# Differential analysis of RNA-Seq data: design, describe, explore and model

Ecole de Bioinformatique IFB/Inserm – Roscoff – Nov. 2024

Charlotte Berthelier - <u>cberthelier@sb-roscoff.fr</u>
Elise Jacquemet - <u>elise.jacquemet@pasteur.fr</u>

Bioinformatics and Biostatistics Hub - Institut Pasteur - Université de Paris, Paris, France

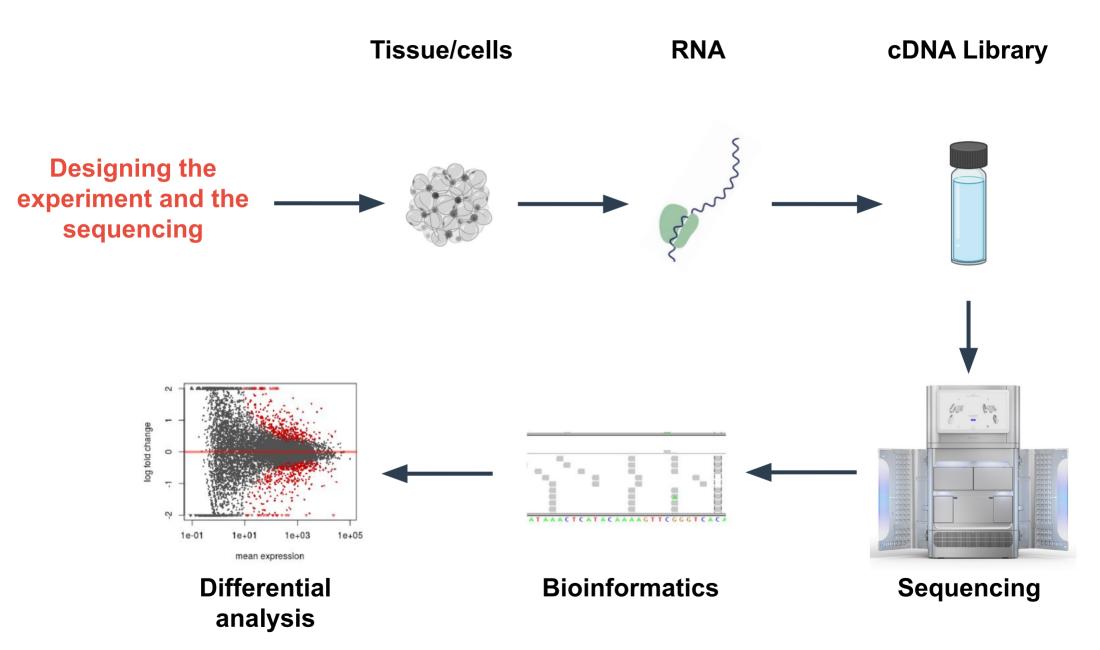








# Main RNA-Seq steps



## **Citations**

"To consult a statistician after an experiment is finished is often merely to ask him to conduct a post-mortem examination. He can perhaps say what the experiment died of."

Ronald A. Fisher, Indian Statistical Congress, 1938, vol. 4, p 17



"While a good design does not guarantee a successful experiment, a suitably bad design guarantees a failed experiment"

Kathleen Kerr, Atelier Inserm 145, 2003



# Statistical modeling

Goal of an experiment: address one biological question

Result of an experiment: many numerical values

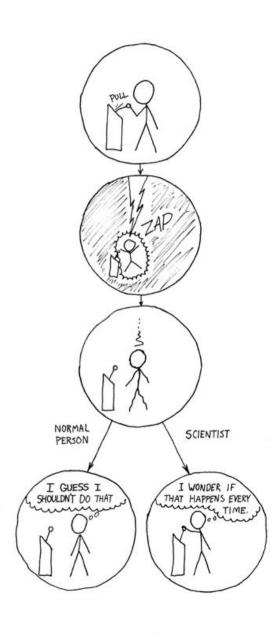
## Statistical modeling consists in using a mathematical formula involving:

- Experimental conditions X
- Numerical values measured Y
- Parameters  $\beta$  linking X and Y (to be estimated), e.g.:

$$Y \sim X\beta + \varepsilon$$

Some hypotheses on the data variability/law, e.g.:

 $\varepsilon$  ~ Gaussian(0,  $\sigma^2$ )





# Starting point of the differential analysis

|        | <b>T</b> 0-1 | <b>T</b> 0-2 | <b>T</b> 0-3 | <b>T4-1</b> | <b>T4-2</b> | <b>T4-3</b> | T8-1 | <b>T8-2</b> | <b>T8-3</b> |  |
|--------|--------------|--------------|--------------|-------------|-------------|-------------|------|-------------|-------------|--|
| gene1  | 151          | 131          | 183          | 31          | 35          | 44          | 19   | 31          | 18          |  |
| gene2  | 142          | 134          | 153          | 650         | 629         | 783         | 136  | 241         | 151         |  |
| gene3  | 157          | 147          | 166          | 7           | 10          | 20          | 8    | 10          | 8           |  |
| gene4  | 275          | 249          | 342          | 70          | 44          | 91          | 75   | 64          | 62          |  |
| gene5  | 4            | 5            | 2            | 0           | 0           | 1           | 2    | 2           | 3           |  |
| gene6  | 2            | 0            | 1            | 0           | 1           | 2           | 7    | 3           | 3           |  |
| gene7  | 4            | 7            | 3            | 0           | 0           | 0           | 0    | 0           | 0           |  |
| gene8  | 10           | 16           | 10           | 28          | 12          | 10          | 16   | 33          | 23          |  |
| gene9  | 12           | 20           | 24           | 74          | 84          | 77          | 10   | 10          | 9           |  |
| gene10 | 269          | 262          | 379          | 112         | 132         | 138         | 44   | 33          | 48          |  |
| gene11 | 10065        | 9593         | 11955        | 4076        | 3739        | 4137        | 2736 | 3311        | 2749        |  |
| gene12 | 651          | 566          | 819          | 101         | 86          | 74          | 97   | 87          | 96          |  |
| gene13 | 118          | 116          | 150          | 18          | 24          | 42          | 15   | 8           | 5           |  |
|        |              |              |              |             |             |             |      |             | • • •       |  |
| geneN  | 18           | 31           | 39           | 4           | 4           | 7           | 2    | 6           | 2           |  |

Goal: find genes differentially expressed between biological conditions



## **Outline**

- 1. Introduction
- 2. Designing the experiment
- 3. Description/exploration
- 4. Normalization
- 5. Modeling
- 6. SARTools



# Why an experimental design?

To control the variability during the experiment in order to be able to address the biological question:

- 1. What is the biological question?
- 2. How to estimate the associated biological variabilities?
- 3. How to control the technical variabilities (day, lane, run, etc.)?

## Biological or technical uncontrolled effects could:

- Hide/cancel the biological effect of interest
- Wrongly increase the biological effect of interest

"Ensure that the right type of data, and enough of it, is available to answer the questions of interest as clearly and efficiently as possible"

http://www.stats.gla.ac.uk/steps/glossary/anova.html#expdes



# Why an experimental design?

#### PLOS COMPUTATIONAL BIOLOGY

♠ OPEN ACCESS

EDITORIAL

#### Ten simple rules for providing effective bioinformatics research support

Judit Kumuthini . Michael Chimenti, Sven Nahnsen, Alexander Peltzer, Rebone Meraba, Ross McFadyen, Gordon Wells, Deanne Taylor, Mark Maienschein-Cline, Jian-Liang Li, Jyothi Thimmapuram, Radha Murthy-Karuturi, Lyndon Zass

Published: March 26, 2020 • https://doi.org/10.1371/journal.pcbi.1007531

"A good experimental design starts with a well-defined hypothesis [...]. The experimental design should aim to reduce the types and sources of variability, increase the generalizability of the experiment, and make it replicable and reusable. It is both easier and more cost efficient to identify and correct experimental design issues ahead of time than to address deficiencies thereafter. Thus, discussion between data-generating researchers and bioinformaticians is highly desirable and should occur as early as possible during project development and experimental design."



# **Basic comparison**



I want to study differences in the transcriptome of cystic fibrosis patients

| id  | state   |
|-----|---------|
| h1  | healthy |
| h2  | healthy |
| h3  | healthy |
| cf1 | CF      |
| cf2 | CF      |
| cf3 | CF      |

- one **factor** of interest: the state of the patients
- this factor has two levels: healthy and CF



mRNA sequencing of lung cells.



# **Paired samples**



# I want to study differences in the transcriptome of cystic fibrosis patients

| id  | state   | RNA extraction date          |
|-----|---------|------------------------------|
| h1  | healthy | June 12 <sup>th</sup> , 2019 |
| h2  | healthy | June 20 <sup>th</sup> , 2019 |
| h3  | healthy | June 25 <sup>th</sup> , 2019 |
| cf1 | CF      | June 12 <sup>th</sup> , 2019 |
| cf2 | CF      | June 20 <sup>th</sup> , 2019 |
| cf3 | CF      | June 25 <sup>th</sup> , 2019 |

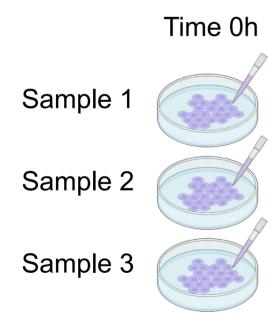


# On the laboratory bench...

## Time course experiment (paired)



I want to find differentially expressed genes between time 0 and time 24h on cultures of E. Coli

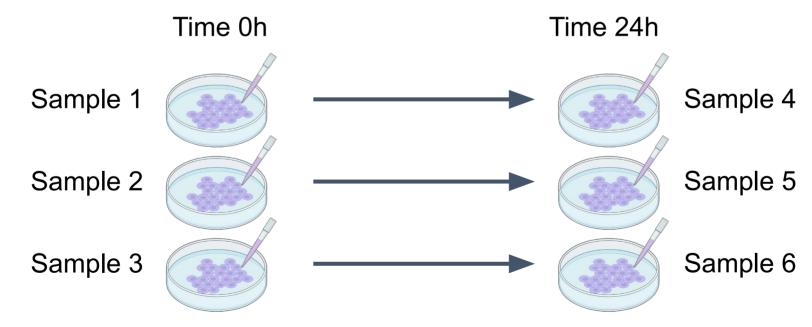


# On the laboratory bench...

## Time course experiment (paired)



I want to find differentially expressed genes between time 0 and time 24h on cultures of E. Coli



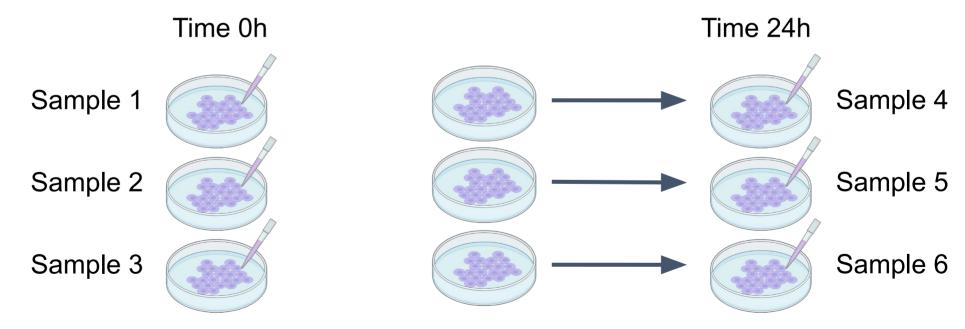


# On the laboratory bench...

## Time course experiment (unpaired)



I want to find differentially expressed genes between time 0 and time 24h on cultures of E. Coli





# **Complex design**



I want to study the effect of a virus infection level (high vs. low) on the transcriptome of two mouse strains (B6 vs. SEG).

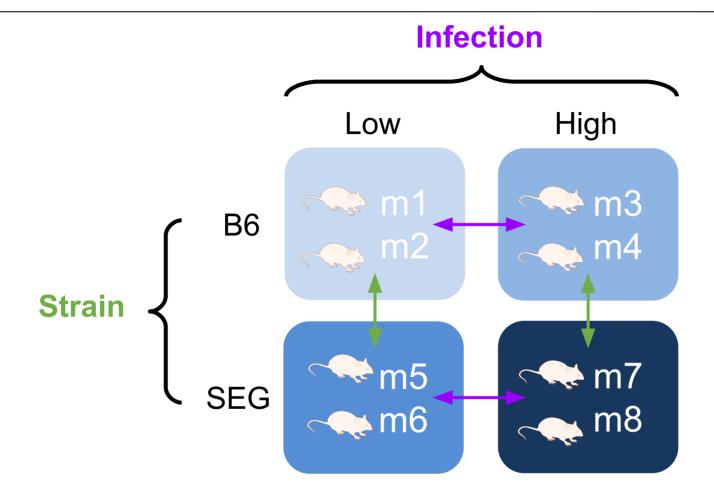
| id | strain | infection |
|----|--------|-----------|
| m1 | В6     | low       |
| m2 | В6     | low       |
| m3 | В6     | high      |
| m4 | В6     | high      |
| m5 | SEG    | low       |
| m6 | SEG    | low       |
| m7 | SEG    | high      |
| m8 | SEG    | high      |

## **Two factors** of interest with two levels each:

- the infection level of the patients (low or high)
- the mouse strain (SEG and B6)

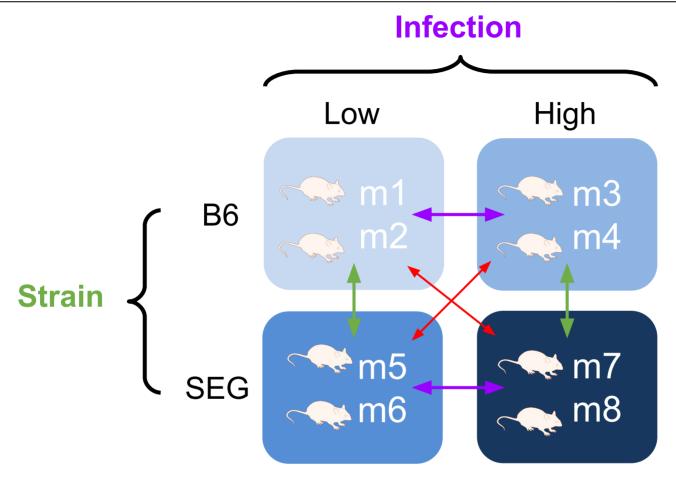


## Interaction between two factors/variables





## Interaction between two factors/variables



#### Interaction:

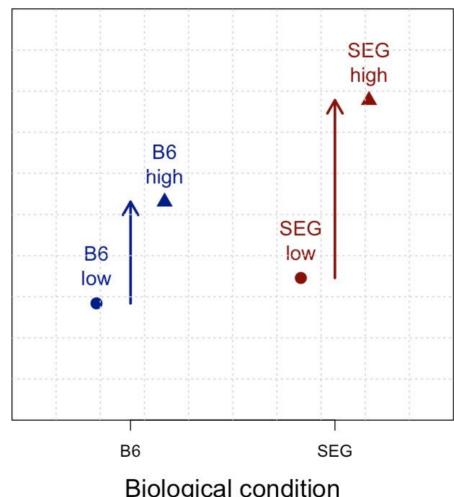
- Is the infection effect different between the two strains?
- Does the difference between the strains change according to the infection?



# **Examples of interactions**

#### Reinforcement of the infection effect





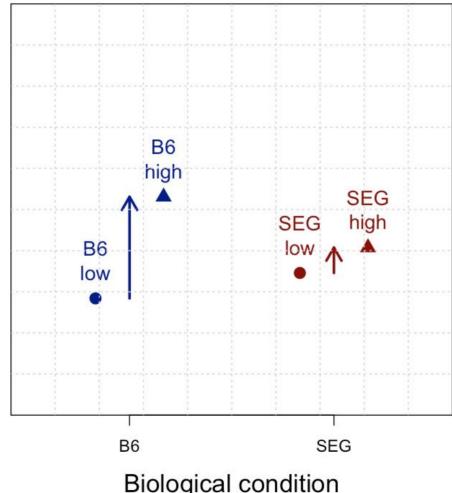
Biological condition



# **Examples of interactions**

#### **Decreasing of the infection effect**





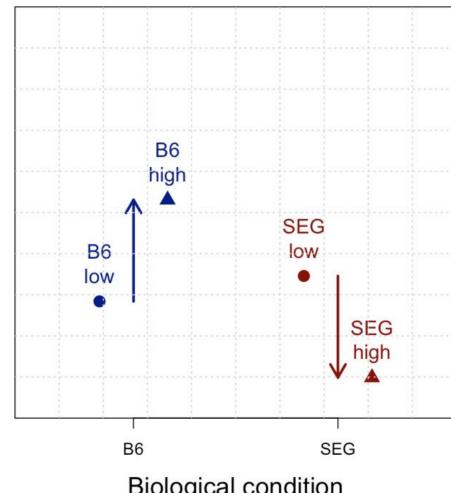
Biological condition



# **Examples of interactions**

#### Inversion of the infection effect





**Biological condition** 



# Complex design with nested factors

A treatment T is applied to two CF patients and two healthy people. We study the initial transcriptome and after 4h of treatment.

| id    | state   | time | patient |
|-------|---------|------|---------|
| h1-0  | healthy | Oh   | h1      |
| h2-0  | healthy | Oh   | h2      |
| h1-4  | healthy | 4h   | h1      |
| h2-4  | healthy | 4h   | h2      |
| cf1-0 | CF      | Oh   | cf1     |
| cf2-0 | CF      | Oh   | cf2     |
| cf1-4 | CF      | 4h   | cf1     |
| cf2-4 | CF      | 4h   | cf2     |

The "patient" effect need to be taken into account, but it is nested into the "state" effect.



