

LONG-READ SEQUENCING

Claude THERMES

PLATEFORME DE SÉQUENÇAGE I2BC INSTITUT DE BIOLOGIE INTÉGRATIVE DE LA CELLULE GIF-SUR-YVETTE

13^{ème} ÉCOLE DE BIOINFORMATIQUE EBAII - 18/11/2024

LONG-READ SEQUENCING

Long-reads: ≈1 kb to ≈100 kb (ultra-long reads: > 100 kb)

- Genome assembly
- Haplotype phasing
- Splicing isoforms

----- LONG-READS VERSUS SHORT-READS : GENOME ASSEMBLY

Assembly of DNA fragments with repeated sequences

Several contigs \rightarrow incomplete assembly, underestimation of repeats

Long reads assembly

----- LONG-READS VERSUS SHORT-READS : HAPLOTYPES

Long-reads allow phasing of maternal and paternal haplotypes

– LONG-READS VERSUS SHORT-READS : SPLICING ISOFORMS

Long-reads allow identification of multiple splicing events

along each mRNA molecule

The 3rd generation winning technologies

Pacific Biosciences

Oxford Nanopore

MinION – PromethION

Single molecules Up to 1 Mbp long

Single molecules Up to 200 kbp long

3rd generation technologies

Pacific Biosciences

Oxford Nanopore

PacBio : Single Molecule Real Time (SMRT) sequencing

PacBio DNA-seq library

PACIFIC BIOSCIENCES

Phospholinked nucleotides are introduced into the ZMW chamber

PACIFIC BIOSCIENCES

Eid, J., et al. Science (2009)

PACIFIC BIOSCIENCES

CIRCULAR CONSENSUS SEQUENCES (CCS): HIFI READS

CIRCULAR CONSENSUS SEQUENCES (CCS): HIFI READS

CIRCULAR CONSENSUS SEQUENCES (CCS): HIFI READS

Subreads (passes)

白

Next Generation Sequencing

SEQUENCING PROCESS

SEQUENCING

- BASIC CONCEPTS

MinION : 1 flow cell \rightarrow 512 pores

BASE CALLING

"One-reader" pore has difficulty to read homopolymers

Homopolymers difficult to sequence

"TWO READERS" NANOPORE

Sereika et al. Nature Methods, 2022

 $Q = -10 \log_{10} P$

Long homopolymers are better "seen" by the pore and can be decoded with higher accuracy

Mean accuracy (R10) > 99% Q>20 <1% errors

LENGTH OF NANOPORE READS

"Ultra long" reads (lab.loman.net, March 2017)

READ ACCURACY

Nanopore website 2024

READ ACCURACY

Nanopore website 2024

SEQUENCING SYSTEMS

WHOLE GENOME SEQUENCING - HOW PACBIO COMPARES					
	PacBio HiFi	Illumina	Oxford Nanopore		
Average read length ¹	15–20 kb	2 x 150 bp	10-100 kb		
Average read accuracy ¹	99.95% (Q33)	99.92% (Q31)	99.26% (Q21)		
Coverage ²	0.5 error/kb	0.8 error/kb	8 error/kb		
Variant calling: SNVs	\checkmark	~	~		
Variant calling: indels	\checkmark	\checkmark	×		
Variant calling: SVs	\checkmark	×	\checkmark		
Genome assembly: contiguity	\checkmark	×	\checkmark		
Genome assembly: accuracy	\checkmark	\checkmark	×		
Epigenetics: 5mC	\checkmark	×	\checkmark		
1. PacBio HiFi: HG003 18 kb library, Sequel II system chemistry 2.0, precisionFDA Truth Challenge V2 (https://doi.org/10.1101/2020.11.13.380741), Illumina: HG002 2×150 bp NovaSeq library, precisionFDA					

Truth Challenge V2 (<u>https://doi.org/10.1101/2020.11.13.380741</u>), ONT: Q20+ chemistry (R10.4, Kit 12), Oct 2021 GM24385 Q20+ Simplex Dataset Release (<u>https://labs.epi2me.io/gm24385_q20_2021.10/</u>) 2. HiFi+ONT: Nurk 2021 <u>https://doi.org/10.1101/2021.05.26.445798</u>, HiFi+Illumina: Logsdon 2020 <u>https://doi.org/10.1038/s41576-020-0236-x</u>, ONT: Tan 2022 <u>https://doi.org/10.1101/2022.01.11.475254</u>

