Quality Control, Normalization Experimental Design Qua<mark>lity Control, Normalizatio</mark>
E<mark>xperimental Design
Agnès Paquet
SincellTE 2024 - 10/21/2024</mark> **Quality Control, Normalization
Experimental Design
Agnès Paquet
SincellTE 2024 - 10/21/2024
_{agnes.paquet@syneoshealth.com}**

agnes.paquet@syneoshealth.com

Main steps of single cell data processing

From Luecken and Theis, Mol Systems Biology 2019

Main steps of single cell data processing

From Luecken and Theis, Mol Systems Biology 2019

Aim of Quality Control

- We assumed that we have assigned 1 cell for each droplet (barcode)
- Aim of Quality Control

 We assumed that we have assigned 1

 scRNAseq data quality can be

impacted by technical and random

noise impacted by technical and random noise

Preprocessing is required to eliminate low quality cells and clean up technical noise

- 1. Filter low quality cells (debris) and empty droplets
- 2. Remove Ambient RNA background
- 3. Detect and remove doublets

Detection of Poor Quality Cells

- Detection of empty droplets
- Number of reads/UMIs per barcode – Number of reads/UMIs per barcode – Number of genes detected per barcode
- Detection of dying cells – % of UMIs in mitochondrial genes
	- % of UMIs in Ribosomal genes
- Filtering thresholds should be adapted to your system – Number of reads/UMIs per barcode

– Number of genes detected per barcode

• Detection of dying cells

– % of UMIs in mitochondrial genes

– % of UMIs in Ribosomal genes

• Filtering thresholds should be adapted

to your
-

Filtering of Poor Quality Cells

- Cells with low RNA content may look like poor quality cells compared to other cells:
	- –Small cells
	- Immune cells

Several rounds of analysis may be needed at this step to ensure that good quality data is not discarded

Adapted from Aglave, Montagne, Paquet

Ambient RNA correction

- RNA can leak from dying/dead cells
- Contamination of all droplets can occur
- Some tools can effectively remove this background noise

SoupX

Warning: the software requires manual tuning.

Doublets/Multiplets

Doublets happen when two/more cells are encapsulated in the same droplet

- Number of doublets increases with cell loading density
- \cdot *Homotypic* : 2 or more of the same cell type
	- Harder to detect
	- Low capture efficiency -> doublet don't always have higher UMIs counts
	- Can be removed if coming from 2 individual samples (SNPs or multiplexed tags)
-
- **Heterotypic** : different cell types
— Most problematic as they can look like an intermediate or transitioning cell type
-

Sources of Variation

scRNA-seq: 3 levels of normalization

- Normalization = Process of identifying and removing systematic variation not due to real differences between RNA treatments – i.e. differential gene expression.
	-
- Goal: make gene counts comparable within and between cells.
-
- Gene-specific effects –Within cell: GC content, gene length
	- For full-length RNAseq protocols
- Cell specific effects
	- Sequencing depth
	- –Aim: make count distributions comparable
- Sample/Technology-specific effects -> Data Integration
	- –Batch effects (BAD)
	- –Between samples variability (GOOD)

Bulk RNAseq normalization

- **Bulk RNAseq normalization**
• RPKM/FPKM/TPM/CPM (Reads/Fragments per kilobase of transcript per million reads of
• Normalize for sequencing depth and transcript length at the same time library) orary)