# Be careful with confounding effects!

## Comparison of lung cells in healthy and cystic fibrosis patients

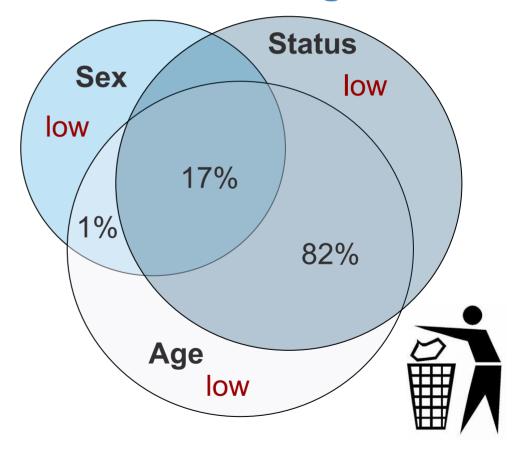
| id  | state   | age | sex    | RNA extraction day           | experimentalist |
|-----|---------|-----|--------|------------------------------|-----------------|
| h1  | healthy | 45  | female | July 9 <sup>th</sup> , 2019  | Louis           |
| h2  | healthy | 52  | female | July 12 <sup>th</sup> , 2019 | Louis           |
| h3  | healthy | 48  | female | July 15 <sup>th</sup> , 2019 | Louis           |
| cf1 | CF      | 31  | male   | Feb 20 <sup>th</sup> , 2019  | Françoise       |
| cf2 | CF      | 25  | male   | Feb 24 <sup>th</sup> , 2019  | Françoise       |
| cf3 | CF      | 27  | male   | Feb 29 <sup>th</sup> , 2019  | Françoise       |



# Be careful with confounding effects!

- A gene is detected as being differentially expressed between healthy and CF patients. Is it due to:
  - The disease?
  - The sex effect?
  - The age effect?
  - The date effect?
  - The technician effect?

# Flawed design



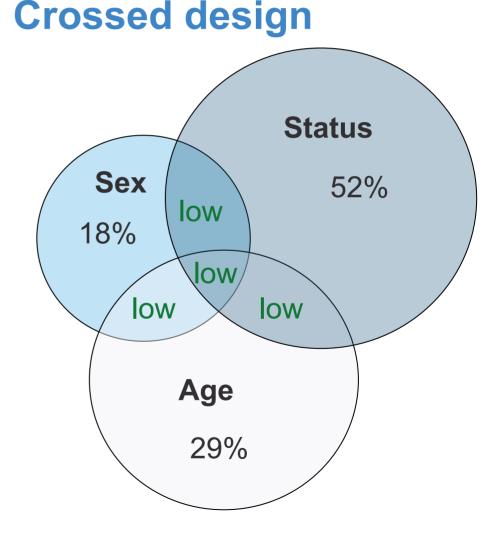


# Be careful with confounding effects!

Re-doing the experiment but making sure all levels of all factors are crossed to avoid any confusion

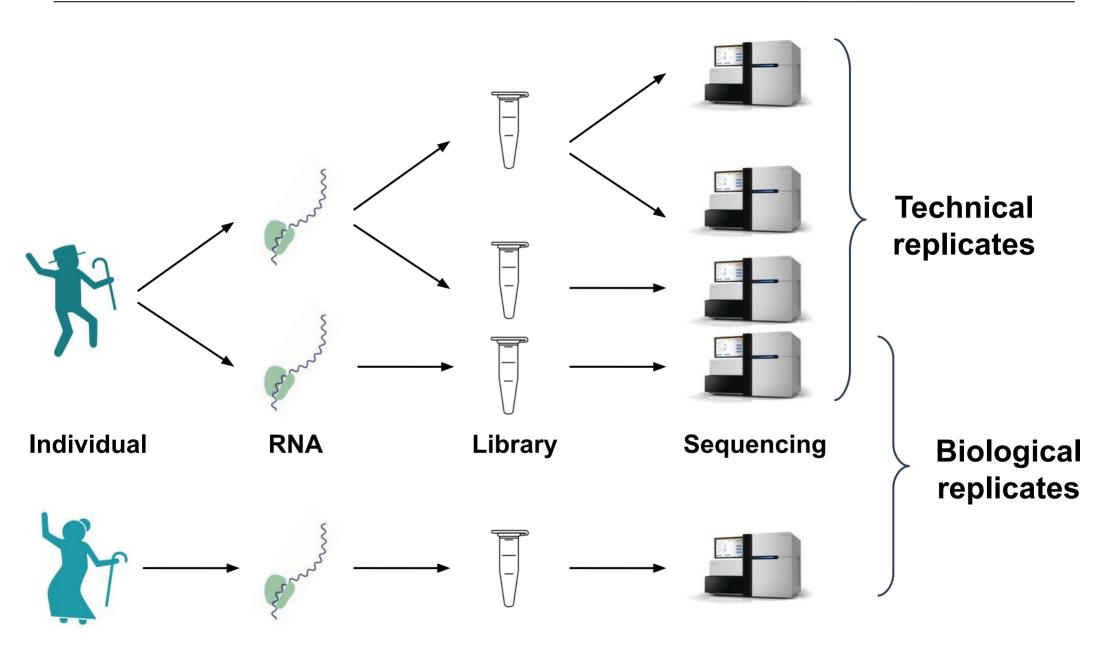
Possibility to distinguish every source of variability & their interaction:

- The disease
- The sex effect
- The age effect
- The date effect
- The technician effect





# Biological vs. technical replicates





# Biological vs. technical replicates in RNAseq

## Technical replicates:

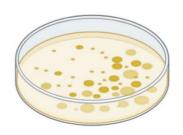
- Several extractions of the same RNA
- Several libraries built from the same RNA extraction
- A library sequenced several times

Allow to get more sequencing depth and a better coverage. Need to sum the counts associated to each technical replicates.

## **Biological replicates:**

- Parallel measurements of biologically **distinct samples**
- Correspond to the variability visible in the real life

Comment: what happens when studying fungi/yeast?





# Why replicate?

#### Perfect world:

No biological nor technical variability

Only one sample from each condition to conclude!

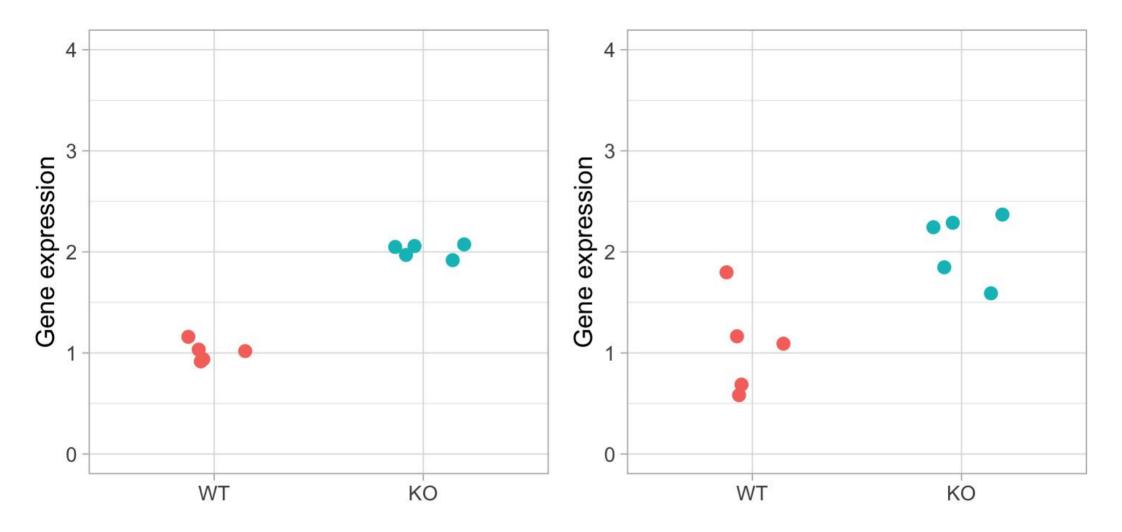
#### **Our world:**

Each individual has its own behavior

Need several biological replicates to handle variability

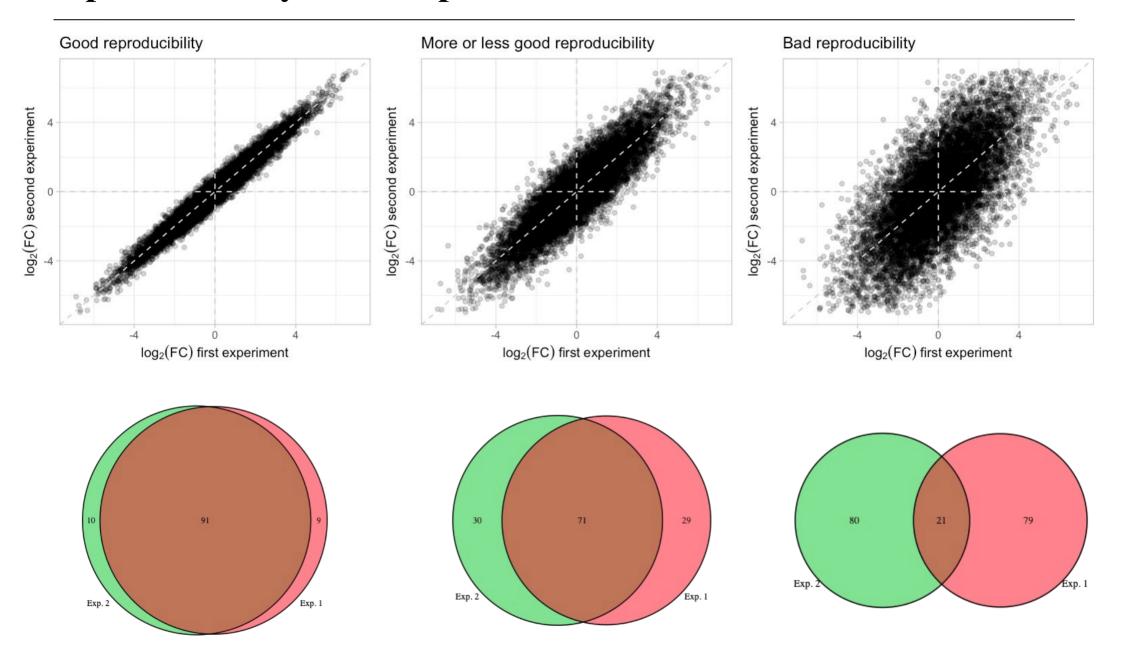


# Why replicate?





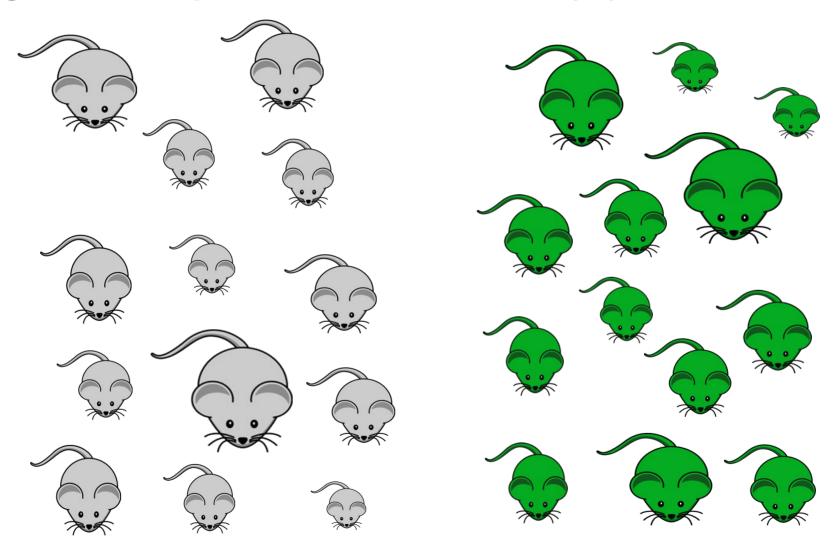
# Reproducibility of an experiment: 3 KO vs 3 WT





# Population: set of all mice we could measure

Sampling must be representative of the whole population under study!





# Sampling 1: selection of 3 mice per condition







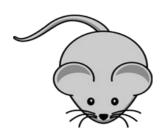








# **Sampling 2: non representative**











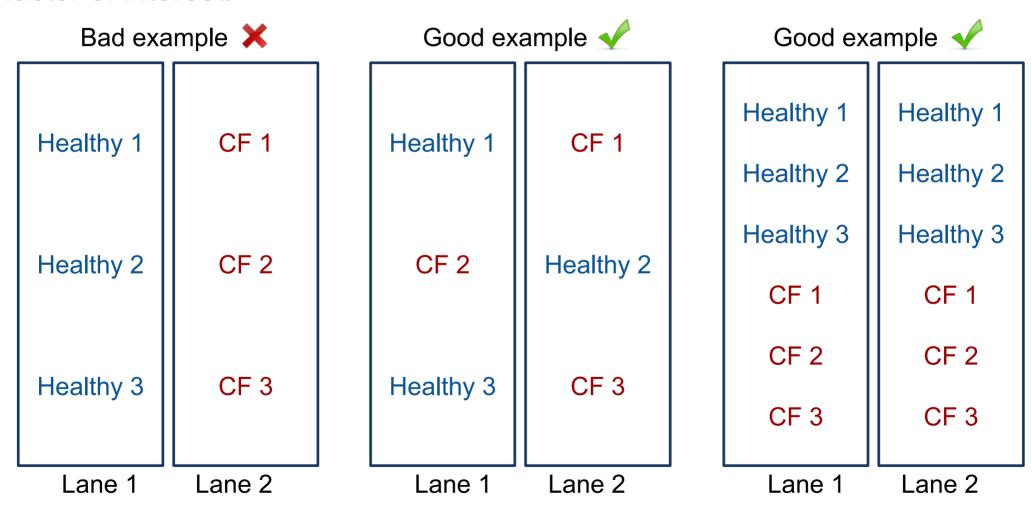




# Sequencing design

#### Goal:

Do not add any confounding technical effect (day, lane, run, etc.) to the factor of interest.



# Sequencing design

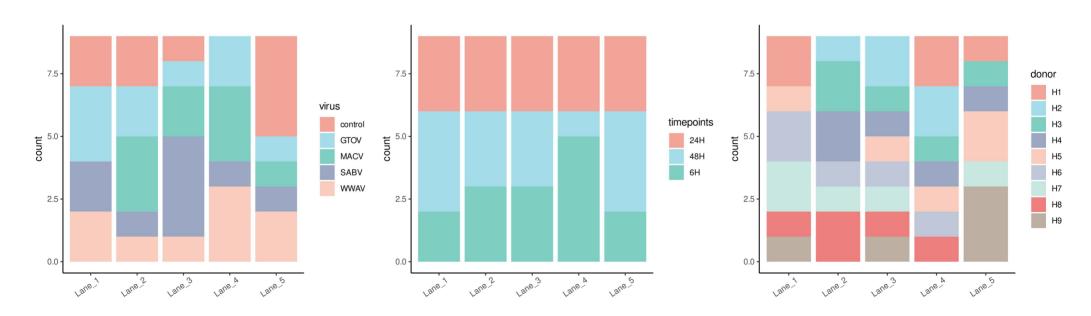
#### Goal:

Do not add any confounding technical effect (day, lane, run, etc.) to the factor of interest.