PacBio website nov. 2024

SEQUENCING SYSTEMS

WHOLE GENOME SEQUENCING - HOW PACBIO COMPARES				
	PacBio HiFi	Illumina	Oxford Nanopore	
Average read length ¹	15–20 kb	2 x 150 bp	10-100 kb	
Average read accuracy ¹	99.95% (Q33)	99.92% (Q31)	9 99 75% (026)	
Coverage ²	0.5 error/kb	0.8 error/kb		
Variant calling: SNVs	\checkmark	\checkmark		
Variant calling: indels	\checkmark	\checkmark	×	
Variant calling: SVs	\checkmark	×	\checkmark	
Genome assembly: contiguity	\checkmark	×	\checkmark	
Genome assembly: accuracy	\checkmark	\checkmark	×	
Epigenetics: 5mC	\checkmark	×	\checkmark	
1. PacBio HiFi: HG003 18 kb library, Sequel II system chemistry 2.0, precisionFDA Truth Challenge V2 (https://doi.org/10.1101/2020.11.13.380741), Illumina: HG002 2×150 bp NovaSeq library, precisionFDA Truth Challenge V2 (https://doi.org/10.1101/2020.11.13.380741), ONT: Q20+ chemistry (R10.4, Kit 12), Oct 2021 GM24385 Q20+ Simplex Dataset Release (https://labs.epi2me.io/gm24385_q20_2021.10/)				

2. HiFi+ONT: Nurk 2021 https://doi.org/10.1101/2021.05.26.445798, HiFi+Illumina: Logsdon 2020 https://doi.org/10.1038/s41576-020-0236-x, ONT: Tan 2022 https://doi.org/10.1101/2022.01.11.475254

PacBio website nov. 2024

GENOME ASSEMBLY

SMALL GENOMES

PacBio vs Nanopore

Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing

Sereika et al. Nature Methods, 2022

Metagenome-assembled genome (MAG) from the anaerobic digester sample

IDEEL score : proportion of predicted proteins that are ≥95% the length of their best-matching known protein in a database

Metagenome-assembled genome (MAG) from the anaerobic digester sample

IDEEL score : proportion of predicted proteins that are ≥95% the length of their best-matching known protein in a database

Metagenome-assembled genome (MAG) from the anaerobic digester sample

IDEEL score : proportion of predicted proteins that are ≥95% the length of their best-matching known protein in a database

Conclusions

- HiFi reads : best microbial genome assembly
- Nanopore : "Near-finished assembly" of microbial genomes with R10.4 data alone

Nanopore only

Benchmarking reveals superiority of deep learning variant callers on bacterial nanopore sequence data

Hall et al. *eLife* oct. 2024

Objectives

Create a benchmark of the performance of seven variant callers using ONT and Illumina sequencing data :

- deepvariant, clair3, bcftools, freebayes, longshot, medaka, nanocaller
- · Creation of a variant truthset for benchmarking

• Analysis of 14 samples from different bacterial species spanning a wide range of GC content (30–66%)

• ONT data basecalled with three different accuracy models - fast, high accuracy (hac), super-accuracy (sup)

Nanopore only

Benchmarking reveals superiority of deep learning variant callers on bacterial nanopore sequence data

Hall et al. *eLife* oct. 2024

Objectives

Create a benchmark of the performance of seven variant callers using ONT and Illumina sequencing data :

- deepvariant, clair3, bcftools, freebayes, longshot, medaka, nanocaller
- · Creation of a variant truthset for benchmarking
- Analysis of 14 samples from different bacterial species spanning a wide range of GC content (30-66%)
- ONT data basecalled with three different accuracy models fast, high accuracy (hac), super-accuracy (sup)

Nanopore only

Benchmarking reveals superiority of deep learning variant callers on bacterial nanopore sequence data Hall et al. *eLife* oct. 2024

Objectives

Create a benchmark of the performance of seven variant callers using ONT and Illumina sequencing data :

- deepvariant, clair3, bcftools, freebayes, longshot, medaka, nanocaller
- · Creation of a variant truthset for benchmarking
- Analysis of 14 samples from different bacterial species spanning a wide range of GC content (30–66%)
- ONT data basecalled with three different accuracy models fast, high accuracy (hac), super- accuracy (sup)

F1 = 2TP/(2TP+FP+FN) = harmonic mean of precision and recall
Benchmarking reveals superiority of deep learning variant callers on bacterial nanopore sequence data Hall et al. *eLife* oct. 2024