- Normalize for sequencing depth and transcript length at the same

-> ok if you have full length data

-> ok if you have full length data

-

-

Eg. Upper Quartile

- If we have too many zeros, the Size Factor wil
	- Normalize for sequencing depth and transcript length at the same time
	- -> ok if you have full length data
- Global scaling
	- Eg. Upper Quartile
	- If we have too many zeros, the Size Factor will be off
- Size factors calculation
	- Estimation of library sampling depth
	-
	- Suppose that 50% of genes are not DE
	- If we have too many zeros, the SF will be off
- These methods don't work well for single-cell data
	- TPM/CPM can be bias by a small number of genes carrying most of the signal
	- Quantile based methods are limited: large number of zeros -> scale factor = 0

scRNA-seq: 3 levels of normalization

-
- Gene-specific effects –within cell: GC content, gene length
	- –Not really accounted for in droplet assays
- Cell specific effects
	- –Aim: make count distribution comparable
		- 1. Global scaling
		- 2. Variance stabilization methods
		- 3. Others
- Sample/Technology-specific effects -> Data Integration
	- –Batch effects (BAD)
	- –Between samples variability (GOOD)

Global Scaling

- Hypotheses:
	- –Cell populations are homogenous
	- –The RNA content is similar in all cells
	- –Same scaling factor for all genes
- Choice of the scaling factor
	- –Median UMI counts
	- –10,000 default in Seurat / Cell Ranger
- In practice
	- –Hypotheses are not always verified, but lots of people use this method anyway

Estimation of size factors using deconvolution

- Alternative method to compute the size factors
- Pool cells to reduce the number of zeros
- Estimate the size factors for the pool
- Repeat many time and use deconvolution to estimate each cell size factor
- Implemented in scran packages

Variance Stabilization

Ahlmann-Eltze, 2023

Other methods are available…

- Normalization included in the statistical model –SCDE, Monocle, MAST,…
- Normalization based on spike-ins or invariant genes –BASICs, scNorm - Normalization included in the statistical motomorphical motomorphic included in the statistical motomorphic - SCDE, Monocle, MAST,...
- SCDE, Monocle, MAST,...
- BASICs, scNorm
- Fancy modeling
- Modeling of single cell Mormalization included in the statistical model

-SCDE, Monocle, MAST,...

Mormalization based on spike-ins or invariant genes

-BASICs, scNorm

- Tancy modeling

- Modeling of single-cell count data using Neg Binomial

- • Normalization based on spike-ins or invariant genes
• EASICs, scNorm
• Fancy modeling
• Modeling of single cell count data using Neg Binomial
• ZINB-Wave, single-cell variational inference (scVI) etc
• Normalization for
- -
	-
- -
- BASICs, scNorm

 Modeling of single cell count data using Neg Binomial

 ZINB-Wave, single-cell variational inference (scVI) etc

Mormalization for other biological factors

 Known or unknown variation: Cell cycle, %
	-

scRNA-seq: 3 levels of normalization **EXAM-Seq: 3 levels of normalization**

The-specific effects

Solition cell: GC content, gene length

Il specific effects

Il specific effects

In: make count distribution comparable

1. Global scaling

2. scRNA-seq specifi

• Gene-specific effects –within cell: GC content, gene length

• Cell specific effects

–Aim: make count distribution comparable

- 1. Global scaling
-
- 3. Others

• Sample/Technology-specific effects -> Data Integration

- –Batch effects (BAD)
- –Between samples variability (GOOD)

Why do we need data integration methods? **hy do we need data integration methods?**
• practice: single cell techniques are biased
-Variations between samples can be huge
• donor effect +/- sampling effect
–Samples may be processed using different technologies

- In practice: single cell techniques are biased
	- –Variations between samples can be huge
		-
	-
- Combining datasets and applying cell-level normalization might not be enough to remove this bias might not be

Data integration

For differential analysis:

-> Choose a framework where you can add a batch term in your statistical model (e.g.: MAST, DESEq2, limma,…)

For other analyses:

- We need a method that will "merge" our datasets and remove the unwanted variation
- Non-linear transformation of cells in different proportions
- Aligns datasets from different technologies and species

