Quality Control, Normalization Experimental Design

Agnès Paquet

SinceIITE 2024 - 10/21/2024

agnes.paquet@syneoshealth.com

Main steps of single cell data processing

From Luecken and Theis, Mol Systems Biology 2019

Main steps of single cell data processing

From Luecken and Theis, Mol Systems Biology 2019

Aim of Quality Control

- We assumed that we have assigned 1 cell for each droplet (barcode)
- scRNAseq data quality can be impacted by technical and random noise

Preprocessing is required to eliminate low quality cells and clean up technical noise

- 1. Filter low quality cells (debris) and empty droplets
- 2. Remove Ambient RNA background
- 3. Detect and remove doublets

www.sc-best-practices.org

Detection of Poor Quality Cells

- Detection of empty droplets

 Number of reads/UMIs per barcode
 Number of genes detected per barcode
- Detection of dying cells

 -% of UMIs in mitochondrial genes
 -% of UMIs in Ribosomal genes
- Filtering thresholds should be adapted to your system
- Use graphs

Filtering of Poor Quality Cells

- Cells with low RNA content may look like poor quality cells compared to other cells:
 - Small cells
 - Immune cells

Several rounds of analysis may be needed at this step to ensure that good quality data is not discarded

Adapted from Aglave, Montagne, Paquet

Ambient RNA correction

- RNA can leak from dying/dead cells
- Contamination of all droplets can occur
- Some tools can effectively remove this background noise

SoupX

Young MD, GigaScience 2020

Warning: the software requires manual tuning.

Doublet detection

Doublets/Multiplets

Doublet

Doublets happen when two/more cells are encapsulated in the same droplet

- Number of doublets increases with cell loading density
- *Homotypic* : 2 or more of the same cell type
 - Harder to detect
 - -Low capture efficiency -> doublet don't always have higher UMIs counts
 - Can be removed if coming from 2 individual samples (SNPs or multiplexed tags)
- Heterotypic : different cell types
 - Most problematic as they can look like an intermediate or transitioning cell type
- Several tools exist to identify doublets: scDblFinder, scds etc...

Sources of Variation

• scRNAseq show strong variability between cells and between genes.

scRNA-seq: 3 levels of normalization

- Normalization = Process of identifying and removing systematic variation not due to real differences between RNA treatments
 - -i.e. differential gene expression.
- Goal: make gene counts comparable within and between cells.
- Gene-specific effects
 - Within cell: GC content, gene length
 - For full-length RNAseq protocols
- Cell specific effects
 - Sequencing depth
 - -Aim: make count distributions comparable
- Sample/Technology-specific effects -> Data Integration
 - –Batch effects (BAD)
 - -Between samples variability (GOOD)

C	Cell-specific effects	Gene-specific effects	Not removed by UMIs
Sequencing depth	1		1
Amplification	1	1	
Capture and RT efficiency	1	1	1
Gene length	8 111	1	4
GC content	1	1	1
mRNA content	1		1

Vallejos CA, 2017

Bulk RNAseq normalization

- RPKM/FPKM/TPM/CPM (Reads/Fragments per kilobase of transcript per million reads of library)
 - Normalize for sequencing depth and transcript length at the same time
 - -> ok if you have full length data
- Global scaling

٠

- Eg. Upper Quartile
- If we have too many zeros, the Size Factor will be off
- Size factors calculation
 - Estimation of library sampling depth
 - DESeq2, edgeR TMM
 - Suppose that 50% of genes are <u>not DE</u>
 - If we have too many zeros, the SF will be off
 - These methods don't work well for single-cell data
 - TPM/CPM can be bias by a small number of genes carrying most of the signal
 - Quantile based methods are limited: large number of zeros -> scale factor = 0

scRNA-seq: 3 levels of normalization

- Gene-specific effects
 - -within cell: GC content, gene length
 - -Not really accounted for in droplet assays
- Cell specific effects
 - -Aim: make count distribution comparable
 - 1. Global scaling
 - 2. Variance stabilization methods
 - 3. Others
- Sample/Technology-specific effects -> Data Integration
 - -Batch effects (BAD)
 - -Between samples variability (GOOD)

Global Scaling

- Hypotheses:
 - -Cell populations are homogenous
 - -The RNA content is similar in all cells
 - -Same scaling factor for all genes
- Choice of the scaling factor
 - -Median UMI counts
 - -10,000 default in Seurat / Cell Ranger
- In practice
 - -Hypotheses are not always verified, but lots of people use this method anyway

Estimation of size factors using deconvolution

- Alternative method to compute the size factors
- Pool cells to reduce the number of zeros
- Estimate the size factors for the pool
- Repeat many time and use deconvolution to estimate each cell size factor
- Implemented in scran packages

Lun, 2016

Variance Stabilization

· Aim: Correct for the strong mean-variance relationship

Ahlmann-Eltze, 2023

Other methods are available...