Objectives

Create a benchmark of the performance of seven variant callers using ONT and Illumina sequencing data :

- deepvariant, clair3, bcftools, freebayes, longshot, medaka, nanocaller
- · Creation of a variant truthset for benchmarking
- Analysis of 14 samples from different bacterial species spanning a wide range of GC content (30–66%)
- ONT data basecalled with three different accuracy models fast, high accuracy (hac), super- accuracy (sup)

Benchmarking reveals superiority of deep learning variant callers on bacterial nanopore sequence data Hall et al. *eLife* oct. 2024

Objectives

Create a benchmark of the performance of seven variant callers using ONT and Illumina sequencing data :

- deepvariant, clair3, bcftools, freebayes, longshot, medaka, nanocaller
- · Creation of a variant truthset for benchmarking
- Analysis of 14 samples from different bacterial species spanning a wide range of GC content (30–66%)
- ONT data basecalled with three different accuracy models fast, high accuracy (hac), super- accuracy (sup)

Benchmarking reveals superiority of deep learning variant callers on bacterial nanopore sequence data Hall et al. *eLife* oct. 2024

Objectives

Create a benchmark of the performance of seven variant callers using ONT and Illumina sequencing data :

- deepvariant, clair3, bcftools, freebayes, longshot, medaka, nanocaller
- · Creation of a variant truthset for benchmarking
- Analysis of 14 samples from different bacterial species spanning a wide range of GC content (30–66%)
- ONT data basecalled with three different accuracy models fast, high accuracy (hac), super- accuracy (sup)

Clair and Deepvariant \rightarrow real improvements of Nanopore read accuracy (sup models)

- → SNP F1 score ≈ 99.99%
- → Indel F1 score \approx 99.5%

GENOME ASSEMBLY

LARGE GENOMES

PacBio only

Long-read genome sequencing and variant reanalysis increase diagnostic yield in neurodevelopmental disorders Hiatt et al., *Genome Research*, oct. 2024

Cohort :

• 96 cases children with rare diseases : suspected to present genetic neurodevelopmental disorders

(NDDs)

One example of variant

CONCLUSIONS

Difficulties with long-reads :

- · Discriminate genuine variants from background benign alleles depends on their annotation in databases
- · But main variant databases are built from short-read data
- Strength of long-reads : they see variants invisible for short reads ---> difficult to filter benign alleles among long-read-only variants

Advantages of long-reads :

- PacBio long-read sequencing has clear benefits to variant detection specificity and sensitivity
- As long-read data sets grow → annotation of long-read-only rare disease will grow over time

Long-read whole-genome sequencing-based concurrent haplotyping and aneuploidy profiling of single cells Zhao et al., *bioRxiv* sept. 2024

Feasibility of IrWGS for haplotyping of single cells without requiring additional phasing references ? Nanopore sequencing was performed on single-cell (1 cell) and multi-cell (10 cells) from the offspring

Bioinformatics pipeline that enables haplotyping of single cells using Nanopore sequencing

Effectiveness for genome-wide, reference-free comprehensive pre-implantation genetic testing

→ Cell-based noninvasive prenatal testing by analyzing single circulating trophoblast cells in maternal blood

DNA MODIFICATIONS

PacBio DETECTION OF MODIFIED DNA BASES

from Fusberg et al. Nature Methods (2010)

Detection of 5mA with strong influence of sequence contexts : requires high coverage

Feng et al. PLOS Comput Biol 2013

PacBio only

Direct haplotype-resolved 5-base HiFi sequencing for genome-wide profiling of hypermethylation outliers in a rare disease cohort

Cheung et al. Nature Comm. 2023

Cohort:

- rare disease cohort of 276 samples in 152 families
- sequencing data set : haplotype resolved 5-base HiFi Objectives:
- Identify rare (~0.5%) hypermethylation events

Correlation (Pearson R, x-axis) of 500 CpGs from 93 samples profiled by HiFi-GS and WGBS. Blue line : correlation between HiFi-GS and WGBS measures of the 500 CpGs Red line : similar but when WGBS values are permuted

Recent algorithmic development enables simultaneous detection of CpG methylation directly in HiFi reads

Long-read sequencing of an advanced cancer cohort resolves rearrangements, unravels haplotypes, and reveals methylation landscapes O'Neill et al. Cell Genomics Nov. 2024 (39 authors)