Conclusion

- -
	-
	-
-
- on the question of interest
- Variance Stabilization
	-
	-

References

- Raquel Cuevas-Diaz Duran et al., Data normalization for addressing the challenges in the analysis of single-cell transcriptomic datasets, BMC Genomics 2024 • Raquel Cuevas-Diaz Duran et al., Data normalization for addressing the challenges in the analysis of single-cell

transcriptomic datasets, BMC Genomics 2024

• Heumos et al., Best practices for single-cell analysis acros
-
- Ahlmann-Eltze C and Huber W, Comparison of transformations for single-cell RNA-seq data, Nature Method 2023
- https://www.sc-best-practices.org/
- Advanced Single-Cell Analysis with Bioconductor
- Germain et al, Doublet identification in single-cell sequencing data using scDblFinder, F1000Research 2022
- Dal Molin A, Di Camillo, How to design a single-cell RNA-sequencing experiment: pitfalls, challenges and perspectives, Briefings in Bioinformatics 2019 **Feferences**
• Raquel Cuevas-Diaz Duran et al., Data normalization for addressing the challenges in the analysis of single-cell
• Heumos et al., Best practices for single-cell analysis across modalities, Nature Reviews Gen
-
- You Yue et al, Benchmarking UMI-based single-cell RNA-seq preprocessing workflows, Genome Biol 2021
-
- Raquel Cuevas-Diaz Duran et al., Data normalization for addressing the challenges in the analysis of single-cell
transcriptomic datasets, BMC Genomics 2024
• Humos et al., Best practices for single-cell analysis across m • Raquel Cuevas-Diaz Duran et al., Data normalization for addressing the challenges in the analysis of single-cell

thenscriptonic datasets, BMC Genomics 2024

• Hunnos et al., Best practices for single-cell analysis acros 2016
- Seurat: Butler et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology (2018).

https://satijalab.org/

Experimental Design

scRNAseq workflow: Bioinformatics Point of View • What is the question ?

-
- **scRNAseq workflow: Bioinformatics Po**

 What is the question ?

 What technique should we use to generate the

data ?

 Plate based / droplets

 Full length / 3' counting with LIML data ? RNAseq workflow: Bioinform

What is the question ?

What technique should we use to generate the

data ?

- Plate based / droplets

- Full length / 3' counting with UMI

> UNDERSTAND THE BIAS RNAseq workflow: Bioinform

What is the question ?

What technique should we use to generate the

data ?

- Plate based / droplets

- Full length / 3' counting with UMI

> UNDERSTAND THE BIAS • What is the question ?
• What technique should we use to generate
data ?
• Plate based / droplets
• Full length / 3' counting with UMI
• UNDERSTAND THE BIAS
• Experimental design
• Sequencing strategy
• Number of cells / What is the question ?

What technique should we use to generate the

data ?

- Plate based / droplets

- Full length / 3' counting with UMI

> UNDERSTAND THE BIAS

Experimental design

- Sequencing strategy

. Number of c at is the question ?

at technique should we use to generate the

a ?

Plate based / droplets

Full length / 3' counting with UMI

UNDERSTAND THE BIAS

erimental design

Sequencing strategy

............................... at is the question ?

at technique should we use to generate the

a?

Plate based / droplets

Full length / 3' counting with UMI

UNDERSTAND THE BIAS

erimental design

Sequencing strategy

................................ What technique should we use to generate the

data ?

- Plate based / droplets

- Full length / 3' counting with UMI

> UNDERSTAND THE BIAS

Experimental design

- Sequencing strategy

- Number of cells / number of reads
 a Plate based / droplets

Full length / 3' counting with UMI

UNDERSTAND THE BIAS

erimental design

Sequencing strategy

• Number of cells / number of reads

• Spike-ins (not available for droplets)

Samples: Practical co
	-
	-
	- UNDERSTAND THE BIAS
- - -
		-
- a Pate based / droplets

Full length / 3' counting with UMI

UNDERSTAND THE BIAS

erimental design

Sequencing strategy

 Number of cells / number of reads

 Spike-ins (not available for droplets)