- Normalization included in the statistical model –SCDE, Monocle, MAST,...
- Normalization based on spike-ins or invariant genes
 BASICs, scNorm
- Fancy modeling
 - Modeling of single cell count data using Neg Binomial
 - ZINB-Wave, single-cell variational inference (scVI) etc
- Normalization for other biological factors
 - Known or unknown variation: Cell cycle, % mitochondrial genes...
 - Regression methods provided to account for know factors (E.g. Seurat)
 - Latent variable models to estimate and remove unknown bias (scLVM)

scRNA-seq: 3 levels of normalization

Gene-specific effects
 _within cell: GC content, gene length

Cell specific effects

-Aim: make count distribution comparable

- 1. Global scaling
- 2. scRNA-seq specific method from scater/scran package
- 3. Others
- Sample/Technology-specific effects -> Data Integration
 - -Batch effects (BAD)
 - -Between samples variability (GOOD)

Why do we need data integration methods?

- In practice: single cell techniques are biased
 - -Variations between samples can be huge
 - donor effect +/- sampling effect
 - -Samples may be processed using different technologies
- Combining datasets and applying cell-level normalization might not be enough to remove this bias

Data integration

For differential analysis:

-> Choose a framework where you can add a batch term in your statistical model (e.g.: MAST, DESEq2, limma,...)

For other analyses:

- We need a method that will "merge" our datasets and remove the unwanted variation
- Non-linear transformation of cells in different proportions
- Aligns datasets from different technologies and species

Conclusion

- Parameters choice will affect the results
 - Number of features selected
 - Number of PCs used in downstream analysis
 - Clustering resolution, etc...
- Analysis will have to be repeated many times
- Normalization method should be selected based on the question of interest
- Variance Stabilization
 - Pearson Residual is best for cell type identification
 - Shifted-Log performs well for everything

References

- Raquel Cuevas-Diaz Duran et al., Data normalization for addressing the challenges in the analysis of single-cell transcriptomic datasets, BMC Genomics 2024
- Heumos et al., Best practices for single-cell analysis across modalities, Nature Reviews Genetics 2023
- Ahlmann-Eltze C and Huber W, Comparison of transformations for single-cell RNA-seq data, Nature Method 2023
- <u>https://www.sc-best-practices.org/</u>
- Advanced Single-Cell Analysis with Bioconductor
- Germain et al, Doublet identification in single-cell sequencing data using scDblFinder, F1000Research 2022
- Dal Molin A, Di Camillo, How to design a single-cell RNA-sequencing experiment: pitfalls, challenges and perspectives, Briefings in Bioinformatics 2019
- Yan Wu and Kun Zhang, Tools for the analysis of high- dimensional single- cell RNA sequencing data, Nat Rev Nephrology
- You Yue et al, Benchmarking UMI-based single-cell RNA-seq preprocessing workflows, Genome Biol 2021
- Vallejos CA, Normalizing single-cell RNAsequencing data: challenges and opportunities, Nat Method 2017
- <u>Scater</u>: Lun A, Pooling across cells to normalize single-cell RNA sequencing data with many zero counts, Genome Biology 2016
- <u>Seurat:</u> Butler et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology (2018).

https://satijalab.org/

Experimental Design

scRNAseq workflow: Bioinformatics Point of View

- What is the question ?
- What technique should we use to generate the data ?
 - Plate based / droplets
 - Full length / 3' counting with UMI
 - UNDERSTAND THE BIAS
- Experimental design
 - Sequencing strategy
 - Number of cells / number of reads
 - Spike-ins (not available for droplets)
 - Samples: Practical considerations
 - Types /number of samples
 - Cell preparation
 - Budget

Experimental design: technical considerations

Dal Molin, 2019

- Large panel of cell isolation technologies and RNAseq protocols available
- Understand protocol bias to help your collaborator select the appropriate method
- Samples: practical considerations
 - What are the major sources of variability?
 - Types / number of samples -> Biological Replicates
 - Cell preparation -> Be careful of confounding
 - Budget

Experimental Design

• We have a question • We have selected a protocol • How many samples? • How many cells? • How many reads/cell? • How do we combine all this to minimize batch effect?