Impossible to cross evenly all sources of technical variation



Randomize!



https://mixnpick.pasteur.fr/



# Sequencing design

#### **Technical variabilities:**

- Lane
- **Flowcell**
- Run

lane effect < flowcell effect < run effect << biological variability



Use the same multiplexing rate for all the samples!



# **Experimental design: Take-home message**



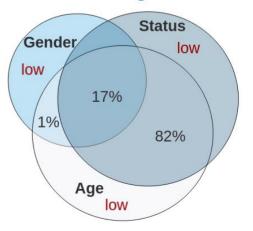
Express the biological question as accurately as possible to build an experimental design which will be able to address it.

**The simpler, the better:** If >2 factors, the results may be very difficult to interpret

#### Identify all the sources of variability to avoid confounding effects

- Change of biological condition (e.g. KO vs WT)
- Within replicates variability (e.g. KO1 vs KO2 vs KO3)
- Experimentalist or day effect
- RNA: quality and extraction
- Library: PCR, concentration, random priming, rRNA removal
- Sequencing machine, flowcell and lane, ...

#### Flawed design





# **Experimental design: Take-home message**

**Experiments must be replicated** to precisely measure the biological variability associated with the condition under study.

Sampling must be representative of the whole population under study



The higher the within group variability ... the higher the number of biological replicates, in order to make sure that the whole range of variation is covered

Ideally, use blocking ... to ensure that the biological conditions are evenly distributed among factors that are important unwanted) sources of variability.

... or randomization when blocking is not possible



#### **Outline**

- 1. Introduction
- 2. Designing the experiment
- 3. Description/exploration
- 4. Normalization
- 5. Modeling
- 6. SARTools



# Starting point of the differential analysis

|        | T0-1  | <b>T</b> 0-2 | т0-3  | T4-1 | <b>T4-2</b> | <b>T4-3</b> | T8-1 | T8-2 | <b>T8-3</b> |  |
|--------|-------|--------------|-------|------|-------------|-------------|------|------|-------------|--|
| gene1  | 151   | 131          | 183   | 31   | 35          | 44          | 19   | 31   | 18          |  |
| gene2  | 142   | 134          | 153   | 650  | 629         | 783         | 136  | 241  | 151         |  |
| gene3  | 157   | 147          | 166   | 7    | 10          | 20          | 8    | 10   | 8           |  |
| gene4  | 275   | 249          | 342   | 70   | 44          | 91          | 75   | 64   | 62          |  |
| gene5  | 4     | 5            | 2     | 0    | 0           | 1           | 2    | 2    | 3           |  |
| gene6  | 2     | 0            | 1     | 0    | 1           | 2           | 7    | 3    | 3           |  |
| gene7  | 4     | 7            | 3     | 0    | 0           | 0           | 0    | 0    | 0           |  |
| gene8  | 10    | 16           | 10    | 28   | 12          | 10          | 16   | 33   | 23          |  |
| gene9  | 12    | 20           | 24    | 74   | 84          | 77          | 10   | 10   | 9           |  |
| gene10 | 269   | 262          | 379   | 112  | 132         | 138         | 44   | 33   | 48          |  |
| gene11 | 10065 | 9593         | 11955 | 4076 | 3739        | 4137        | 2736 | 3311 | 2749        |  |
| gene12 | 651   | 566          | 819   | 101  | 86          | 74          | 97   | 87   | 96          |  |
| gene13 | 118   | 116          | 150   | 18   | 24          | 42          | 15   | 8    | 5           |  |
|        |       |              |       |      |             |             |      |      | • • •       |  |
| geneN  | 18    | 31           | 39    | 4    | 4           | 7           | 2    | 6    | 2           |  |

Goal: find genes differentially expressed between biological conditions



### Many plots to produce

QC & diagnostics

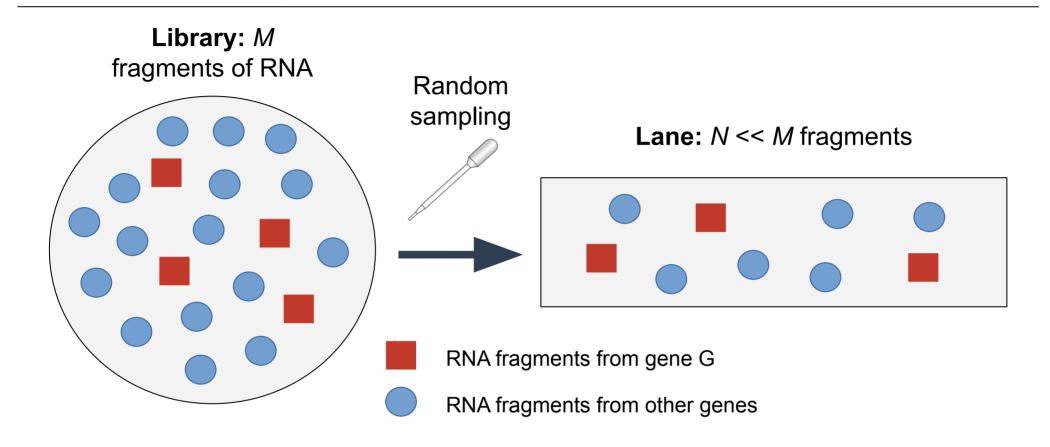
#### **Description sample by sample:**

- Total number of reads
- Percentage of null counts
- Percentage of reads caught by the most expressed gene
- Distribution of the counts

#### Multivariate description of the data:

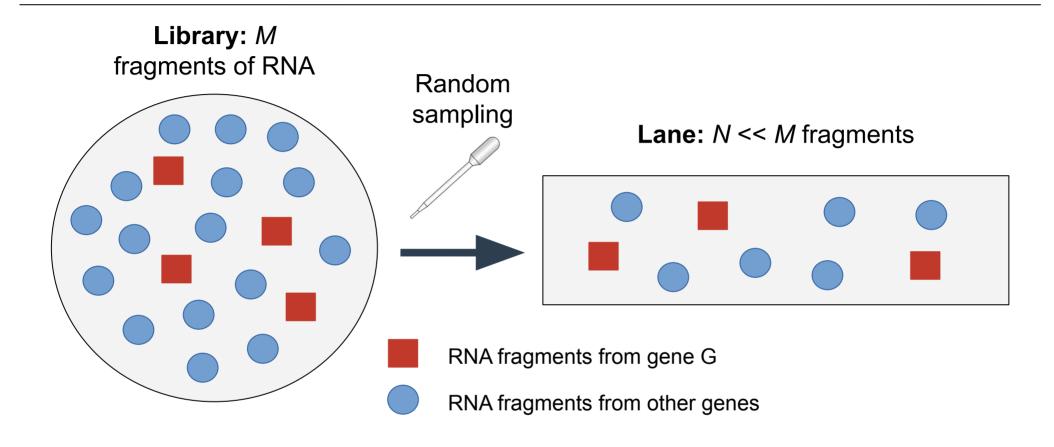
- SERE coefficient for each pair of samples [2]
- **Principal Component Analysis**
- Hierarchical clustering





"It is a good approximation to say that there is a linear relationship between read counts resulting from a sequencing experiment and the abundance of each sequence in the starting RNA material." [1]



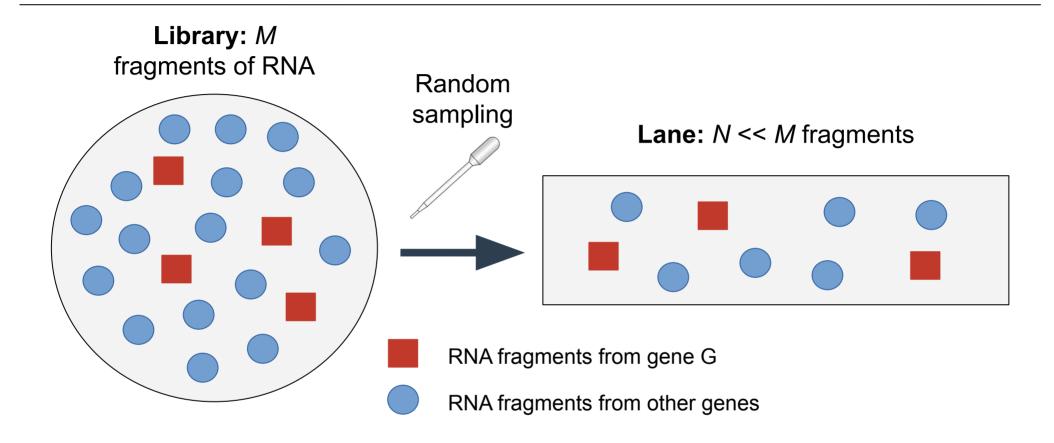


Let  $\pi_G$  = proportion of fragments of gene G: {read R comes from gene G} ~ Bernoulli( $\pi_{G}$ )

Thus:

 $X_{G}$  = nb. of reads from gene G ~ Binomial(N,  $\pi_{G}$ ) ~ Poisson( $N\pi_{G}$ )





With a deeper sequencing (i.e. larger *N*):

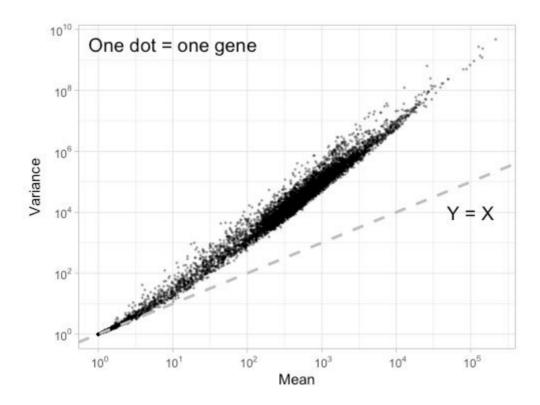
- Higher probability to catch lowly expressed genes
- Higher precision when estimating  $\pi_c$



If 
$$X_G \sim \text{Poisson}(N\pi_G)$$
:  

$$\text{mean}(X_G) = \text{variance}(X_G) = N\pi_G$$

Due to biological variability, we observe over-dispersion:



→ Need a statistical law with variance ≠ mean.



Let  $x_{ij}$  the number of reads that align on gene i for sample j (intersection row i - column *j* of the count matrix).

$$x_{ij}$$
 ~ Negative-Binomial(mean =  $\mu_{ij}$ , variance =  $\sigma_{ij}^{2}$ )

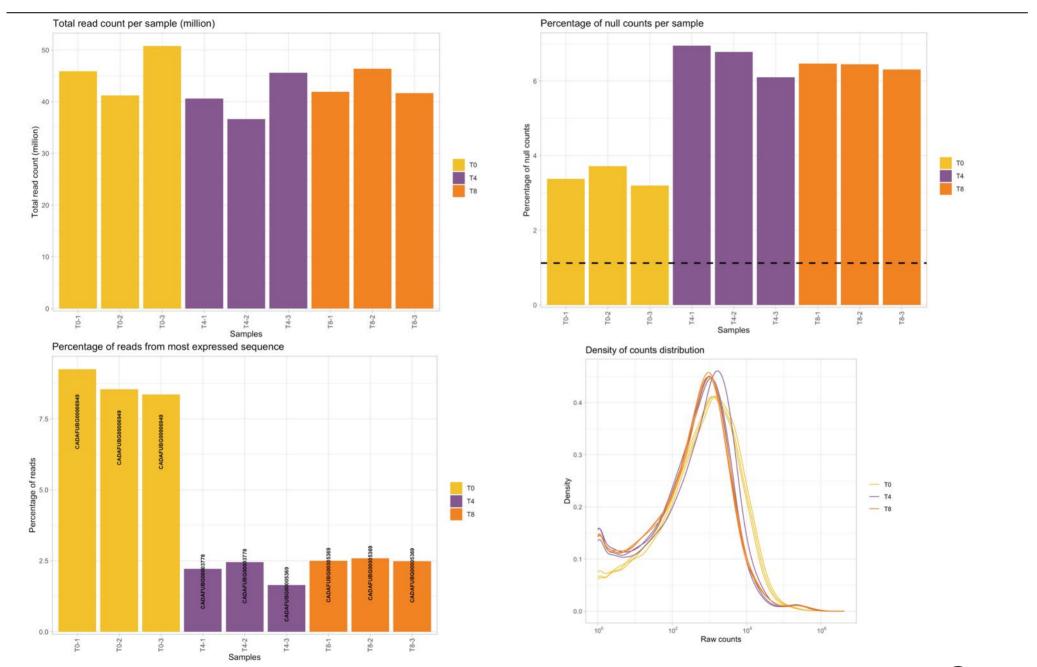
#### where:

σ<sub>ij</sub><sup>2</sup> = μ<sub>ij</sub> + φ<sub>i</sub> μ<sub>ij</sub><sup>2</sup>
 φ<sub>i</sub>: biological dispersion of gene *i*

Particularity: the  $x_{ij}$ 's are **null** or **positive integers**.

# Pairwise scatter plot of counts Counts sample 2 5000 10000 15000 20000 Counts sample 1

# Descriptions sample by sample





### **Exploratory data analysis (EDA)**

#### Two main tools:

- Principal Component Analysis (PCA)
- Clustering

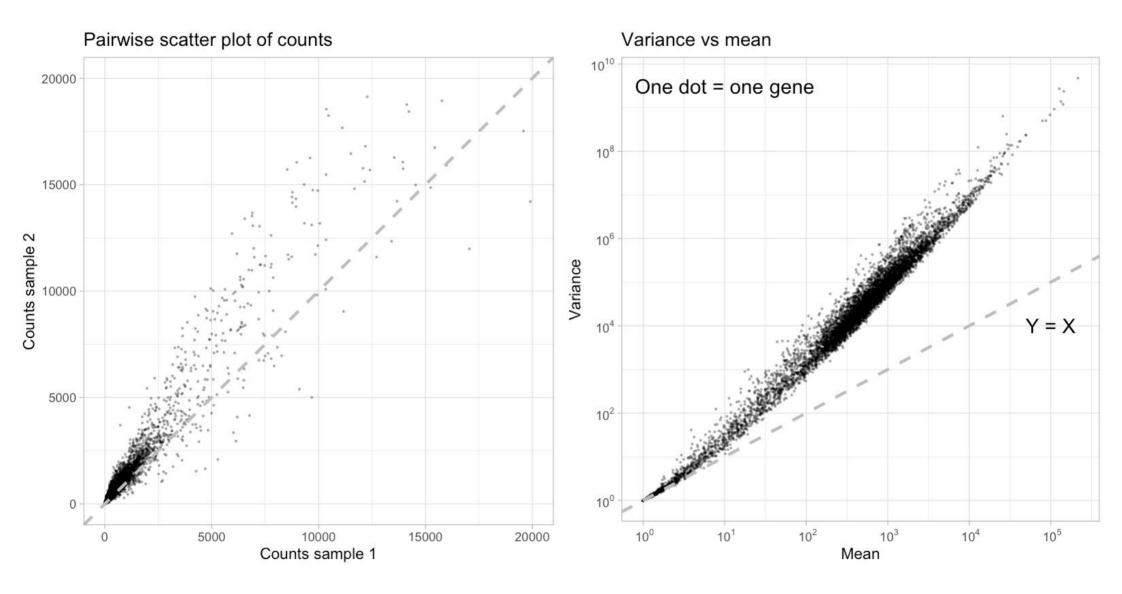
#### **Pre-requisite:**

- Notion of **distance** between the samples
- Make the data homoscedastic (=homogeneous variance)