Samples: Practical con Plate based / droplets

Full length / 3' counting with UMI

UNDERSTAND THE BIAS

erimental design

Sequencing strategy

• Number of cells / number of reads

• Spike-ins (not available for droplets)

Samples: Practical cons
	-
	-
	-

Experimental design: technical considerations

Dal Molin, 2019

- available
- Dal Molin, 2019

panel of cell isolation technologies and RNAseq protocol

ble

stand protocol bias to help your collaborator select the

priate method

les: practical considerations

 What are the major sources of variab panel of cell isolation technologies and RN
ble
rstand protocol bias to help your collaborate
priate method
les: practical considerations
- What are the major sources of variability?
- Types / number of samples -> Biologic
- -
	-
	-
	-

Experimental Design

- We have a question • We have selected a protocol • How many samples? • How many cells? • How many reads/cell? • How do we combine all this to
	- minimize batch effect?

How Many Samples?

• Bulk RNAseq: each library corresponds to a biological sample

- –Biological Replicates
- Technical replicates not recommended
- Single Cell RNAseq: 1 sample/batch = Many Cells (libraries)
	- Each cell comes from the same biological sample
	- Cells are not true replicates: there is a correlation between cells from the same sample
	- Biological replicates are needed for robustness

Hyeongseon Jeon, 2023

Estimating the required number of cells / sequencing depth

- Number of cells required
	- Do we have a lot of cells to begin with?
	- –Are we looking for rare cells (probability estimation)?
- WARNING: doublet rate increases with higher cell numbers in droplet assays. –Mumber of cells required

– Do we have a lot of cells to begin with?

– Are we looking for rare cells (probability estimation)?

MARNING: doublet rate increases with higher cell

umbers in droplet assays.

Sequencing dep - Are we looking for rare cells (probability estimation)?

WARNING: doublet rate increases with higher cell

umbers in droplet assays.

Sequencing depth

- What are the limits of my sequencer? (Novaseq or NextSeq)

- Minim
- Sequencing depth
	-
	-
	-
	-
	-

- I nink about sequencing saturation
- Think about dropouts generation
Several tools are available for power calculation

Example 1: PBMC small cells, some don't have a lot of RNA

Target: 5,000 cells

Fstimated Number of Cells 1 sample Example 1: PBMC

small cells, some don't have a lot of RN

Target: 5,000 cells

1 sample 6,388

NextSeq High 75

(~400millions reads / run) 61,047

Sequencing (~400millions reads / run)

Example 2: Nasal epithelium brushing cells with lots of RNA

Example 2: Nasal epithelium brushing

cells with lots of RNA

Target: 5,000 cells

2 samples,

NextSeq High 75

~400millions reads / run Target: 5,000 cells 10^X Cell Ranger czf_brossage_180430 · 2 samples, Cells \leftarrow Cells Background $\overline{\omega}$ $\bar{2}$ 1000 3,302 UMI counts $\,$ 5 $\,$ ~400millions reads / run \overline{z} $\overline{100}$ \circledcirc 227,046,761 100 1000 10_k n_{R} n Valid Barcodes 97.9% Barcodes 55.2% Reads Mapped Confidently to Transcriptome **Estimated Number of Cells** 3,733 Reads Mapped Confidently to Exonic Regions 57.4% Fraction Reads in Cells 82.5% Reads Mapped Confidently to Intronic Regions 17.6% Mean Reads per Cell 60,821 Reads Mapped Confidently to Intergenic Regions 4.2% Median Genes per Cell 3,302 Reads Mapped Antisense to Gene 3.7% **Total Genes Detected** 22,636 49.1% **Sequencing Saturation** Median UMI Counts per Cell 12,963 Q30 Bases in Barcode 96.1% **Sequencing Saturation** 命 Median Genes per Cell ucagenomix-cellranger-hg19-1.3.0 3000 0.8 2500 Ce Sequencing Saturation $\frac{5}{9}$ 2000 0.6 Genes 1500 M edian (0.4 0.2 500 $10k$ $20k$ $30k$ 40k $50k$ Ω $20k$ $40k$