How Many Samples?

• Bulk RNAseq: each library corresponds to a biological sample

- -Biological Replicates
- Technical replicates not recommended
- Single Cell RNAseq: 1 sample/batch = Many Cells (libraries)
 - Each cell comes from the same biological sample
 - Cells are not true replicates: there is a correlation between cells from the same sample
 - Biological replicates are needed for robustness

Estimating the required number of cells / sequencing depth

- Number of cells required
 - Do we have a lot of cells to begin with?
 - -Are we looking for rare cells (probability estimation)?
- WARNING: doublet rate increases with higher cell numbers in droplet assays.
- Sequencing depth
 - -What are the limits of my sequencer? (Novaseq or NextSeq)
 - Minimal number of reads for droplets: 50,000 reads/cells
 - Do the cells have lots of RNA ?
 - Think about sequencing saturation
 - Think about dropouts generation

Several tools are available for power calculation

Example 1: PBMC small cells, some don't have a lot of RNA

Target: 5,000 cells 1 sample NextSeq High 75 (~400millions reads / run)

Example 2: Nasal epithelium brushing cells with lots of RNA

10k

30k

Mean Reads per Cell

20k

40k

50k

20k

Mean Reads per Cell

0

40k

Cell Ranger · czf_brossage_180430 · Target: 5,000 cells 10 X **GENOMICS**' SUMMARY ANALYSIS 2 samples, Estimated Number of Cells Cells 3,733 - Cells NextSeq High 75 Background 10k Mean Reads per Cell Median Genes per Cell 1000 60,821 3,302 coun 5 ~400millions reads / run 2 IWN 100 Sequencing Number of Reads 227,046,761 Valid Barcodes 97.9% 10 100 1000 10k 100k Barcodes Reads Mapped Confidently to Transcriptome 55.2% Estimated Number of Cells 3,733 Reads Mapped Confidently to Exonic Regions 57.4% Fraction Reads in Cells 82.5% Reads Mapped Confidently to Intronic Regions 17.6% Mean Reads per Cell 60,821 Reads Mapped Confidently to Intergenic Regions 4.2% Median Genes per Cell 3,302 Reads Mapped Antisense to Gene 3.7% Total Genes Detected 22,636 Sequencing Saturation 49.1% Median UMI Counts per Cell 12,963 Q30 Bases in Barcode 96.1% Sequencing Saturation Median Genes per Cell ucagenomix-cellranger-hg19-1.3.0 3000 0.8 2500 Cell Sequencing Saturation 2000 0.6 BS Ger 1500 Median 0.4 1000 0.2 500

Number of cells: example of the 1.3 millions cells dataset

Bhaduri A, BiorXiv 2017

Technical design: summary

- Discuss about sequencing depth with the biologist
- If the sequencing is too shallow, the statistical analysis may not be robust
 Worst case scenario: you can't even find the biologist favorite gene
- More cells is not always better
- Sequencing depth should be the same for all samples

Sample Preparation

• We have a question • We have selected a protocol How many samples? • How many cells? How many reads/cell? • How do we combine all this to minimize batch effect?

What about experimental confounding factors?

- scRNA-seq are often performed 1 sample at a time
 - -Dissociation is difficult, sample are collected 1 by 1,...
 - -Technological aspects vary too (seq depth, number of cells captured)
- Several studies report evidence for strong batch effects

Ambient RNA / Dissociation induced genes

35

Aim for a Balanced Study Design

- Balanced design may be hard to achieve for practical reasons
- Multiplexing :
 - -Natural SNPs (demuxlet)
 - -Expression of Xist/ChrY
 - -Cell-hashing

Example: Mouse Cell Atlases

ARTICLE

https://doi.org/10.1038/s41586-018-0590-4

Single-cell transcriptomics of 20 mouse organs creates a *Tabula Muris*

The Tabula Muris Consortium*

Marin Truchi, IPMC

Cell

Resource

Mapping the Mouse Cell Atlas by Microwell-Seq

Graphical Abstract

Authors

Xiaoping Han, Renying Wang, Yincong Zhou, ..., Guo-Cheng Yuan, Ming Chen, Guoji Guo

Correspondence

xhan@zju.edu.cn (X.H.), ggj@zju.edu.cn (G.G.)