- Rich data resource of 189 long-read sequenced patient tumors
- Long-read sequencing allows detection of

features not detectable with short-reads

- ➤ phasing
- complex rearrangements
- ➤ methylation

Long-read sequencing of an advanced cancer cohort resolves rearrangements, unravels haplotypes, and reveals methylation landscapes O'Neill et al. Cell Genomics Nov. 2024 (39 authors)

- Rich data resource of 189 long-read sequenced patient tumors
- Long-read sequencing allows detection of

features not detectable with short-reads

- ➤ phasing
- complex rearrangements
- ➤ methylation

Long-Read Personalized OncoGenomics (POG) cohort :

- > 189 tumor samples
- > 26 cancer types
- majority from biopsies of metastatic sites

Long-Read Personalized OncoGenomics (POG) cohort :

- > 189 tumor samples
- > 26 cancer types
- majority from biopsies of metastatic sites

tSNE plots based on DNA methylation at regulatory regions compared with tumor type and biopsy site

tSNE: t-distributed stochastic neighbor embedding

tSNE plots based on DNA methylation at regulatory regions compared with tumor type and biopsy site

tSNE: t-distributed stochastic neighbor embedding

- Samples tend to group by tumor tissue of origin, irrespective of metastatic biopsy site
- Potential utility of DNA methylation for detecting or confirming tissue of origin in advanced and metastatic cancers, in addition to RNA-seq

DETECTION OF SPLICING ISOFORMS

cDNA Nanopore sequencing

Dynamic nanopore long-read sequencing analysis of HIV-1 splicing events during the early steps of infection Quang et al. *Retrovorology* 2020

- 53 viral RNA isoforms, including 14 new ones
- Relative levels highly correlated with qPCR

cDNA Nanopore sequencing

Dynamic nanopore long-read sequencing analysis of HIV-1 splicing events during the early steps of infection Quang et al. *Retrovorology* 2020

- 53 viral RNA isoforms, including 14 new ones
- Relative levels highly correlated with qPCR
- First dynamic picture of the cascade of events occurring between 12 and 24 h of viral infection

Systematic evaluation of single-cell RNA-seq analyses performance based on long-read sequencing platforms Deng et al. *J. Adv. Res.* may 2024

cell barcodes

Conclusions

- Both platforms achieved comparable accuracy on cell type identification
- but PacBio identified a greater amount of cell type specific isoforms and of novel isoforms

TARGETED SEQUENCING

NANOPORE ADAPTIVE SAMPLING

- Specification of target regions
- Real time basecalling
- Mapping of ~ 500 first bases
- Before the molecule is fully sequenced : If it differs from target -> reversion of polarity and ejection

Cancer gene panel - 202 target regions

Nanopore-targeted sequencing (NTS) for intracranial tuberculosis: a promising and reliable approach Yang et al. *Ann Clin Microbiol Antimicrob.* oct. 2024

Cohort

• 100 patients with intracranial tuberculosis ; the diagnosis was based on :

- their clinical features
- micro-biological and cerebrospinal fluid cytology
- radiological findings, etc.
- 22 patients with other brain diseases

Table 2 Diagnostic efficiency of the five tests for intracranial tuberculosis

Test	Sensitivity(%,95%Cl)	Specificity(%,95%Cl)	PPV(%,95%Cl)	NPV(%,95%Cl)	AUC(95%Cl)
NTS	60.0(49.7–69.5)	95.5(75.1–99.8)	98.4(90.0-99.9)	34.4 (23.0-47.8)	0.78(0.71–0.84)
Xpert	5.0(1.9–11.8)	95.5(75.1–99.8)	83.3(36.5–99.1)	18.1(11.8–26.6)	0.50(0.45–0.55)
MTB culture	2.0(0.3–7.7)	100.0(81.5–100.0)	100.0(19.8–100.0)	18.3(12.1–26.7)	0.51(0.50–0.52)
PCR	1.0(0.1–6.2)	100.0(81.5–100.0)	100.0(5.5–100)	18.2(12.0-26.5)	0.51(0.50–0.51)
AFB smear	0.0(0.0-4.6)	100.0(81.5–100.0)	/	18.0(11.9–26.3)	0.50(0.50–0.50)

PPV: positive predictive value; NPV: negative predictive value; AUC: area under the curve; MTB: Mycobacterium tuberculosis; AFB: acid-fast bacilli