variance must be independent of the mean

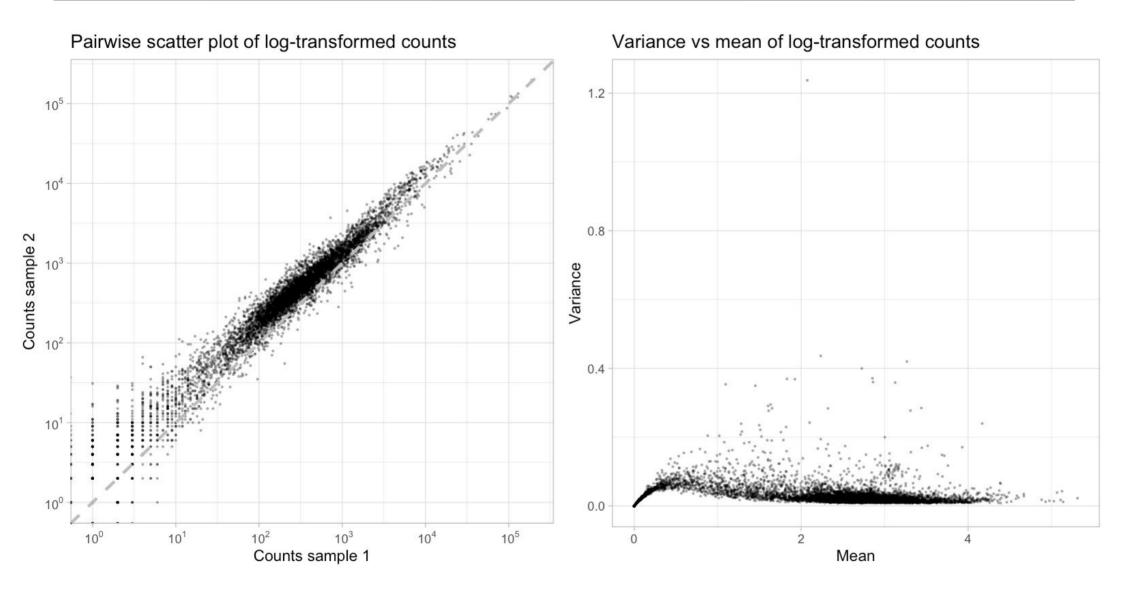


# Variance increases with intensity



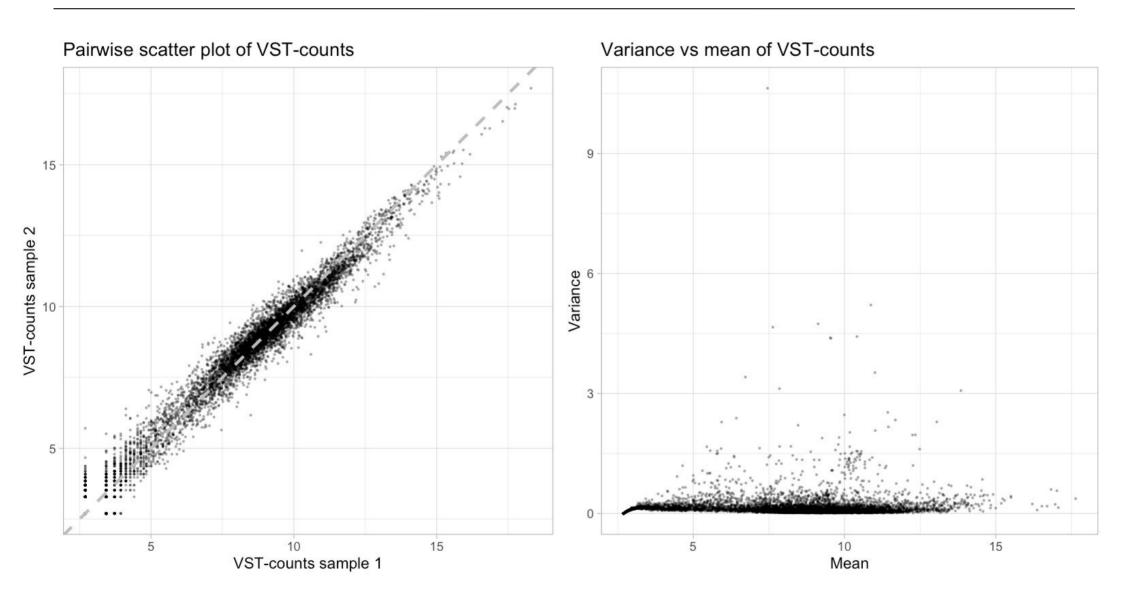


# Log-transformation





# **Variance-Stabilizing Transformation [3]**



Use these data to perform Exploratory Data Analysis ONLY!



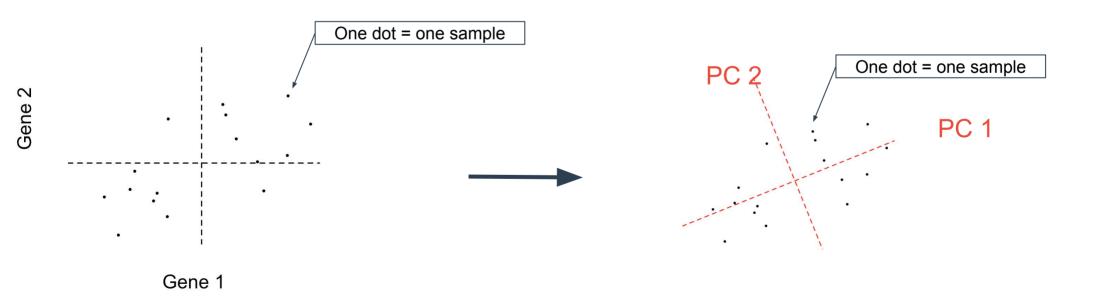
# **Principal Component Analysis (PCA)**

#### Goal:

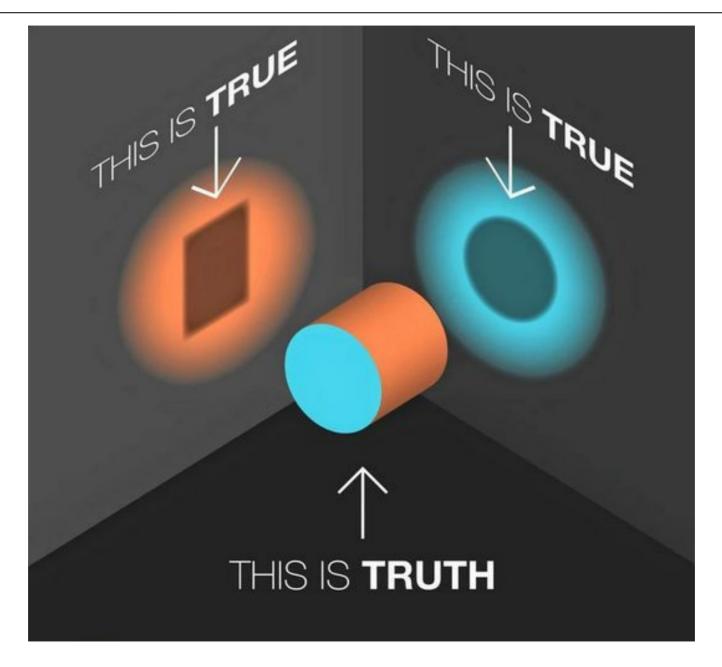
Facilitate the vision of a large (high dimensional) data set.

#### **Method:**

Project a cloud of P dots (samples) of dimension N (genes) on a subspace (e.g. a line or a plan) while conserving most of its structure.

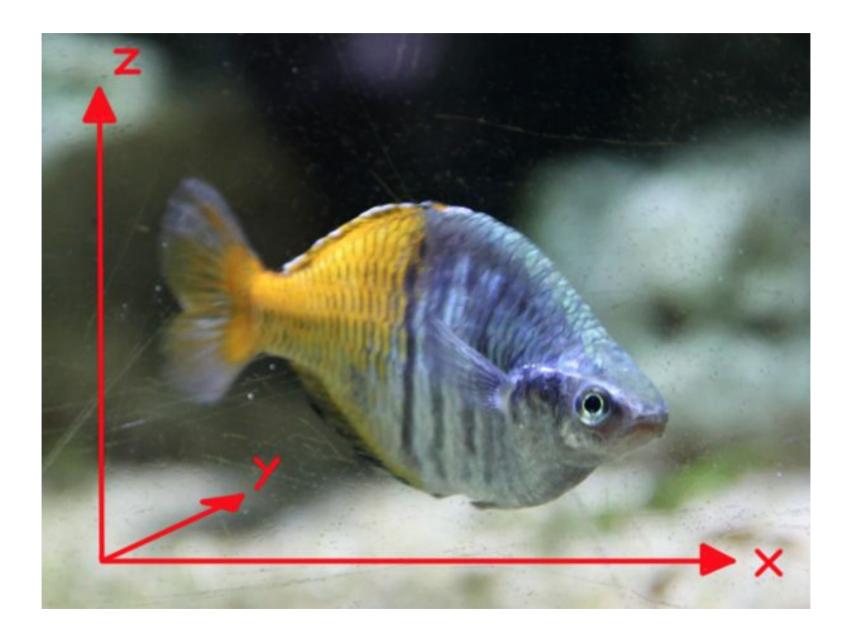


# **Projection: loss of information**



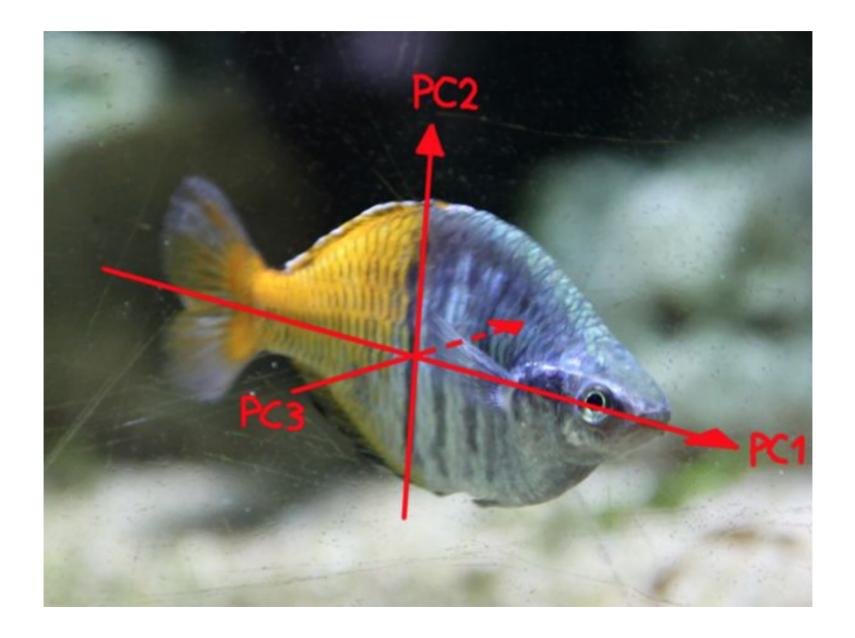


# PCA on a fish (source: bioinfo-fr.net)





# PCA on a fish (source: bioinfo-fr.net)





### **PCA:** important scores

#### Percentage of inertia associated with an axis:

- Proportion of the total information supported by this axis
- Decreases with the axis rank (by construction)

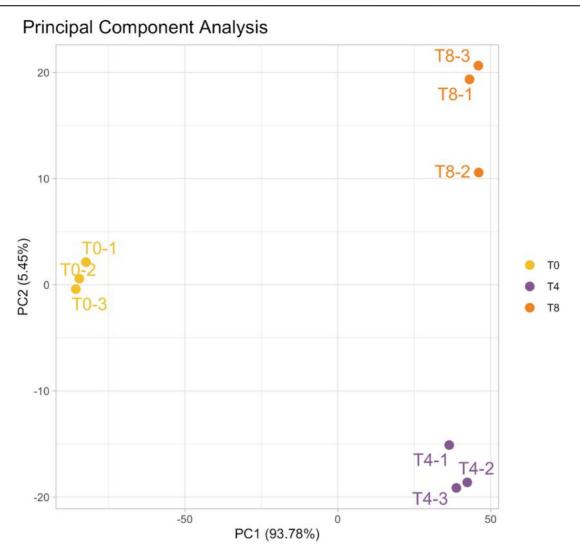
#### Number of axes to interpret:

- Such as the sum of the percentages of inertia is  $\geq x\%$
- Elbow criterion
- And many other methods

**Comment:** the data structure is (supposed to be) known in a differential analysis framework.



### **PCA: RNA-Seq example**



**Pre-requisite:** counts must be transformed (made homoscedastic) before building the PCA.



# **PCA:** dimensionality reduction

|       | T0-1 | <b>T</b> 0-2 | <b>T</b> 0-3 | <b>T4-1</b> | <b>T4-2</b> | <b>T4-3</b> | T8-1  | T8-2  | <b>T8-3</b> |
|-------|------|--------------|--------------|-------------|-------------|-------------|-------|-------|-------------|
| gene1 | 6.41 | 6.35         | 6.47         | 5.36        | 5.54        | 5.38        | 5.03  | 5.41  | 4.96        |
| gene2 | 7.07 | 7.10         | 7.02         | 9.21        | 9.24        | 9.05        | 7.69  | 8.19  | 7.77        |
| gene3 | 6.21 | 6.24         | 6.12         | 3.71        | 4.06        | 4.32        | 3.93  | 4.05  | 3.91        |
| gene4 | 7.35 | 7.34         | 7.44         | 6.51        | 6.12        | 6.44        | 6.71  | 6.47  | 6.50        |
| gene5 | 1.04 | 1.24         | 0.62         | 0.16        | 0.17        | 0.50        | 1.02  | 0.97  | 1.26        |
| gene6 | 0.69 | 0.04         | 0.36         | 0.12        | 0.67        | 0.80        | 2.02  | 1.28  | 1.32        |
| gene7 | 0.24 | 0.69         | -0.01        | -0.76       | -0.74       | -0.79       | -0.72 | -0.74 | -0.72       |
| • • • | 3.29 | 3.76         | 3.18         | 4.74        | 3.98        | 3.47        | 4.31  | 4.95  | 4.65        |
| geneN | 3.65 | 4.17         | 4.13         | 5.96        | 6.17        | 5.65        | 4.09  | 4.02  | 3.98        |

# From genes/variables to principal components

| PC1 | -60.1 | -61.0 | -61.5 | 25.9  | 30.4  | 28.8  | 31.0 | 33.1 | 33.3 |
|-----|-------|-------|-------|-------|-------|-------|------|------|------|
| PC2 | 1.3   | 0.5   | -0.1  | -11.9 | -14.0 | -15.0 | 15.1 | 7.9  | 16.3 |
| PC3 | 0.4   | 0.3   | 0.1   | -0.1  | -0.2  | -0.3  | 0.1  | 0    | -0.1 |
| PC4 | -0.2  |       | -0.1  | 0.1   | 0.1   | 0.2   | -0.1 | -0.2 | 0.2  |



Transcriptome study of a bacteria at 0h, 2h, 16h and 24h:

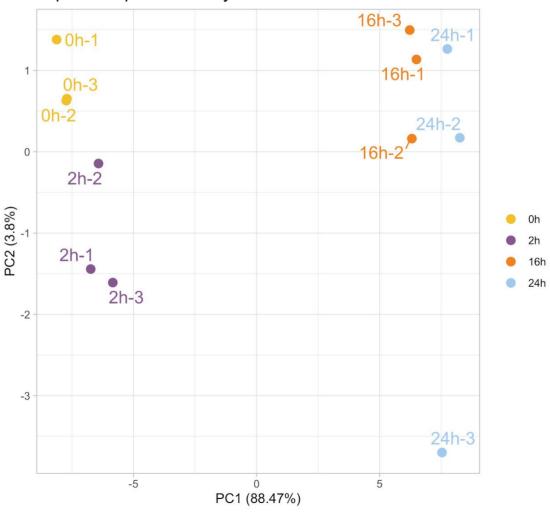
| r1<br>r2<br>r3 |    |    |    |    |     |     | r1<br>r2<br>r3 |
|----------------|----|----|----|----|-----|-----|----------------|
|                | 0h | 2h | 4h | 8h | 16h | 24h |                |

| label | time | replicate | date  | libraries_method | libraries_exp | libraries_date |
|-------|------|-----------|-------|------------------|---------------|----------------|
| 0h-1  | 0h   | r1        | oct18 | robot            | Bob           | nov18          |
| 0h-2  | 0h   | r2        | oct18 | robot            | Bob           | nov18          |
| 0h-3  | 0h   | r3        | oct18 | robot            | Bob           | nov18          |
| 2h-1  | 2h   | r1        | oct18 | robot            | Bob           | nov18          |
| 2h-2  | 2h   | r2        | oct18 | robot            | Bob           | nov18          |
| 2h-3  | 2h   | r3        | oct18 | robot            | Bob           | nov18          |
| 16h-1 | 16h  | r1        | oct18 | robot            | Bob           | nov18          |
| 16h-2 | 16h  | r2        | oct18 | robot            | Bob           | nov18          |
| 16h-3 | 16h  | r3        | oct18 | robot            | Bob           | nov18          |
| 24h-1 | 24h  | r1        | oct18 | robot            | Bob           | nov18          |
| 24h-2 | 24h  | r2        | oct18 | robot            | Bob           | nov18          |
| 24h-3 | 24h  | r3        | oct18 | robot            | Bob           | nov18          |