In Brief

Development of Microwell-seq allows construction of a mouse cell atlas at the single-cell level with a high-throughput and low-cost platform.

Mouse Atlas Summary

Microwell seq

- > 400,000 cells
- >50 mouse tissues and cultures
- > 800 cell types identified based on 60,000 good QC cells

- Over 100,000 cells
- 20 organs
- Double design:
 - Shallow profiling using droplets
 - FACS + full length profiling

MCA Lung data (6940 cells)

Han et Al, Cell (2018)

MCA Lung data (6940 cells)

Gene expression and cell type markers available on : <u>http://bis.zju.edu.cn/MCA/gallery.html?tissue=Lung</u>

Single-cell transcriptomics of 20 mouse organs creates a *Tabula Muris*

The Tabula Muris Consortium*

SMART-SEQ + FACS

Lung	Trachea
1620 cells	1392 cells

10X Microfluidic droplet

Lung	Trachea	
5449 cells	11269 cells	

TM Lung 10X data (5449 cells)

TM Lung 10X data (5449 cells)

43

TM Lung 10X data (5449 cells)

44

TM Lung SMART-Seq data (1620 cells)

TM Lung SMART-Seq data (1620 cells)

TM Lung SMART-Seq data (1620 cells)

Mouse Atlases Sequencing depth comparison

48

Use Existing Data to Select a Protocol

- Our collaborator is thinking about setting up a small clinical trial to study a skin disease
- She is asking for advice regarding sample collection and preparation for scRNASeq
- Clinical sample :
 - Samples collected and processed 1 by 1 if using fresh tissue
 - Some cell types are known to be degraded when frozen
- Using GEO, we reanalized 2 studies with healthy skin tissue –Fresh samples: GSE132802
 - -Frozen samples: GSE147424

Difference in data quality is clear

Cell Type Identification

- All cell types are present in both datasets (but proportions vary)
- Differential analysis fresh vs frozen did not show a lot of DE genes
- Frozen tissue can be a solution here. A higher sequencing depth could be recommended

Conclusion

- Single Cell RNAseq data are very sensitive
- Sample/Batch effects can be very strong
- Hard problem to correct in downstream analysis
 - Batch/conditions are confounded
- New protocols based on frozen/FFPE tissue + multiplexing are available to reduce the confounding factors

References

- Hyeongseon Jeon et al., Statistical Power Analysis for Designing Bulk, Single-Cell, and Spatial Transcriptomics
 Experiments: Review, Tutorial, and Perspectives. Biomolecules 2023
- Svennson V et al, Power analysis of single-cell RNA-sequencing experiments, Nature Methods 2017
- Baran-Gale et al, Experimental design for single-cell RNA sequencing, Brief Functional Genomics 2017
- Tung PY et al, Batch effects and the effective design of single-cell gene expression studies, Science Reports 2017
- Arguel MJ et al, A cost effective 5 selective single cell transcriptome profiling approach with improved UMI design, Nuc Acid Res, 2017
- Chen at al, UMI-count modeling and differential expression analysis for single-cell RNA sequencing, Genome Biol 2018
- Grün D et al, Validation of noise models for single-cell transcriptomics, Nat Method 2014
- Ziegenhain C et al, Comparative Analysis of Single-Cell RNA Sequencing Methods, Molecular Cell 2017
- · Hicks SC, Missing data and technical variability in single-cell RNA-sequencing experiments; Biostatistics 2017
- Kang HM et al, Multiplexed droplet single-cell RNA-sequencing using natural genetic variation, Nature Biotech 2017
- Stoeckius M, Cell 'hashing' with barcoded antibodies enables multiplexing and doublet detection for single cell genomics, BiorXiv 2017
- Van den Brick S,Single cell sequencing reveals dissociation-induced gene expression in tissue subpopulations, Nat Method 2017

Thank you

The Problem of Confounding Biological Variation and Batch Effects

Hicks, Biostatistics 2017