DIRECT RNA SEQUENCING

DIRECT RNA SEQUENCING

Library preparation

RNA directly sequenced in nanopore

- No PCR bias
- · Quantitative

Comprehensive analysis of m6A methylome alterations after azacytidine plus venetoclax treatment for acute myeloid leukemia by nanopore sequencing

Zhang et al. Computational and Structural Biotechnology Journal, 2024

Objectives:

- Growing evidence of functional role of RNA-m6A in acute myeloid leukemia (AML)
- However the global m6A level after azacytidine plus venetoclax treatment is unclear
- Determine the m6A levels in bone marrow samples before and after treatment

Sequencing and detection of m6A methylation :

- Nanopore direct RNA sequencing with GridION, R9.4.1 flow cells, RNA002 chemistry
- Determination of m6A levels at nucleotide precision with Tombo and DENA

CONCLUSIONS

- Ilustration for the first time of the global landscape of m6A levels in AZA plus VEN treated patients
- > AZA plus VEN treatment has a significant demethylation effect at the RNA level in AML patients

Direct RNA sequencing (RNA004) allows for improved transcriptome assessment and near real-time tracking of methylation for medical applications.

Hewel et al. bioRxiv jul. 2024

Previous chemistry for direct RNA sequencing : RNA002

Major points of concern : low throughput, low accuracy, modification basecalling was not enabled by default New chemistry : RNA004 :

- new nanopore
- new motor-protein
- new base-calling
- models for both standard nucleotides and modifications (m6A, pseudo U)

Global upregulation of m6A in HEK293T correlates with decreased expression of the ALKBH5 demethylase

New step in genome assembly :

the T2T era

PacBio+Nanopore+Illumina

The complete sequence of a human genome Nurk et al. *Science* 2022

SEQUENCING Data were obtained with a "complete hydatidiform mole" (CHM13) cell line (haploid) : 30× PacBio circular consensus sequencing (HiFi) 120× Oxford Nanopore ultra-long read sequencing (ONT) 100× Illumina PCR-Free sequencing 70× Illumina / Arima Genomics Hi-C (Hi-C)

- BioNano optical maps (11)
- Strand-seq

• T2T assembly :including all 22 autosomes plus Chromosome X :

- Introduces 200 million bp of novel sequence
- > all centromeric regions
- > entire short arms (p-arms) of 5 acrocentric chromosomes : 13, 14, 15, 21, 22

C

The complete sequence of a human Y chromosome Rhie et al. *Nature* 2023 (88 authors)

HG002 diploid genome

- Y chromosome -> last chromosome completed from telomere to telomere
- PacBio HiFi reads (60 × haploid genome coverage)
- ONT ultralong reads (90 × in reads > 100 kb)
- Strand-seq
- combined T2T-Y with CHM13 to produce a complete reference sequence for all 24 human chromosomes

Complex genetic variation in nearly complete human genomes Logsdon et al. *bioRxiv* sept. 2024. (39 authors)

Objectives

- construct a human pangenome reference
- understand the extent of complex structural variation

Results

- sequence 65 diverse human genomes from 28 population groups
- build 130 haplotype-resolved assemblies (130 Mbp median continuity)
- reaching telomere-to-telomere (T2T) for 39% of the chromosomes
- · completely assemble and validate 1,246 human centromeres
- whole-genome inference to a median quality value QV = 45

Strategy for near-telomere-to-telomere assembly

Long-range data Hi-C, Pore-C, Strand-seq Information over 1kb to over 10 Mb in length Chromosomal phasing; chromosome-scale scaffolding

Nanopore unltra-long reads only

Telomere-to-Telomere Phased Genome Assembly Using HERRO-Corrected Simplex Nanopore Reads Stanojević et al. *bioRxiv* oct. 2024

- Are T2T phased assemblies with unltra-long nanopore reads-only ?
- Development of HERRO :
 - deep learning-based framework :
 - corrects nanopore ultra-long reads
 - while carefully preserving informative positions that differentiate the haplotypes or repeat copies

Dataset	Correction	Mismatch per 10 kbp	Non- Hp Ins per 10 kbp	Non-Hp Del per 10 kbp	Hp- Ins per 10 kbp	Hp-Del per 10 kbp	Errors per 10 kbp
HG002	Before	133.15	45.56	58.54	26.22	71.02	334.48
	After (66X)	0.23	0.63	0.74	0.41	1.//	3.78
1002C	Before	186.86	58.76	79.74	33.41	99.44	458.21
	After (63x)	0.22	1.01	1.72	0.50	2.18	5.64
СНМ13	Before	158.63	74.75	91.23	46.91	128.49	500.01
	After	0.38	0.34	0.85	1.23	1.60	4.39
A. thaliana	Before	38.59	27.84	22.82	10.03	29.09	128.37
	After	0.70	1.37	1.92	0.05	2.85	6.89
D. rerio	Before	71.84	29.64	50.04	17.27	41.64	210.43
	After	0.41	2.23	15.15	0.10	3.88	21.77

Table 1 Counts of errors before and after correction, by type.