#### Transcriptome study of a bacteria at 0h, 2h, 16h and 24h:

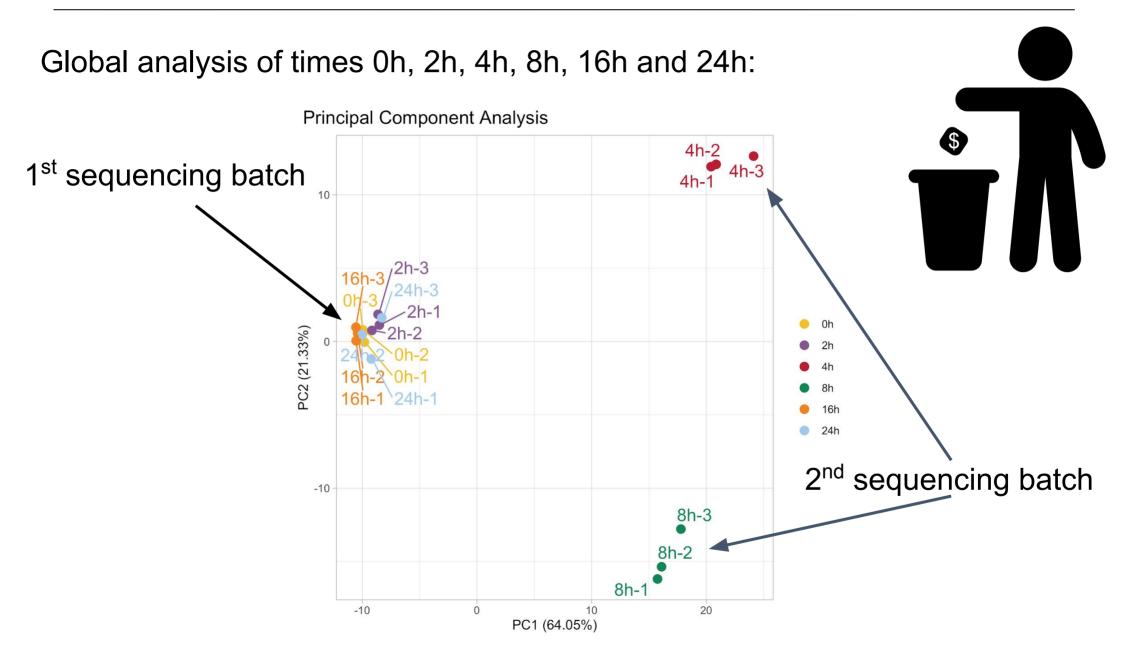






#### Add samples 4h and 8h from the same cultures:

| r1<br>r2<br>r3 |        |      |           |       |                  |               |                |
|----------------|--------|------|-----------|-------|------------------|---------------|----------------|
|                | <br>0h | 21   | h         | 4h    | n 8h             | 16h           | 24h            |
|                | label  | time | replicate | date  | libraries_method | libraries_exp | libraries_date |
|                | 0h-1   | 0h   | r1        | oct18 | robot            | Bob           | nov18          |
|                | 0h-2   | 0h   | r2        | oct18 | robot            | Bob           | nov18          |
|                | 0h-3   | 0h   | r3        | oct18 | robot            | Bob           | nov18          |
|                | 2h-1   | 2h   | r1        | oct18 | robot            | Bob           | nov18          |
|                | 2h-2   | 2h   | r2        | oct18 | robot            | Bob           | nov18          |
|                | 2h-3   | 2h   | r3        | oct18 | robot            | Bob           | nov18          |
|                | 4h-1   | 4h   | r1        | oct18 | manual           | Donald        | jun19          |
|                | 4h-2   | 4h   | r2        | oct18 | manual           | Donald        | jun19          |
|                | 4h-3   | 4h   | r3        | oct18 | manual           | Donald        | jun19          |
|                | 8h-1   | 8h   | r1        | oct18 | manual           | Donald        | jun19          |
|                | 8h-2   | 8h   | r2        | oct18 | manual           | Donald        | jun19          |
|                | 8h-3   | 8h   | r3        | oct18 | manual           | Donald        | jun19          |
|                | 16h-1  | 16h  | r1        | oct18 | robot            | Bob           | nov18          |
|                | 16h-2  | 16h  | r2        | oct18 | robot            | Bob           | nov18          |
|                | 16h-3  | 16h  | r3        | oct18 | robot            | Bob           | nov18          |
|                | 24h-1  | 24h  | r1        | oct18 | robot            | Bob           | nov18          |
|                | 24h-2  | 24h  | r2        | oct18 | robot            | Bob           | nov18          |
| 50   (         | 24h-3  | 24h  | r3        | oct18 | robot            | Bob           | nov18          |





# **PCA:** pairing factor

Two treatments applied to human cells coming from 3 donors:

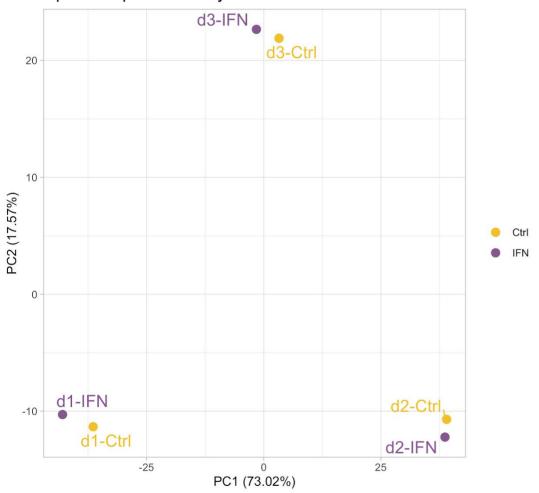
| label   | treatment | donor |
|---------|-----------|-------|
| d1-IFN  | IFN       | d1    |
| d1-Ctrl | Ctrl      | d1    |
| d2-IFN  | IFN       | d2    |
| d2-Ctrl | Ctrl      | d2    |
| d3-IFN  | IFN       | d3    |
| d3-Ctrl | Ctrl      | d3    |



# **PCA:** pairing factor

#### Two treatments applied to human cells coming from 3 donors:

#### **Principal Component Analysis**



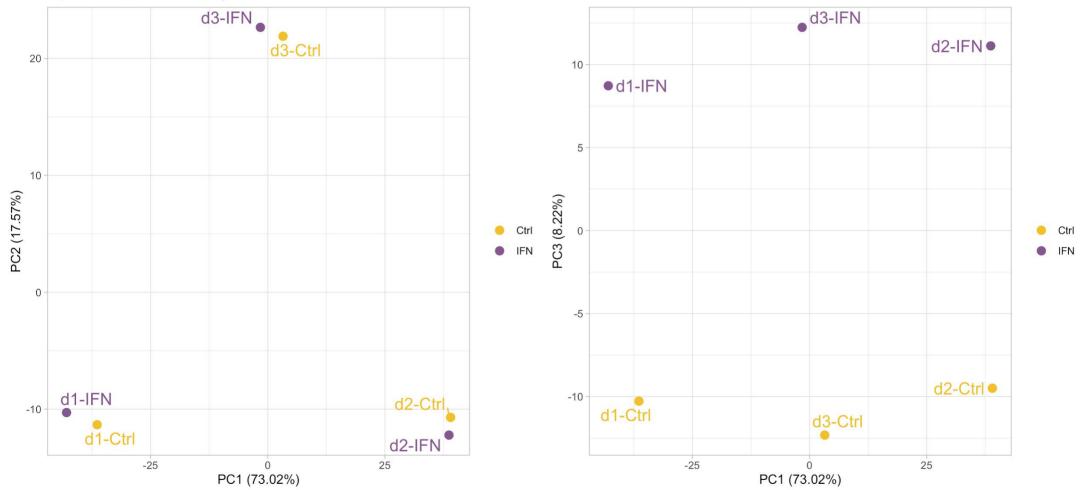




# **PCA:** pairing factor

#### Two treatments applied to human cells coming from 3 donors:

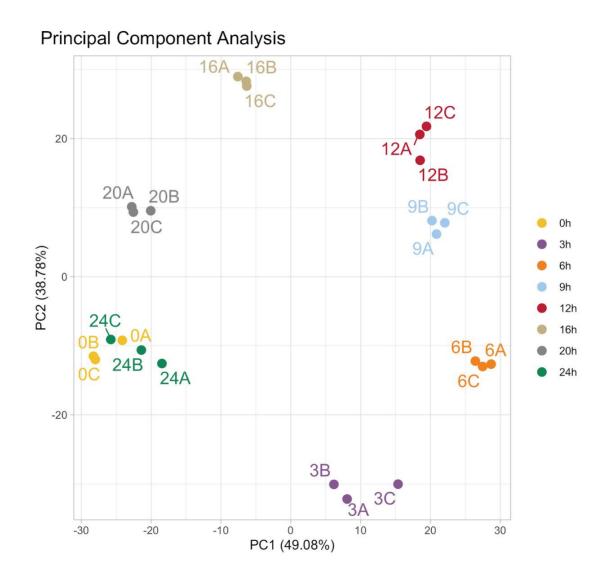
#### **Principal Component Analysis**





# PCA: most beautiful RNA-Seq example

Transcriptome study of a cyanobacteria at 8 time points from 0h to 24h:





### **SERE** coefficient [2]

#### Simple Error Ratio Estimate

Goal: assess the similarity/dissimilarity between samples



More suited to RNA-Seq data than the Pearson/Spearman correlation coefficients.



#### **SERE** coefficient: details

- 2 samples (A and B) and N genes under study
- $y_{ii}$  = # of reads for gene i (1, ..., N) and sample j (A or B)
- L<sub>i</sub> = total # of reads (library size) for sample j
- $E_i = y_{i\Delta} + y_{iB} = \text{number of reads for gene } i$
- Expected # of reads for gene *i* and sample *j*:

$$\hat{y}_{ij} = E_i \times L_j / (L_A + L_B)$$

- **Expected variation** for each observation  $y_{ii}$ :  $(y_{ii} \hat{y}_{ii})^2$
- **Expected variation** under Poisson assumption:  $\hat{y}_{ii}$
- Overdispersion for each gene i:  $s_i^2 = (y_{i\Delta} \hat{y}_{i\Delta})^2 / \hat{y}_{i\Delta} + (y_{iR} \hat{y}_{iR})^2 / \hat{y}_{iR}$

SERE(A, B) = sqrt(
$$(\Sigma_{i=1} N S_i^2) / N$$
)



#### **SERE** coefficient: details

#### Simple Error Ratio Estimate (SERE)

Given a set of N exons and M lanes, let  $y_{ij}$  denote the number of reads covering the  $i^{th}$  exon in the  $j^{th}$  lane. Let  $L_j$  be the total read count for lane j,  $E_i$  the total for exon i, and T the grand total count across all lanes and exons. Under the hypothesis that the lanes are simple technical replicates of each other, they will have a Poisson distribution with one parameter. This parameter can be thought of as the expected number of reads for the lane j and the exon i. Its estimate can be calculated using eq. 1.

$$\widehat{y}_{ij} = \frac{E_i L_j}{T}$$

The expected variation for each observation  $y_{ij}$  is  $(y_{ij} - \hat{y}_{ii})^2$ , and the expected variation under the Poisson assumption is  $\hat{y}_{ij}$ . This gives a per exon overdispersion estimate of:

$$s_i^2 = \frac{1}{M-1} \sum_j \frac{(y_{ij} - \hat{y}_{ij})^2}{\hat{y}_{ij}}$$

The denominator is (M-1) due to the constraint that  $\sum_{i} (y_{ij} - \hat{y}_{ij}) = 0$  for each exon *i*.

Averaging over all N exons we have:

$$s^2 = \frac{1}{N} \sum_i s_i^2$$

The SERE estimate is 
$$s = \sqrt{(s^2)}$$
.



# **SERE** coefficient: example

|      | T0-1  | T0-2  | T0-3  | T4-1  | T4-2  | T4-3  | T8-1  | T8-2  | T8-3  |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| T0-1 | 0     | 2.97  | 3.88  | 73.89 | 71.83 | 74.02 | 74.69 | 76.90 | 74.03 |
| T0-2 | 2.97  | 0     | 3.00  | 72.21 | 70.03 | 72.33 | 72.94 | 75.15 | 72.32 |
| T0-3 | 3.88  | 3.00  | 0     | 76.34 | 74.28 | 76.33 | 77.18 | 79.38 | 76.51 |
| T4-1 | 73.89 | 72.21 | 76.34 | 0     | 5.83  | 10.42 | 17.27 | 14.93 | 17.99 |
| T4-2 | 71.83 | 70.03 | 74.28 | 5.83  | 0     | 10.89 | 17.77 | 15.07 | 18.10 |
| T4-3 | 74.02 | 72.33 | 76.33 | 10.42 | 10.89 | 0     | 19.86 | 18.25 | 20.07 |
| T8-1 | 74.69 | 72.94 | 77.18 | 17.27 | 17.77 | 19.86 | 0     | 6.72  | 4.04  |
| T8-2 | 76.90 | 75.15 | 79.38 | 14.93 | 15.07 | 18.25 | 6.72  | 0     | 8.22  |
| T8-3 | 74.03 | 72.32 | 76.51 | 17.99 | 18.10 | 20.07 | 4.04  | 8.22  | 0     |

Drawback: not very easy to interpret with many samples.



# **Clustering**

#### Goal: build groups of samples such that:

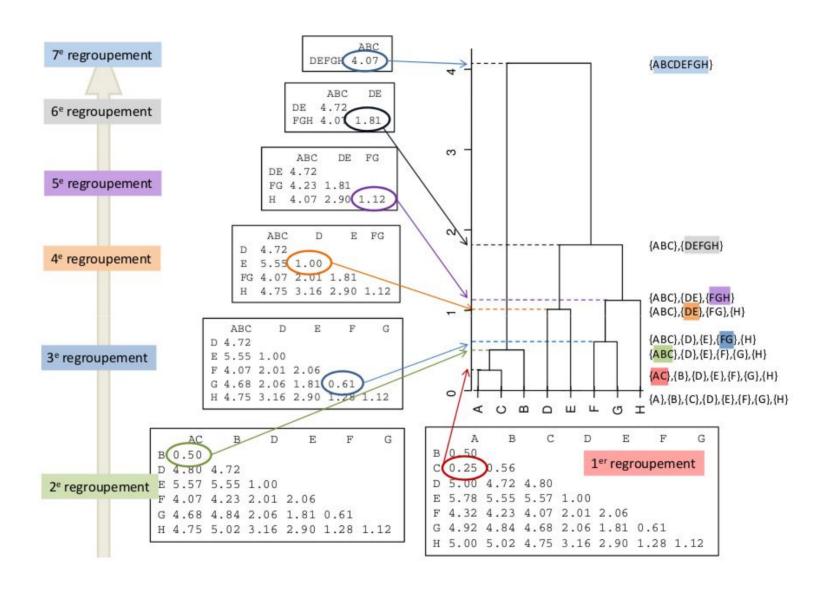
- samples within a group are similar
- samples from distinct groups are different

#### Method (ascendant clustering):

- 1. Calculate the distances between each pair of samples
- 2. Gather the two nearest samples into a cluster
- 3. Calculate the distance between this cluster and each sample
- 4. Gather the two nearest clusters/samples
- 5. Go back to step 3 until getting a single cluster



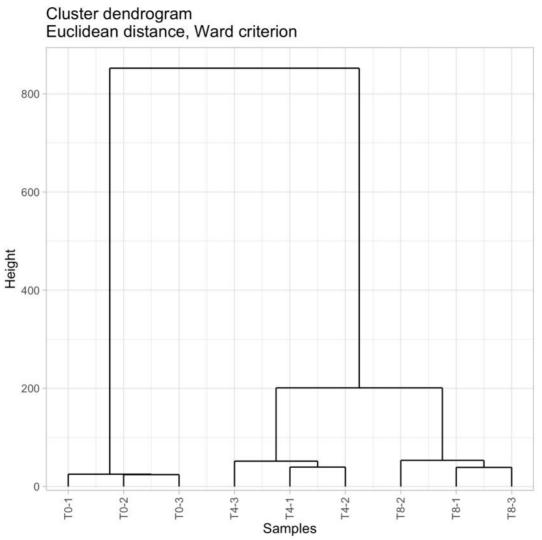
### Hierarchical clustering: example



Source: MOOC FUN Analyse de données 2015 – Agrocampus Ouest



# Hierarchical clustering: RNA-Seq example



**Pre-requisite:** counts must be transformed (made homoscedastic) before building the PCA.



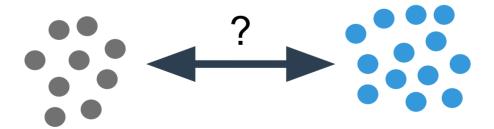
# **Clustering parameters**



**Distance between two samples:** euclidean, correlation, Manhattan, SERE ...

#### Aggregation criterion (i.e. distance between two clusters):

- Average linkage: average distance between all the samples
- Single linkage: distance between the two closest samples
- Complete linkage: distance between the two furthest samples
- Ward: merge the clusters that lead to the cluster with minimum variance

