put inside every repeated sequence that you found, your database will have a lot of redundancy
- To fight that, we use consensus.
- Consensus can be classified

number of elements* length occupied percentage of sequence SINES: 26 1259 bp 0.00 % ALUS 0 0 bp 0.00 % MIRS 5 265 bp 0.00 % LINES: 162 10759 bp 0.02 % LINE1 6 321 bp 0.00 % LINE2 39 2395 bp 0.00 % LJNE1 63 4331 bp 0.01 % LTR elements: 15 1958 bp 0.00 % ERVL 2 106 bp 0.00 % ERVL-MaLRS 0 0 bp 0.00 % ERV_classI 1 57 bp 0.01 % hAT-Charlie 3 149 bp 0.00 % TcMar-Tigger 4 227 bp 0.00 % Unclassified: 2 159 bp 0.00 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Linersers: 24210 896783 bp 1.84 %	<pre>file name: rm_in sequences: total length: GC level: bases masked:</pre>	put.fasta 1461 48645285 bp 36.60 % 1173309 bp	(4864528 (2.41 %)	5 bp	excl N/	/X-runs)
elements* occupied of sequence SINEs: 26 1259 bp 0.00 % ALUS 0 0 bp 0.00 % MIRs 5 265 bp 0.00 % LINEs: 162 10759 bp 0.02 % LINEs: 162 10759 bp 0.02 % LINE1 6 321 bp 0.00 % LINE2 39 2395 bp 0.00 % L3/CR1 63 4331 bp 0.01 % LTR elements: 15 1958 bp 0.00 % ERVL 2 106 bp 0.00 % ERVL-MaLRs 0 bp 0.00 % ERV_classI 1 57 bp 0.01 % hAT-Charlie 3 149 bp 0.00 % Unclassified: 2 159 bp 0.00 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 %	r	number of	length		ercentag	ze
SINEs: 26 1259 bp 0.00 % ALUS 0 0 bp 0.00 % MIRs 5 265 bp 0.00 % LINEs: 162 10759 bp 0.02 % LINEs: 162 10759 bp 0.00 % LINEs: 162 10759 bp 0.00 % LINE1 6 321 bp 0.00 % LINE2 39 2395 bp 0.00 % L3/CR1 63 4331 bp 0.01 % LTR elements: 15 1958 bp 0.00 % ERVL 2 106 bp 0.00 % ERVL-MaLRs 0 0 bp 0.00 % ERV_classI 1 57 bp 0.01 % hAT-Charlie 3 149 bp 0.00 % TcMar-Tigger 4 227 bp 0.00 % Unclassified: 2 159 bp 0.01 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low comp	e	elements*	occupied	of	sequend	ce
ALUS 0 0 bp 0.00 % MIRs 5 265 bp 0.00 % LINES: 162 10759 bp 0.02 % LINE1 6 321 bp 0.00 % LINE2 39 2395 bp 0.00 % LJ/CR1 63 4331 bp 0.01 % LTR elements: 15 1958 bp 0.00 % ERVL 2 106 bp 0.00 % ERVL-MaLRs 0 bp 0.00 % ERV_classI 1 57 bp 0.00 % ERV_classII 0 0 bp 0.00 % DNA elements: 35 2475 bp 0.01 % hAT-Charlie 3 149 bp 0.00 % Unclassified: 2 159 bp 0.00 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low complexity: 4140 197642 bp 0.41 %	SINEs:	26	1259	bp	0.00	%
MIRs 5 265 bp 0.00 % LINEs: 162 10759 bp 0.02 % LINE1 6 321 bp 0.00 % LINE2 39 2395 bp 0.00 % LJ/CR1 63 4331 bp 0.01 % LTR elements: 15 1958 bp 0.00 % ERVL 2 106 bp 0.00 % ERVL-MaLRS 0 0 bp 0.00 % ERV_classI 1 57 bp 0.00 % ERV_classII 0 0 bp 0.00 % DNA elements: 35 2475 bp 0.01 % hAT-Charlie 3 149 bp 0.00 % Unclassified: 2 159 bp 0.00 % Unclassified: 2 159 bp 0.00 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low complexity: 4140 197642 bp 0.41 %	ALUs	0	0	bp	0.00	%
LINES: 162 10759 bp 0.02 % LINE1 6 321 bp 0.00 % LINE2 39 2395 bp 0.00 % L3/CR1 63 4331 bp 0.01 % LTR elements: 15 1958 bp 0.00 % ERVL 2 106 bp 0.00 % ERVL-MaLRS 0 0 bp 0.00 % ERV_classI 1 57 bp 0.00 % ERV_classII 0 0 bp 0.00 % DNA elements: 35 2475 bp 0.01 % hAT-Charlie 3 149 bp 0.00 % TcMar-Tigger 4 227 bp 0.00 % Unclassified: 2 159 bp 0.00 % Total interspersed repeats: 16610 bp 0.03 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low complexity: 4140 197642 bp 0.41 %	MIRs	5	265	bp	0.00	%
LINE1 6 321 bp 0.00 % LINE2 39 2395 bp 0.00 % L3/CR1 63 4331 bp 0.01 % LTR elements: 15 1958 bp 0.00 % ERVL 2 106 bp 0.00 % ERVL-MaLRS 0 0 bp 0.00 % ERV_classI 1 57 bp 0.00 % ERV_classII 0 0 bp 0.00 % DNA elements: 35 2475 bp 0.01 % hAT-Charlie 3 149 bp 0.00 % TcMar-Tigger 4 227 bp 0.00 % Unclassified: 2 159 bp 0.00 % Total interspersed repeats: 16610 bp 0.03 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low complexity: 4140 197642 bp 0.41 %	LINEs:	162	10759	bp	0.02	%