Mean Reads per Cell

Number of cells: example of the 1.3millions cells dataset

Technical design: summary

- Discuss about sequencing depth with the biologist
- If the sequencing is too shallow, the statistical analysis may not be robust –Worst case scenario: you can't even find the biologist favorite gene
- More cells is not always better
- Sequencing depth should be the same for all samples

Sample Preparation

• We have a question • We have selected a protocol • How many samples? • How many cells? • How many reads/cell? • How do we combine all this to minimize batch effect?

What about experimental confounding factors? What about experimental confounding factors'

• scRNA-seq are often performed 1 sample at a time

– Dissociation is difficult, sample are collected 1 by 1,...

– Technological aspects vary too (seq depth, number of cells c What about experimental confounding factors?

• scRNA-seq are often performed 1 sample at a time

– Dissociation is difficult, sample are collected 1 by 1,...

– Technological aspects vary too (seq depth, number of cells c

- - –Dissociation is difficult, sample are collected 1 by 1,…
	-
-

Ambient RNA / Dissociation induced genes

Aim for a Balanced Study Design

- Balanced design may be hard to achieve for practical reasons
- Multiplexing :
	- –Natural SNPs (demuxlet)
	- –Expression of Xist/ChrY
	- –Cell-hashing

Example: Mouse Cell Atlases

ARTICLE

https://doi.org/10.1038/s41586-018-0590-4

Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris

The Tabula Muris Consortium*

Marin Truchi, IPMC

Cell

Resource

Mapping the Mouse Cell Atlas by Microwell-Seg

Graphical Abstract

Authors

Xiaoping Han, Renying Wang, Yincong Zhou, ..., Guo-Cheng Yuan, Ming Chen, Guoii Guo

Correspondence

xhan@zju.edu.cn (X.H.), ggj@zju.edu.cn (G.G.)

In Brief

Development of Microwell-seq allows construction of a mouse cell atlas at the single-cell level with a high-throughput and low-cost platform.

Mouse Atlas Summary

Microwell seq

- > 400,000 cells
- >50 mouse tissues and cultures
- > 800 cell types identified based on 60,000 good QC cells

- Over 100,000 cells
- 20 organs
- Double design:
	- –Shallow profiling using droplets
	- FACS + full length profiling

MCA Lung data (6940 cells) Han et Al, Cell (2018)

MCA Lung data (6940 cells)

http://bis.zju.edu.cn/MCA/gallery.html?tissue=Lung

Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris

The Tabula Muris Consortium*

SMART-SEQ + FACS

10X Microfluidic droplet

TM Lung 10X data (**5449 cells)**

TM Lung 10X data (**5449 cells)**

43

TM Lung 10X data (5449 cells)

44

TM Lung SMART-Seq data (1620 cells)

47

Mouse Atlases Sequencing depth comparison

48

- Use Existing Data to Select a Protocol
• Our collaborator is thinking about setting up a small clinical trial to study a
• She is asking for advice regarding sample collection and preparation for skin disease
- **Use Existing Data to Select a Protocol**
• Our collaborator is thinking about setting up a small clinical trial to study a
• She is asking for advice regarding sample collection and preparation for
• scRNASeq scRNASeq **Use Existing Data to Select a Protocol**
• Our collaborator is thinking about setting up a small clinical trial to study a
• She is asking for advice regarding sample collection and preparation for
• SCRNASeq
• Clinical sa Pur collaborator is thinking about setting up a small clinical trial to study a
kin disease
She is asking for advice regarding sample collection and preparation for
cRNASeq
Clinical sample :
- Samples collected and process • She is asking for advice regarding sample collection and preparation for
• ScRNASeq
• Clinical sample :
• Samples collected and processed 1 by 1 if using fresh tissue
• Some cell types are known to be degraded when froz
- -
	-
- She is asking for advice regarding sample com