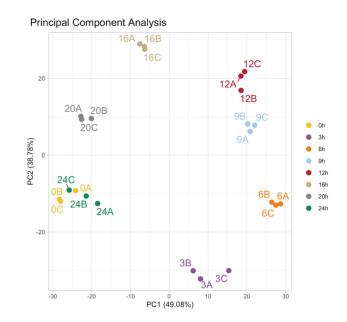




### **Data exploration: Take-home message**

#### Always visualize your data first!

To detect early on potential problems in the design To guide you through the next steps of the analysis To provide some biological interpretation To communicate your results



Don't overlook potential breach of hypothesis for the analysis methods, or choices of parameters



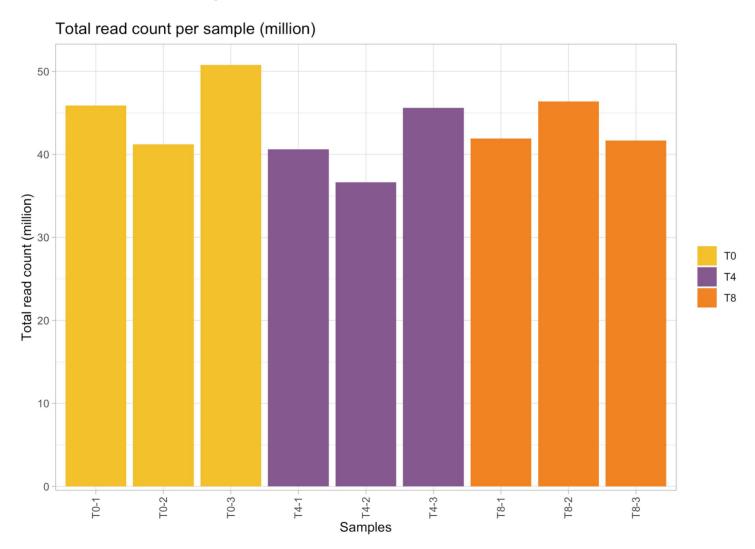
#### **Outline**

- 1. Introduction
- 2. Designing the experiment
- 3. Description/exploration
- 4. Normalization
- 5. Modeling
- 6. SARTools



### Goal

Identify and correct for systematic technical bias and make the counts comparable between samples.





#### Framework

#### Normalization framework:

- RNA-seq data
- Differential expression experiment
- Counts data (positive integer values)

**Total number of reads (library size)**: number of reads sequenced, mapped and counted for a given sample (sum over the rows for a given column of the count matrix).



## Goal of the RNA-Seq normalizations

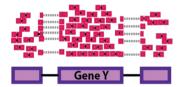
#### 1. Correct for the differences of library sizes:

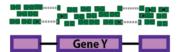
#### **Sample A Reads**















|       | Sample 1 | Sample 2 |
|-------|----------|----------|
| gene1 | 30       | 60       |
| gene2 | 50       | 100      |
| gene3 | 20       | 40       |
| gene4 | 100      | 200      |
| Total | 200      | 400      |

https://hbctraining.github.io/DGE\_workshop/lessons/02\_DGE\_count\_normalization.html



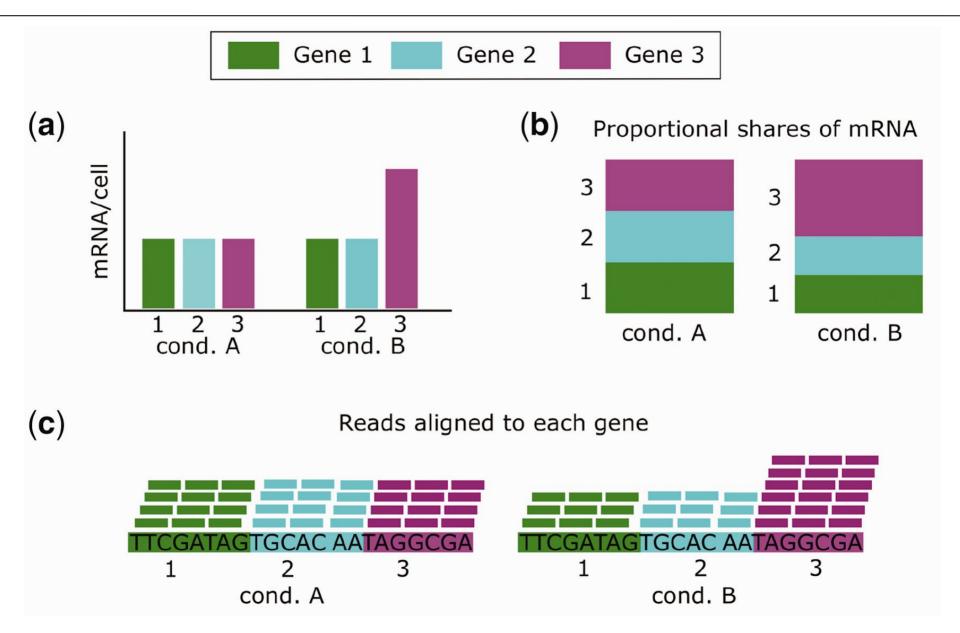
# Goal of the RNA-Seq normalizations

#### 2. Correct for the differences of RNA compositions:





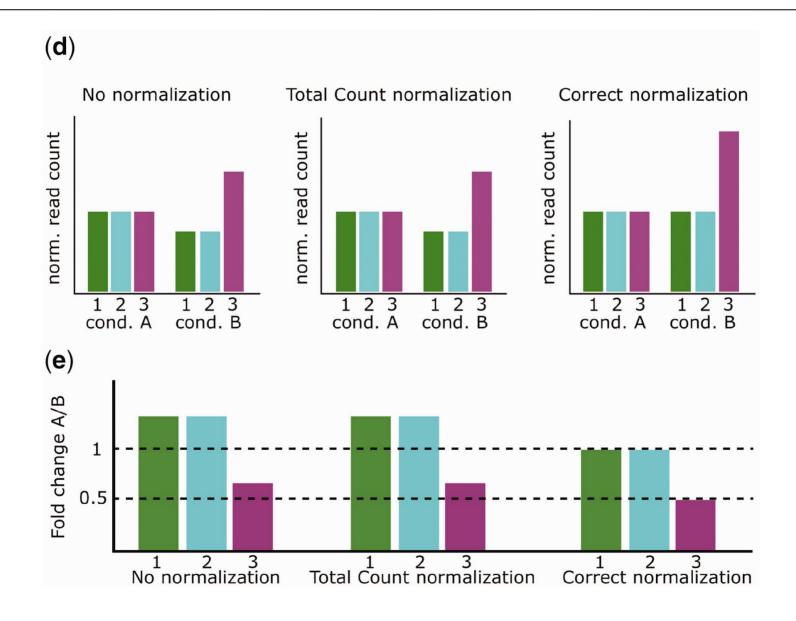
### What is a differentially expressed gene? [10]

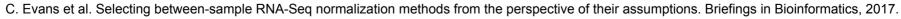


C. Evans et al. Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions. Briefings in Bioinformatics, 2017.



## What is a differentially expressed gene? [10]







**Step 1 :** Creating a pseudo-reference sample (row-wise *geometric mean*)

|        | <b>T0-1</b> | <b>T</b> 0-5 | • • • | <b>T8-3</b> |
|--------|-------------|--------------|-------|-------------|
| gene1  | 151         | 131          | • • • | 18          |
| gene2  | 142         | 134          | • • • | 151         |
| gene3  | 157         | 147          | • • • | 8           |
| gene4  | 275         | 249          | • • • | 62          |
| gene5  | 4           | 5            | • • • | 3           |
| gene6  | 2           | 0            | • • • | 3           |
| gene7  | 4           | 7            | • • • | 0           |
| gene8  | 10          | 16           | • • • | 23          |
| gene9  | 12          | 20           | • • • | 9           |
| gene10 | 269         | 262          | • • • | 48          |
| • • •  | • • •       |              | • • • |             |
| geneN  | 18          | 31           |       | 2           |



**Step 1 :** Creating a pseudo-reference sample (row-wise *geometric mean*)

|        | T0-1           | <b>T</b> 0-5 |       | T8-3 pseudo-ref          |
|--------|----------------|--------------|-------|--------------------------|
| gene1  | ( 151 <b>x</b> | 131 <b>x</b> | • • • | $\times$ 18) $^{1/n}$ 31 |
| gene2  | 142            | 134          |       | 151                      |
| gene3  | 157            | 147          |       | 8                        |
| gene4  | 275            | 249          |       | 62                       |
| gene5  | 4              | 5            |       | 3                        |
| gene6  | 2              | 0            |       | 3                        |
| gene7  | 4              | 7            |       | 0                        |
| gene8  | 10             | 16           |       | 23                       |
| gene9  | 12             | 20           |       | 9                        |
| gene10 | 269            | 262          |       | 48                       |
|        | • • •          | • • •        | • • • |                          |
| geneN  | 18             | 31           |       | 2                        |



**Step 1 :** Creating a pseudo-reference sample (row-wise *geometric mean*)

|        |      |              |       |             | !          |
|--------|------|--------------|-------|-------------|------------|
|        | T0-1 | <b>T</b> 0-5 |       | <b>T8-3</b> | pseudo-ref |
| gene1  | 151  | 131          | • • • | 18          | 31         |
| gene2  | 142  | 134          | • • • | 151         | 650        |
| gene3  | 157  | 147          | • • • | 8           | 7          |
| gene4  | 275  | 249          |       | 62          | 70         |
| gene5  | 4    | 5            |       | 3           | 2          |
| gene6  | 2    | 0            |       | 3           | 1          |
| gene7  | 4    | 7            |       | 0           | 5          |
| gene8  | 10   | 16           |       | 23          | 28         |
| gene9  | 12   | 20           |       | 9           | 74         |
| gene10 | 269  | 262          |       | 48          | 112        |
|        |      |              |       |             |            |
| geneN  | 18   | 31           |       | 2           | 4          |



Step 2: Comparing each sample to pseudo-reference (ratio)

|        |      |              |       |             | 1          |            |
|--------|------|--------------|-------|-------------|------------|------------|
|        | 70-1 | <b>T</b> 0-5 |       | <b>T8-3</b> | pseudo-ref | T0-1 / ref |
| gene1  | 151  | 131          |       | 18          | 31         | 4.87       |
| gene2  | 142  | 134          |       | 151         | 650        | 0.22       |
| gene3  | 157  | 147          | • • • | 8           | 7          | 22.43      |
| gene4  | 275  | 249          | • • • | 62          | 70         | 3.93       |
| gene5  | 4    | 5            |       | 3           | 2          | 2.00       |
| gene6  | 2    | 0            |       | 3           | 1          | 2.00       |
| gene7  | 4    | 7            |       | 0           | 5          | 0.80       |
| gene8  | 10   | 16           |       | 23          | 28         | 0.36       |
| gene9  | 12   | 20           | • • • | 9           | 74         | 0.16       |
| gene10 | 269  | 262          | • • • | 48          | 112        | 2.40       |
| • • •  | \ /  | • • •        |       | • • •       | 1          |            |
| geneN  | 18   | 31           | • • • | 2           | 4          | 4.87       |
|        |      |              |       |             |            |            |



**Step 3 :** Final size factor (median)

|        | T0-1  | <b>T</b> 0-5 | • • • | <b>T8-3</b> | pseudo-ref | T0-1 / re | ef                 |
|--------|-------|--------------|-------|-------------|------------|-----------|--------------------|
| gene1  | 151   | 131          | • • • | 18          | 31         | 4.87      |                    |
| gene2  | 142   | 134          | • • • | 151         | 650        | 0.22      |                    |
| gene3  | 157   | 147          | • • • | 8           | 7          | 22.43     |                    |
| gene4  | 275   | 249          | • • • | 62          | 70         | 3.93      |                    |
| gene5  | 4     | 5            | • • • | 3           | 2          | 2.00      |                    |
| gene6  | 2     | 0            | • • • | 3           | 1          | 2.00      |                    |
| gene7  | 4     | 7            | • • • | 0           | 5          | 0.80      | $s_1 = \text{med}$ |
| gene8  | 10    | 16           | • • • | 23          | 28         | 0.36      |                    |
| gene9  | 12    | 20           | • • • | 9           | 74         | 0.16      |                    |
| gene10 | 269   | 262          | • • • | 48          | 112        | 2.40      |                    |
| • • •  | • • • | • • •        | • • • | • • •       | · · · ·    | • • •     |                    |
| geneN  | 18    | 31           | • • • | 2           | 4          | 4.87      | J                  |



Normalized count :  $x'_{ij} = \frac{x_{ij}}{s_j}$ 

**Step 1 :** geometric mean of each gene

**Step 2 :** ratio between sample and reference

|        | <b>T</b> 0-1 | <b>T</b> 0-5 |       | т8-3  | $(\prod_{k=1}^n x_{ik})$ | $\frac{1}{n} \left( \prod_{k=1}^{n} x_{ik} \right)^{\frac{1}{n}}$ |
|--------|--------------|--------------|-------|-------|--------------------------|-------------------------------------------------------------------|
| gene1  | 151          | 131          | • • • | 18    | 31                       | 4.87                                                              |
| gene2  | 142          | 134          | • • • | 151   | 650                      | 0.22                                                              |
| gene3  | 157          | 147          | • • • | 8     | 7                        | 22.43                                                             |
| gene4  | 275          | 249          | • • • | 62    | 70                       | 3.93                                                              |
| gene5  | 4            | 5            | • • • | 3     | 2                        | 2.00                                                              |
| gene6  | 2            | 0            | • • • | 3     | 1                        | 2.00                                                              |
| gene7  | 4            | 7            | • • • | 0     | 5                        | 0.80                                                              |
| gene8  | 10           | 16           | • • • | 23    | 28                       | 0.36                                                              |
| gene9  | 12           | 20           | • • • | 9     | 74                       | 0.16                                                              |
| gene10 | 269          | 262          | • • • | 48    | 112                      | 2.40                                                              |
| • • •  | • • •        | • • •        | • • • | • • • | 1                        |                                                                   |
| geneN  | 18           | 31           | • • • | 2     | 4                        | 4.87                                                              |

Step 3: median

 $s_1$  = median



# DESeq2 normalization [3]

# Size factor $s_i$ per sample:

$$s_j = \text{median}_i \frac{x_{ij}}{(\prod_{k=1}^n x_{ik})^{\frac{1}{n}}}$$

- $x_{ij}$ : number of reads for gene i in sample j n: number of samples studied
- $s_i$ : normalization factor for sample j

#### Normalized counts:

$$x'_{ij} = \frac{x_{ij}}{s_j}$$

### **Assumptions:**

- 1. The majority of the genes is not differentially expressed
- 2. As many down- as up-regulated genes



## edgeR normalization [4]

edgeR computes a normalization factor  $f_i$  per sample and normalizes the total numbers of reads  $N_i$ :

$$N_j' = f_j \times N_j$$

- x<sub>ij</sub>: number of reads for gene *i* in sample *j*N<sub>j</sub>: total number of reads in sample *j* (lib size)
  n: number of samples studied
- s<sub>j</sub> or f<sub>j</sub>: normalization factor for sample j
  L<sub>i</sub>: length of gene i

We can calculate DESeq2-like size factors  $s_i$  in order to normalize the counts:

$$s_j = \frac{N'_j}{\frac{1}{n} \sum_k N'_k}$$
 and so  $x'_{ij} = \frac{x_{ij}}{s_j}$ 

**Assumptions:** same than DESeq2.



### Other normalization methods

#### Total number of reads:



Robustness issue if a gene catches a very high number of reads.