LINE2 39 2395 bp 0.00 % L3/CR1 63 4331 bp 0.01 % LTR elements: 15 1958 bp 0.00 % ERVL 2 106 bp 0.00 % ERVL-MaLRS 0 0 bp 0.00 % ERV_classI 1 57 bp 0.00 % ERV_classII 0 0 bp 0.00 % DNA elements: 35 2475 bp 0.01 % hAT-Charlie 3 149 bp 0.00 % TcMar-Tigger 4 227 bp 0.00 % Unclassified: 2 159 bp 0.00 % Total interspersed repeats: 16610 bp 0.03 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low complexity: 4140 197642 bp 0.41 %	LINE1	6	321	bp	0.00	%
L3/CR1 63 4331 bp 0.01 % LTR elements: 15 1958 bp 0.00 % ERVL 2 106 bp 0.00 % ERVL-MaLRS 0 0 bp 0.00 % ERV_classI 1 57 bp 0.00 % ERV_classI 0 0 bp 0.00 % DNA elements: 35 2475 bp 0.01 % hAT-Charlie 3 149 bp 0.00 % Unclassified: 2 159 bp 0.00 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low complexity: 4140 197642 bp 0.41 %	LINE2	39	2395	bp	0.00	%
LTR elements: 15 1958 bp 0.00 % ERVL 2 106 bp 0.00 % ERVL-MaLRS 0 0 bp 0.00 % ERV_classI 1 57 bp 0.00 % ERV_classII 0 0 bp 0.00 % DNA elements: 35 2475 bp 0.01 % hAT-Charlie 3 149 bp 0.00 % TcMar-Tigger 4 227 bp 0.00 % Unclassified: 2 159 bp 0.00 % Total interspersed repeats: 16610 bp 0.03 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low complexity: 4140 197642 bp 0.41 %	L3/CR1	63	4331	bp	0.01	%
ERVL 2 106 bp 0.00 % ERVL-MaLRs 0 0 bp 0.00 % ERV_classI 1 57 bp 0.00 % ERV_classII 0 0 bp 0.00 % DNA elements: 35 2475 bp 0.01 % hAT-Charlie 3 149 bp 0.00 % TcMar-Tigger 4 227 bp 0.00 % Unclassified: 2 159 bp 0.00 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low complexity: 4140 197642 bp 0.41 %	LTR elements:	15	1958	bp	0.00	%
ERVL-MaLRs 0 0 bp 0.00 % ERV_classI 1 57 bp 0.00 % ERV_classII 0 0 bp 0.00 % DNA elements: 35 2475 bp 0.01 % hAT-Charlie 3 149 bp 0.00 % TcMar-Tigger 4 227 bp 0.00 % Unclassified: 2 159 bp 0.00 % Total interspersed repeats: 16610 bp 0.03 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low complexity: 4140 197642 bp 0.41 %	ERVL	2	106	bp	0.00	%
ERV_classI 1 57 bp 0.00 % ERV_classII 0 0 bp 0.00 % DNA elements: 35 2475 bp 0.01 % hAT-Charlie 3 149 bp 0.00 % TcMar-Tigger 4 227 bp 0.00 % Unclassified: 2 159 bp 0.00 % Total interspersed repeats: 16610 bp 0.03 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low complexity: 4140 197642 bp 0.41 %	ERVL-MaLRs	6 s	0	bp	0.00	%
ERV_classII 0 0 bp 0.00 % DNA elements: 35 2475 bp 0.01 % hAT-Charlie 3 149 bp 0.00 % TcMar-Tigger 4 227 bp 0.00 % Unclassified: 2 159 bp 0.00 % Total interspersed repeats: 16610 bp 0.03 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low complexity: 4140 197642 bp 0.41 %	ERV_classI	1	57	bp	0.00	%
DNA elements: 35 2475 bp 0.01 % hAT-Charlie 3 149 bp 0.00 % TcMar-Tigger 4 227 bp 0.00 % Unclassified: 2 159 bp 0.00 % Total interspersed repeats: 16610 bp 0.03 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low complexity: 4140 197642 bp 0.41 %	ERV_classI	I 0	0	bp	0.00	%
hAT-Charlie 3 149 bp 0.00 % TcMar-Tigger 4 227 bp 0.00 % Unclassified: 2 159 bp 0.00 % Total interspersed repeats: 16610 bp 0.03 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low complexity: 4140 197642 bp 0.41 %	DNA elements:	35	2475	bp	0.01	%
TcMar-Tigger 4 227 bp 0.00 % Unclassified: 2 159 bp 0.00 % Total interspersed repeats: 16610 bp 0.03 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low complexity: 4140 197642 bp 0.41 %	hAT-Charlie	e 3	149	bp	0.00	%
Unclassified: 2 159 bp 0.00 % Total interspersed repeats: 16610 bp 0.03 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low complexity: 4140 197642 bp 0.41 %	TcMar-Tigge	er 4	227	bp	0.00	%
Total interspersed repeats: 16610 bp 0.03 % Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low complexity: 4140 197642 bp 0.41 %	Unclassified:	2	159	bp	0.00	%
Small RNA: 412 55575 bp 0.11 % Satellites: 4 724 bp 0.00 % Simple repeats: 24210 896783 bp 1.84 % Low complexity: 4140 197642 bp 0.41 %	Total interspers	ed repeats:	16610	bp	0.03	%
Satellites:4724 bp0.00 %Simple repeats:24210896783 bp1.84 %Low complexity:4140197642 bp0.41 %	Small RNA:	412	55575	bp	0.11	%
Simple repeats:24210896783 bp1.84 %Low complexity:4140197642 bp0.41 %	Satellites:	4	724	bp	0.00	%
Low complexity: 4140 197642 bp 0.41 %	Simple repeats:	24210	896783	bp	1.84	%
	Low complexity:	4140	197642	bp	0.41	%