CRNASeq

Clinical sample :

 Samples collected and processed 1 by 1 if usin

 Some cell types are known to be degraded whe

Using GEO, we reanalized 2 studies with hea

-Fre cRNASeq
- Samples collected and processed 1 by 1 if u
- Some cell types are known to be degraded v
Jsing GEO, we reanalized 2 studies with h
-Fresh samples: GSE132802
-Frozen samples: GSE147424
	-

-
-
-

Conclusion

- Single Cell RNAseq data are very sensitive
- Sample/Batch effects can be very strong
- Hard problem to correct in downstream analysis
	- Batch/conditions are confounded
- New protocols based on frozen/FFPE tissue + multiplexing are available Single Cell RNAseq data are very sensitive
Sample/Batch effects can be very strong
Hard problem to correct in downstream anal
- Batch/conditions are confounded
New protocols based on frozen/FFPE tissue
to reduce the confou

References

- References
• Hyeongseon Jeon et al., Statistical Power Analysis for Designing Bulk, Single-Cell, and Spatial Transcriptomics
• Experiments: Review, Tutorial, and Perspectives. Biomolecules 2023
• Svennson V et al, Experime Experiments: Review, Tutorial, and Perspectives. Biomolecules 2023
Experiments: Review, Tutorial, and Perspectives. Biomolecules 2023
- Svennson V et al, Power analysis of single-cell RNA-sequencing experiments, Nature Met
-
- Baran-Gale et al, Experimental design for single-cell RNA sequencing, Brief Functional Genomics 2017
- Tung PY et al, Batch effects and the effective design of single-cell gene expression studies, Science Reports 2017
- **Feferences**
• Hyeongseon Jeon et al., Statistical Power Analysis for Designing Bulk, Single-Cell, and Spatial Transcriptomics
• Experiments: Review, Tutorial, and Perspectives. Biomolecules 2023
• Seennson V et al, Power Res, 2017 **Fernance at al, Statistical Power Analysis for Designing Bulk, Single-Cell, and Spatial Transcriptomics
• Experiments: Review, Tutorial, and Perspectives. Biomolecules 2023
• Svennson V et al, Power analysis of single-cel Feferences**
• Hyeongseon Jeon et al., Statistical Power Analysis for Designing Bulk, Single-Cell, and Spatial Transcriptomics
• Experiments: Review, Tutorial, and Perspectives. Biomolecules 2023
• Svennson V et al, Power **FLETENCES**
• Hyeongseon Jeon et al., Statistical Power Analysis for Designing Bulk, Single-Cell, and Spatial Transcriptomics
• Experiments: Review, Tutorial, and Perspectives. Biomolecules 2023
• Seran-Gale et al., Experi
-
-
-
- Hicks SC, Missing data and technical variability in single-cell RNA-sequencing experiments; Biostatistics 2017
- Kang HM et al, Multiplexed droplet single-cell RNA-sequencing using natural genetic variation, Nature Biotech 2017
- Experiments: Review, Tutorial, and Perspectives. Biomolecules
Svennson V et al, Power analysis of single-cell RNA-sequencing
Baran-Gale et al, Experimental design for single-cell RNA seque
Tung PY et al, Batch effects and
- Hyeongseon Jeon et al., Statistical Power Analysis for Designing Bulk, Single-Cell, and Spatial Transcriptomics
Experiments: Review, Tutorial, and Perspectives. Biomolecules 2023
• Stensnon V et al., Experimental design • Svennson V et al, Power analysis of single-cell RNA-sequencing experiments, Nature Methods 2017
• Baran-Gale et al, Experimental design for single-cell RNA sequencing, Brief Functional Genomics 2017
• Turg PY et al, Batc 2017

Thank you

The Problem of Confounding Biological Variation and Batch Effects

Hicks, Biostatistics 2017