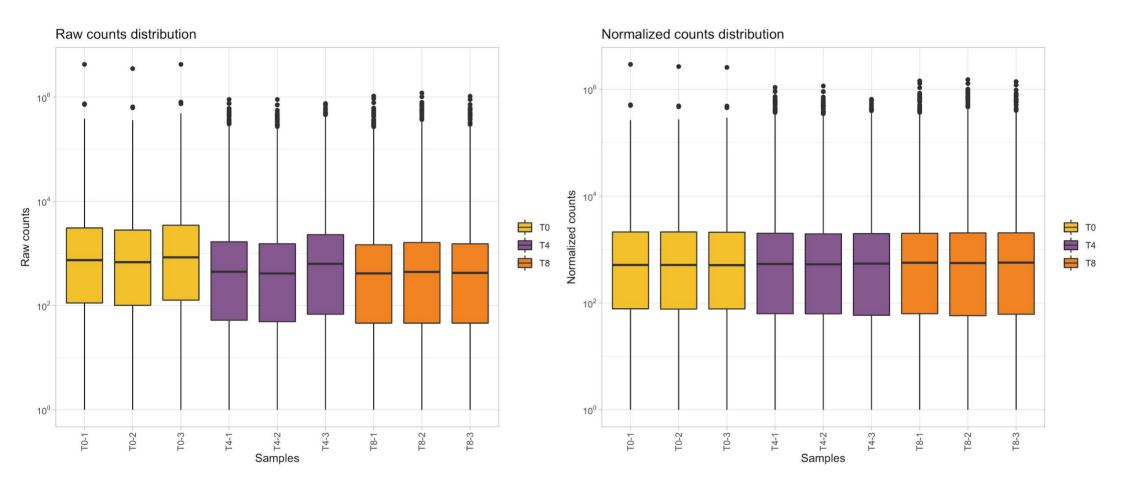
### RPKM (Reads Per Kilobase per Million mapped reads):

$$x'_{ij} = \frac{x_{ij}}{N_j \times L_i} \times 10^6 \times 10^3$$

- Same issue than the total number of reads method
- Introduce other biases [5]
- No need to correct for the gene length since the gene is "fixed"



# Effect of the normalization (DESeq2 or edgeR)





#### **Outline**

- 1. Introduction
- 2. Designing the experiment
- 3. Description/exploration
- 4. Normalization
- 5. Modeling
- 6. SARTools



#### Classic linear model

#### Goal:

Explain a dependent variable Y thanks to a set a explicative variables  $X = (X_1, ..., X_n)$  using the model:

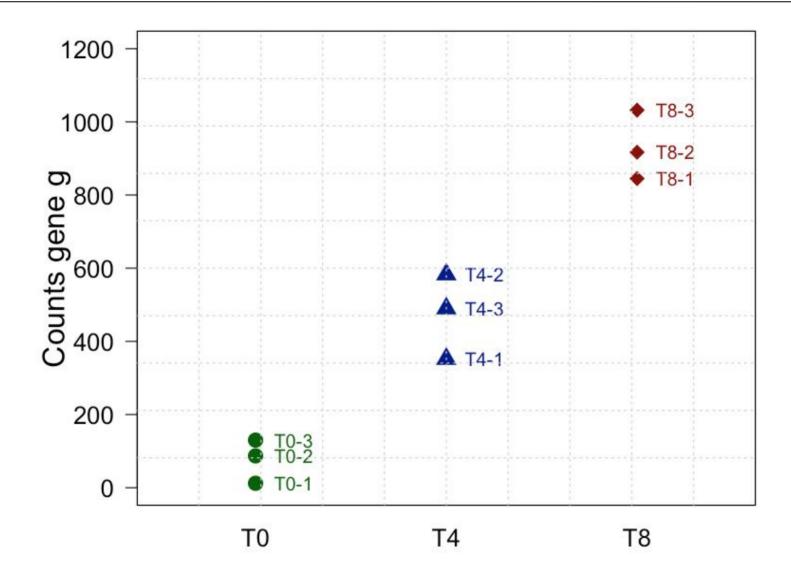
$$Y \sim X\beta + \varepsilon$$

### Output of the model:

Estimations of  $\beta_1, ..., \beta_n$ : effect of each explicative variable on Y.



## Linear model: RNA-Seq example





**Goal:** explain counts of gene *g* thanks to the biological conditions.



## Linear model: RNA-Seq example

**Goal:** explain counts of gene *g* thanks to the bio. conditions (T0, T4 and T8).

$$\log_{2} \begin{pmatrix} 12 \\ 87 \\ 130 \\ 352 \\ 583 \\ 490 \\ 845 \\ 917 \\ 1032 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} \epsilon_{g1} \\ \epsilon_{g2} \\ \epsilon_{g3} \\ \epsilon_{g4} \\ \epsilon_{g5} \\ \epsilon_{g6} \\ \epsilon_{g7} \\ \epsilon_{g8} \\ \epsilon_{g9} \end{pmatrix}$$

Here:

$$\hat{\beta}_{0g} = 5.95, \quad \hat{\beta}_{1g} = 2.91 \quad \text{and} \quad \hat{\beta}_{2g} = 3.5$$

One model per gene → thousands of models!



## Statistical testing

|        | Green1 | Green2 | Green3 | Gray1 | Gray2 | Gray3 |
|--------|--------|--------|--------|-------|-------|-------|
| Gene g | 151    | 131    | 183    | 135   | 184   | 122   |

### **Biological question:**

Is gene g differentially expressed between green and gray mice?



## Statistical testing

|        | Green1 | Green2 | Green3 | Gray1 | Gray2 | Gray3 |
|--------|--------|--------|--------|-------|-------|-------|
| Gene g | 151    | 131    | 183    | 135   | 184   | 122   |

#### **Biological question:**

Is gene g differentially expressed between green and gray mice?

#### Statistical notation

Let  $\mu_1$  the average expression of gene g for gray mice and  $\mu_2$  the expression of green mice. We wish to test the hypotheses:

$$H_0: \mu_1 = \mu_2$$
 vs.  $H_1: \mu_1 \neq \mu_2$ 

How to decide?

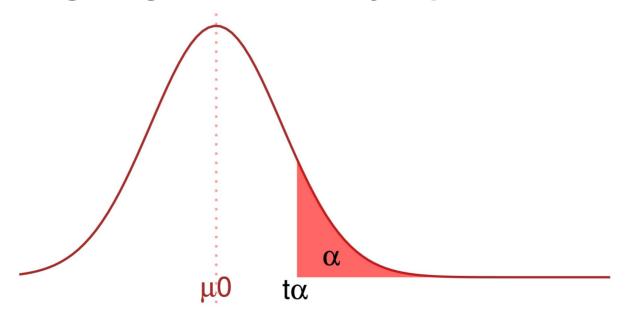


### Type I error rate: $\alpha$

#### Framework and goal:

We wish to show that the expression of gene *g* of gray mice is different from the expression of green mice.

Which **risk** α of being wrong do we allow when saying : "gene g is differentially expressed?"



The risk  $\alpha$  is chosen **before the analysis** 



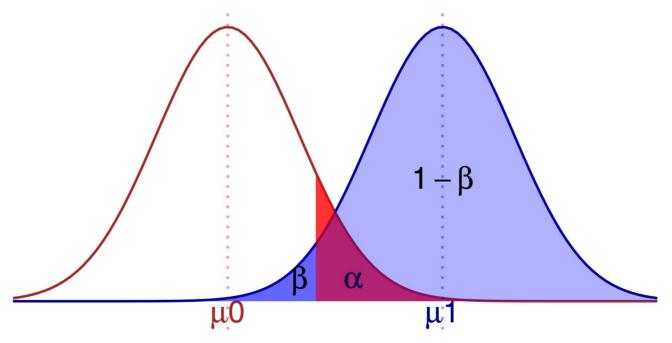
### Type II error rate: $\beta$

We assume that gene g is truly differentially expressed between gray and green mice.

- Which risk  $\beta$  of not discovering gene g do we allow?
- Which power  $1 \beta$  do we want?

We can theoretically control the risk  $\beta$  according to the risk  $\alpha$  and the number

of replicates.





### Type I and type II errors

### **Hotdog classification**

Type I error

# **True negative**



## **False positive**



### **False negative**



True positive



Type II error



#### **Formalization**

Let  $\mu_1$  the average expression of gene g for gray mice and  $\mu_2$  the expression of green mice. We wish to test the hypotheses:

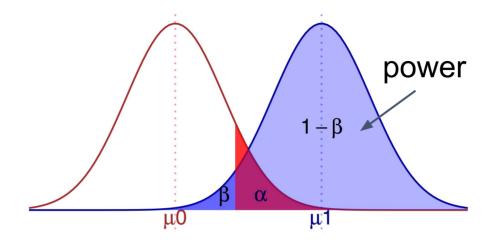
$$H_0: \mu_1 = \mu_2$$
 vs.  $H_1: \mu_1 \neq \mu_2$ 

The risks can be summarized in:

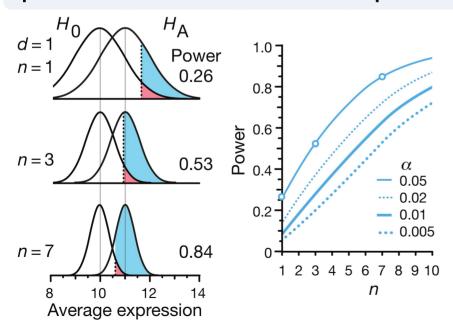
|                  |                      | Decision      |                  |                       |    |  |  |  |  |
|------------------|----------------------|---------------|------------------|-----------------------|----|--|--|--|--|
|                  |                      | Do not reject | t H <sub>o</sub> | Reject H <sub>0</sub> |    |  |  |  |  |
| Unknown<br>truth | H <sub>0</sub> true  | 1 - α         | TP               | α                     | FN |  |  |  |  |
| truth            | H <sub>0</sub> false | β             | FP               | 1 - β                 | TN |  |  |  |  |



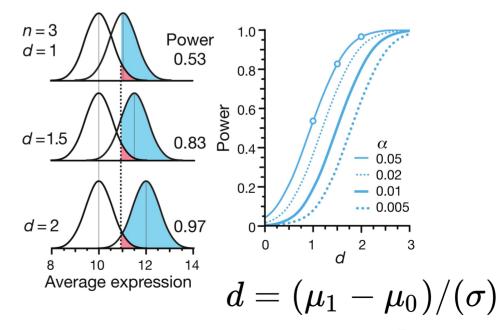
### **Statistical Power**



#### power increases with sample size



#### and with effect size!





### p-value and conclusion of the test

#### **Definition:**

```
p-value = Proba(reject H_0 \mid H_0 true)
```

= Proba(doing a mistake when rejecting H<sub>0</sub>)

= Proba(observed difference is due to hazard)

#### **Conclusion:**

if p-value  $\leq \alpha$  then we reject  $H_0$ 

With a risk α, we can conclude that there is a significant difference in gene *g* expression between green and gray mice



### **Equal Fold-Changes – different p-values**

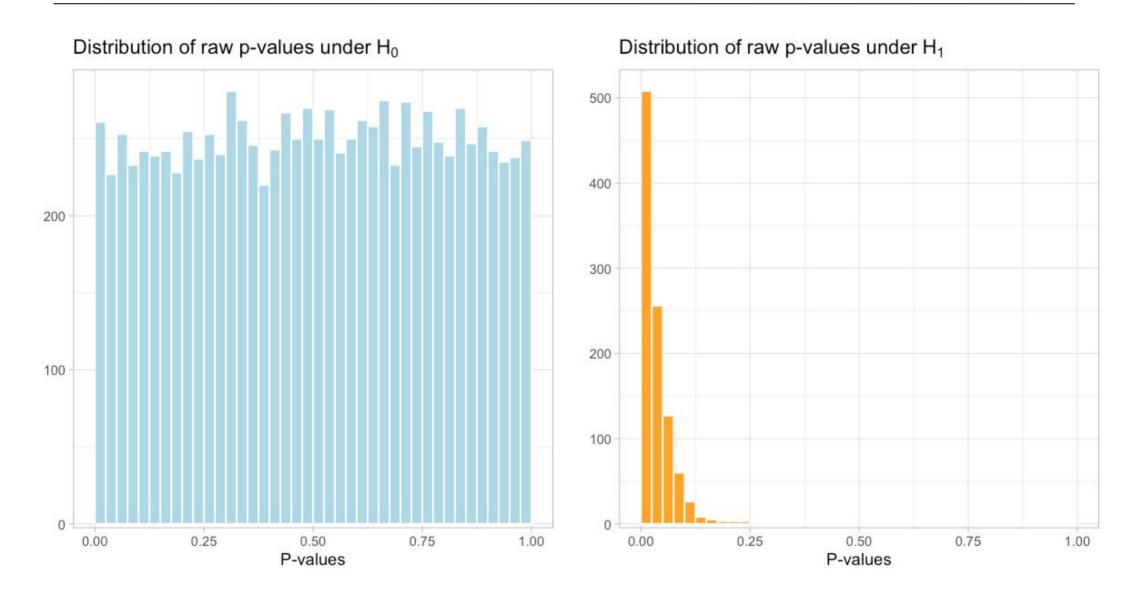
**Reminder:** Fold-Change definition:

FC = 
$$\frac{\text{expression condition "green"}}{\text{expression condition "gray"}} = \frac{\mu_2}{\mu_1}$$

| Gene  | m1    | m2    | m3    | m4    | m5    | m6  | FC | <i>p</i> -value |
|-------|-------|-------|-------|-------|-------|-----|----|-----------------|
| gene1 | 5     | 7     | 6     | 2     | 2     | 2   | 3  | 0.06            |
| gene2 | 800   | 1000  | 900   | 350   | 250   | 200 | 3  | 0.03            |
| gene3 | 700   | 900   | 1100  | 350   | 200   | 250 | 3  | 0.10            |
| gene4 | 900   | 500   | 1300  | 200   | 550   | 50  | 3  | 0.06            |
| • • • | • • • | • • • | • • • | • • • | • • • |     |    | • • •           |

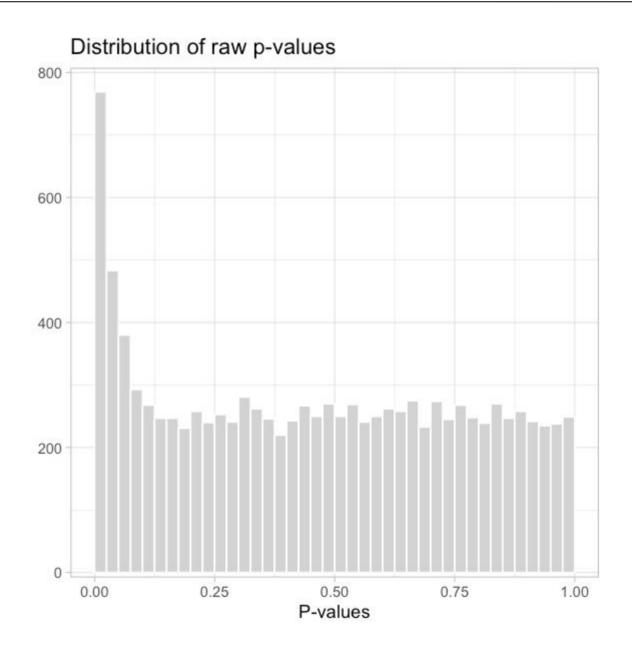


# Distribution of raw *p*-values





# Distribution of raw *p*-values





## Omics data: multiple testing issue

#### **Context:**

We perform a large number N of statistical tests for which we reject or not  $H_0$ .

| Possible conclus | ions:                | Decis                         | sions                     |
|------------------|----------------------|-------------------------------|---------------------------|
|                  |                      | Non rejects of H <sub>0</sub> | Rejects of H <sub>0</sub> |
| Unknown          | H <sub>0</sub> true  | TN                            | FP                        |
| truths           | H <sub>0</sub> false | FN                            | TP                        |

Among all the genes told differentially expressed, the False Discovery Rate (FDR) is:



## Example of the multiple testing issue

We perform N = 10000 statistical tests and we get the following conclusions:

|                      | Non rejects of H <sub>0</sub> | Rejects of H <sub>0</sub> | Total |
|----------------------|-------------------------------|---------------------------|-------|
| H <sub>0</sub> true  | 8550                          | 450                       | 9000  |
| H <sub>0</sub> false | 200                           | 800                       | 1000  |
| Total                | 8750                          | 1250                      | 10000 |

$$\frac{\text{FP}}{\text{FP + TP}} = \frac{450}{450 + 800} = 36\% \text{ of falsely discovered genes!}$$



#### Control of the FDR

Goal: control the FDR among the list of differentially expressed genes.

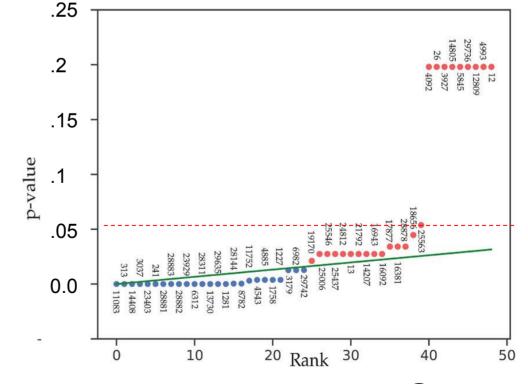
(Very strong) assumption: all the N statistical tests are independent.