Human Fungi

- Do you think that 2.41% is a good result?
- Most of our results are simple repeats
- A « bad » results is often due to a bad library
- Fungi, Plants and Mammals don't have the same ratio of TE.
- Plants love LTR
- Mammals prefer DNA elements.

Family Portrait (I)

A

Family Portrait (II)

Classifica	ation	Structure
Order	Superfamily	
Class I (re	etrotransposons)	
LTR	Copia	GAG AP INT RT RH
	Gypsy	GAG AP RT RH INT
	Bel-Pao	GAG AP RT RH INT
	Retrovirus	GAG AP RT RH INT ENV
	ERV	GAG AP RT RH INT ENV
DIRS	DIRS	GAG AP RT RH YR
	Ngaro	GAG AP RT RH YR
	VIPER	GAG AP RT RH YR
PLE	Penelope	RT EN
LINE	R2	- RT EN -
RTE Jocks L1	RTE	APE RT -
	Jockey	- ORFI - APE RT -
	L1	- ORFI - APE RT -
	1	- ORFI - APE RT RH -
SINE	tRNA	
	7SL	
	55	

Class II (D	NA transposons) - Su	bclass 1
TIR	Tc1-Mariner	Tase*
	hAT	Tase*
	Mutator	Tase*
	Merlin	Tase*
	Transib	
	ρ	Tase Tase
	PiggyBac	Tase Tase
	PIF- Harbinger	Tase* ORF2
	CACTA	Tase - ORF2 ++++
Crypton	Crypton	YR
Class II (D	NA transposons) - Su	bclass 2
Helitron	Helitron	RPA Y2 HEL
Maverick	Maverick	C-INT ATP CYP POLB

a TE library, pleaaase !