Nanopore only

Telomere-to-Telomere Phased Genome Assembly Using HERRO-Corrected Simplex Nanopore Reads Stanojević et al. *bioRxiv* oct. 2024

- · Telomere-to-telomere phased assemblies involve HiFi reads and unltra-long nanopore reads
- Development of HERRO :
 - deep learning-based framework :
 - corrects ultra-long nanopore reads
 - while carefully preserving informative positions that differentiate the haplotypes or repeat copies

Dataset	Correction	Mismatch per 10 kbp	Non- Hp Ins per 10 kbp	Non-Hp Del per 10 kbp	Hp- Ins per 10 kbp	Hp-Del per 10 kbp	Errors per 10 kbp	_
HG002	Before	133.15 <mark>Q18</mark>	45.56	58.54	26.22	71.02	334.48	Q15
	After (66x)	0.23 Q46	0.63	0.74	0.41	1.77	3.78	Q34
1002C	Before	186.86	58.76	79.74	33.41	99.44	458.21	_
	After (63x)	0.22	1.01	1.72	0.50	2.18	5.64	
CHM13	Before	158.63	74.75	91.23	46.91	128.49	500.01	_
	After	0.38	0.34	0.85	1.23	1.60	4.39	
A. thaliana	Before	38.59	27.84	22.82	10.03	29.09	128.37	_
	After	0.70	1.37	1.92	0.05	2.85	6.89	
D. rerio	Before	71.84	29.64	50.04	17.27	41.64	210.43	-
	After	0.41	2.23	15.15	0.10	3.88	21.77	

De novo assembly of HERRO-corrected ONT reads :

- more than half of the 46 chromosomes were obtained as T2T contigs or scaffolds
- Example of X and Y chromosomes :

Assembly	Genome fraction (%)	Misassemblies	Mismatches per 100kbp	Total mismatches	Indels per 100kbp	Total Indels	Indel <=5 bp	Indel >5bp
ChrX, trio	100	2	0.19	286	8.43	13018	12672	346
ChrY, trio	99.98	5	1.18	736	4.08	2544	2410	134

Table 3 Quast evaluation results of assembled T2T contigs of chromosomes X and Y.

De novo assembly of HERRO-corrected ONT reads :

- more than half of the 46 chromosomes were obtained as T2T contigs or scaffolds
- Example of X and Y chromosomes :

Assembly	Genome fraction (%)	Misassemblies	Mismatches per 100kbp	Total mismatches	Indels per 100kbp	Total Indels	Indel <=5 bp	Indel >5bp
ChrX, trio	100	2	0.19	286	8.43	13018	12672	346
ChrY, trio	99.98	5	1.18	736	4.08	2544	2410	134

 Table 3 Quast evaluation results of assembled T2T contigs of chromosomes X and Y.

- > HERRO enables high-quality assembly with corrected reads from a unique long-read technology
- It provides an opportunity to reduce the cost of genome sequencing and to analyze even more complex genomes with different levels of ploidy

Summary

PacBio

- Maximum read length: 200 kb
- CCS sequencing (HiFI reads) :
 - Very low error rate (Q33)
 - Best bacterial genome assembly
 - cDNA :
 - RNA-seq
 - Best for new splicing isoforms detection

Nanopore

- Very light sequencing system → portability → sequencing "in the field"
- Very long reads : maximum length > 1 Mb
- 10.4.1 flow cells: low error rate, accurate bacterial genome assembly
- Detection of modified DNA (5mC, 6mA)
- Direct sequencing of RNA (RNA004) :
 - RNA-seq
 - splicing isoforms detection
 - Direct base-calling of modified RNA nucleotides (6mA, pseudo U, etc..)
- Future improvements :
 - read correction → enables high-quality assembly, even T2T (?) from a <u>unique long-read technology</u>