Clustering-based methods

Structural-based methods

LTRHarvest, MiteFinder, HelitronScanner...

Cocktail !

- Recent tools mixed clustering and structural based methods.
- Clustering could fail for ancient elements that have accumulated mutations or with a limited number of copies.
- Structural is really good for families with a clear succession of domains like LTR.
- RepeatModeler2, EDTA or Tedenovo are using both.

GFF2 DEPRECATED

Segname	Source	Feature	Start End	Score	Strand	Frame	Group
##gff-version 2 ##date 2022-09-1	6						
##sequence-regio	n rm_input.fasta						
contig_1001	RepeatMasker	similarity	720	74413.7	+		Target "Motif:(CCTC)n" 1 25
							Target "Motif:TE 00000115" 1351
contig_1001	RepeatMasker	similarity	1160	129928.1			1490
contig_1001	RepeatMasker	similarity	2069	2822 1.1	+		Target "Motif:TE_00000192" 1 698
Ŭ							Target "Motif:TE 00000258" 959
contig 1002	RepeatMasker	similarity	3	29219.4	+		1104
5-							Target "Motif:TE 00000279" 1447
contig_1002	RepeatMasker	similarity	397	605 4.3			1656

Deprecated because unable to work properly with nested feature like genes. Still used by a lot of tools...:'(:'(

The arithmetic of coordinates II

Expert annotation

- Repeats shouldn't stay as dark matter
- Genome structure and gene regulations can be heavily impacted by transposable elements
- Annotating properly your repeats can help you to craft meaningful hypothesis on genome structure and gene expression.

A short and recent bibliography

- EarlGrey (https://doi.org/10.1093/molbev/msae068)
 - RepeatModeler2-based
 - An iterative step is implemented to obtain larger and better consensus sequences.
- **PanREPET** (unpublished; <u>poster</u>)
 - Basé sur le pipeline REPET (TEdenovo TEannot)
 - Permet de propager une banque de consensus sur un ensemble de génomes
- DANTE (<u>https://doi.org/10.1101/2024.04.17.589915</u>)
 - o Structural-based approach specialized for plants
 - o Really good to identify full-length elements for LTR

Pisum sativum burst

g

chr1LG6 chr2LG1 chr3LG5 chr4LG4 chr5LG3 chr6LG2 chr7LG7

LINE

chr1LG6	BELLEVILLE I FRANKLIK
chr2LG1	NAME OF TAXABLE AND ADDRESS OF TAXABLE PARTY.
chr3LG5	
chr4LG4	
chr5LG3	
chr6LG2	and a correct of a memory of
chr7LG7	
	TAD

TAR

chr1 chr2	LG6 2LG1		
chr3	BLG5	100000	
chr5	5LG3	In case of	
chre	SLG2	-	
chr7	'LG7		CONTRACTOR OF THE OWNER
%		No. 1	Tekay
	24	6 8	

Ale
CONTRACTOR OF A DECEMPENT
A REAL POINT OF A REAL POINT
THE OTHER PROPERTY AND A DESCRIPTION OF THE PROPERTY AND A DESCRIPTION OF
AND AND AND A COMPANY OF A
marma de la competi
Bianca
THE REAL PROPERTY OF THE PARTY
NAME AND ADDRESS OF TAXABLE PARTY.
CALIFORNIA DE LA CALIFICAL DE LA CALIFORNIA DE LA CALIFICAL DE
COMPANY DE LA COMPANY DE LA COMPANY
Athile
Athlia

Kreplak et al. 2019

Vicia faba PPO

- Hillum color is a classic phenotype in faba
- Polyphenol oxydase (PPO) were a known potential candidate
- Comparison between two genome assemblies (Tiffany and Hedin) was able to show than a MITE insertion among transcription factor binding site of PPO-2 inhibit its expression.

Jayakodi et al. 2023

Hypomethylation of TE can drive genome instability

ΔΟ