**Procedure:** The Benjamini & Hochberg [6] algorithm transforms the N raw

*p*-values in *N* adjusted p-values.

#### **Conclusion:**

if adjusted p-value  $\leq \alpha$  then we reject H<sub>0</sub>



### Importance of the # of biological replicates

**RNA-Seq specificity:** often 2 or 3 replicates because of the high cost of the experiment ... But it's not ideal!

#### With more biological replicates...

- Better estimation of:
  - the variability present in the populations studied
  - the difference between the biological conditions
- Better control of the FDR: bad control with only 2 replicates [7]
- Higher statistical power: we detect more easily genes which are truly differentially expressed

At the very least: 3 replicates!



### DESeq2 [3] and edgeR [4,8]



#### Three main steps:

- 1. Normalization
- 2. Dispersion (i.e. variability) estimation: crucial step
- 3. Statistical tests and adjustment for multiple testing

#### **Advantages:**

- User friendly and very well documented
- Good performances
- Authors are reactive on web forums and mailing lists

#### **Similarities:**

- Negative Binomial distribution
- Generalized Linear Model (GLM)

#### **Differences:**

- Dispersion estimation
- Way of dealing with outlier counts
- Low counts filtering

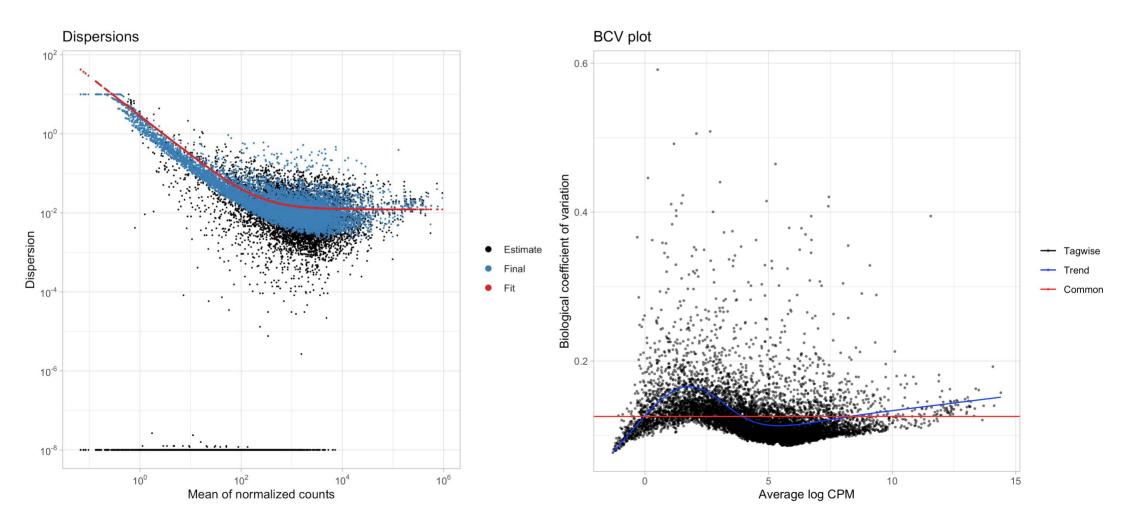
Many other tools exist: NBPSeq, TSPM, baySeq, EBSeq, NOISeq, SAMseq, ShrinkSeq, voom(+limma)



### Dispersion estimation $\varphi_i$ : DESeq2 vs edgeR

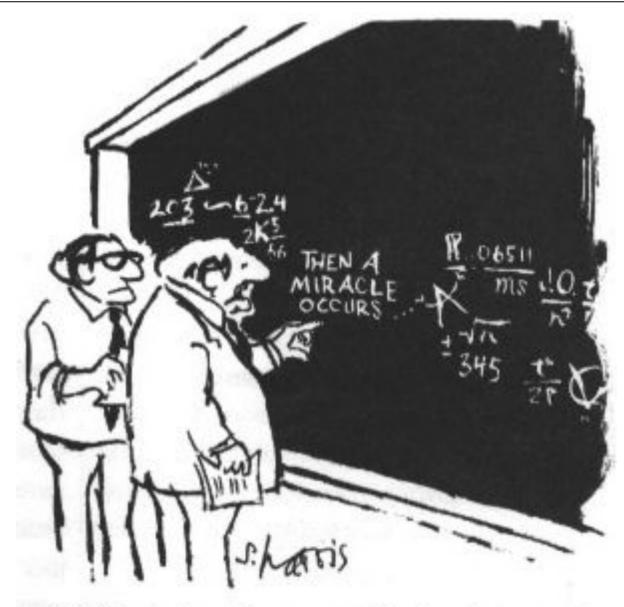
#### Reminder:

$$x_{ij} \sim NB(\mu_{ij}, \sigma_{ij}^2 = \mu_{ij} + \varphi_i \mu_{ij}^2)$$





### Statistical theory and parameters tuning



"I think you should be more explicit here in step two."



### Statistical testing

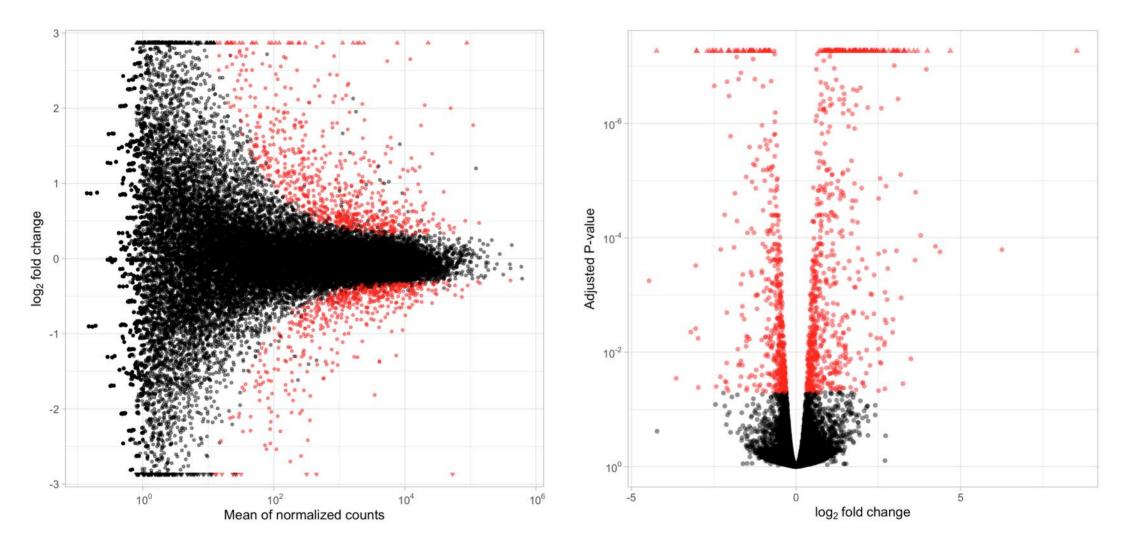
#### For each gene g, DESeq2 and edgeR give:

- an estimation of  $\beta_a = \log_2(FC_a)$
- the precision of this estimation (standard error)
- so the p-value associated with gene g

The set of the *N p*-values is adjusted in order to conclude.

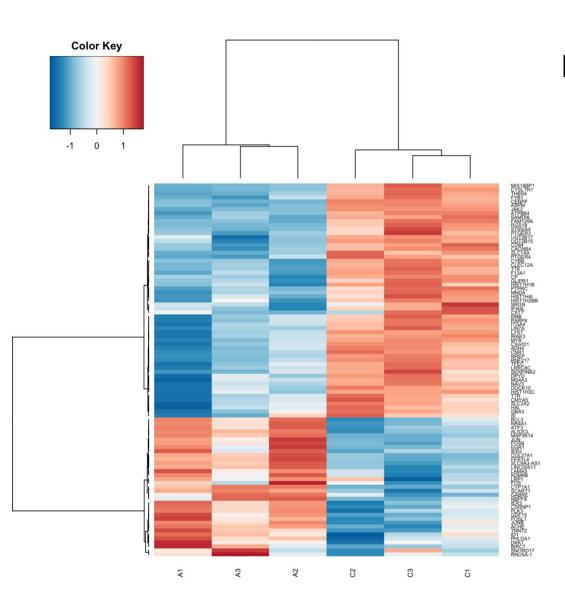


### Description of the results: MA-plot and volcano-plot





### Description of the results: heatmap



#### Much more complex than it appears:

- Use expression data or log<sub>2</sub>(FC)?
- Which genes to display?
- Expression data transformation:
  - Homoscedasticity?
  - Row centering and scaling?
- Row/column clustering method?
- Average data by condition?
- Batch/replicate effect removal?



### Data normalization & modelling: Take-home message

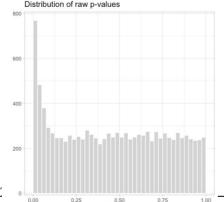
**Data normalization** is crucial to make sure you are really testing your biological question by removing systematic bias. Specific RNASeq methods must take into account library size & composition.

Multiple testing must be corrected using FDR as many tests are done simultaneously

Replicate your measures according to the expected variability in the data and the differences you want to highlight

Visualize your results and use diagnostic plots to check that the model / test you

chose was adapted to your data.





#### **Outline**

- 1. Introduction
- 2. Designing the experiment
- 3. Description/exploration
- 4. Normalization
- 5. Modeling
- 6. SARTools



### Why SARTools?



### SARTools = Statistical Analysis of RNA-Seq Tools [9]

- 1. Perform a systematic quality control of the data
- 2. Avoid misusing the DESeq2 or edgeR packages
- 3. Keep track of all the parameters used: reproducible research
- 4. Provide a HTML report containing all the results of the analysis

github.com/PF2-pasteur-fr/SARTools/



### **Input files**

Target: tab-delimited text file describing the experimental design:

```
labelfilesconditionWT1WT1.counts.txtWTWT2WT2.counts.txtWTKO1KO1.counts.txtKOKO2KO2.counts.txtKO
```

**Counts:** one tab-delimited text file per sample (from HTSeq-count or featureCounts):

```
gene1 23
gene2 355
gene3 0
...
gene4 3643
```



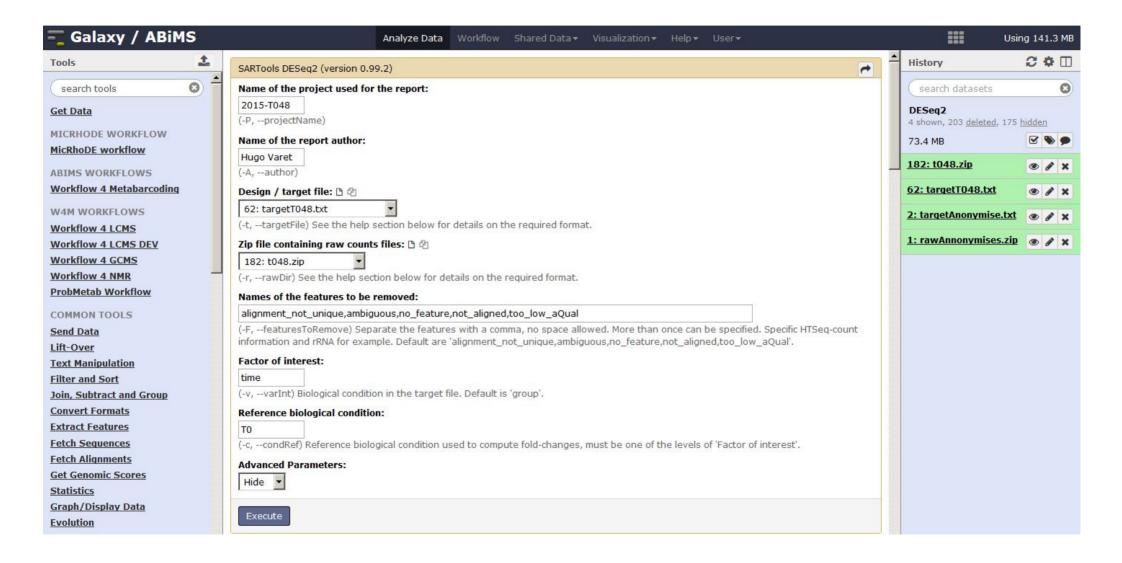
### Usage: with



```
###
                 parameters: to be modified by the user
rm(list=ls())
                                                # remove all the objects from the R session
workDir <- "C:/path/to/your/working/directory/"
                                                # working directory for the R session
projectName <- "projectName"
                                                # name of the project
author <- "Your name"
                                                # author of the statistical analysis/report
targetFile <- "target.txt"
                                                # path to the design/target file
rawDir <- "raw"
                                                # path to the directory containing raw counts files
featuresToRemove <- c("alignment_not_unique",
                                                # names of the features to be removed
                    "ambiguous", "no_feature",
                                                # (specific HTSeq-count information and rRNA for example)
                    "not_aligned", "too_low_aQual")
                                                # factor of interest
varInt <- "group"
condRef <- "WT"
                                                # reference biological condition
batch <- NULL
                                                # blocking factor: NULL (default) or "batch" for example
fitType <- "parametric"
                                                # mean-variance relationship: "parametric" (default) or "local"
cooksCutoff <- TRUE
                                                # TRUE/FALSE to perform the outliers detection (default is TRUE)
                                                # TRUE/FALSE to perform independent filtering (default is TRUE)
independentFiltering <- TRUE
                                                # threshold of statistical significance
alpha <- 0.05
                                                # p-value adjustment method: "BH" (default) or "BY"
pAdjustMethod <- "BH"
                                                # transformation for PCA/clustering: "VST" or "rlog"
typeTrans <- "VST"
locfunc <- "median"
                                                # "median" (default) or "shorth" to estimate the size factors
colors <- c("dodgerblue", "firebrick1",
                                                # vector of colors of each biological condition on the plots
           "MediumVioletRed", "SpringGreen")
```



### **Usage: with Galaxy**





### **Output: HTML report**

#### 1 Introduction

- 2 Description of raw data
- 3 Variability within the experiment: data exploration
- 4 Normalization
- 5 Differential analysis
- 6 R session information and parameters
- Bibliography

#### Statistical report of project testdeseq2: pairwise comparison(s) of conditions with DESeq2

Hugo Varet 2017-12-11

The SARTools R package which generated this report has been developped at PF2 - Institut Pasteur by M.-A. Dillies and H. Varet (hugo.varet@pasteur.fr). Thanks to cite H. Varet, L. Brillet-Guéguen, J.-Y. Coppee and M.-A. Dillies, SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data, PLoS One, 2016, doi: http://dx.doi.org /10.1371/journal.pone.0157022 when using this tool for any analysis published.

#### 1 Introduction

The analyses reported in this document are part of the testdeseg2 project. The aim is to find features that are differentially expressed between T0, T4 and T8. The statistical analysis process includes data normalization, graphical exploration of raw and normalized data, test for differential expression for each feature between the conditions, raw p-value adjustment and export of lists of features having a significant differential expression between the conditions.

The analysis is performed using the R software [1], Bioconductor [2] packages including DESeg2 [3,4] and the SARTools package developed at PF2 - Institut Pasteur. Normalization and differential analysis are carried out according to the DESeq2 model and package. This report comes with additional tab-delimited text files that contain lists of differentially expressed features.

For more details about the DESeq2 methodology, please refer to its related publications [3,4].

#### 2 Description of raw data

The count data files and associated biological conditions are listed in the following table.

| label                       | files         | group   | batch |
|-----------------------------|---------------|---------|-------|
| T0-1 sam                    | pleT0-1-htsed | q.outT0 | 1     |
| T0-5 sam                    | pleT0-5-htsed | q.outT0 | 2     |
| T0-6 sam                    | pleT0-6-htsed | q.outT0 | 3     |
| T4-1 sam                    | pleT4-1-htsed | q.outT4 | 1     |
| T4-2 sam                    | pleT4-2-htsed | q.outT4 | 2     |
| T4-3 sampleT4-3-htseq.outT4 |               |         | 3     |
| T8-1 sampleT8-1-htseq.outT8 |               |         | 1     |
| T8-2 sam                    | pleT8-2-htsec | q.outT8 | 2     |
| T8-3 sam                    | pleT8-3-htsed | q.outT8 | 3     |
|                             |               |         |       |

Table 1: Data files and associated biological conditions.



### **Output: HTML report**

- 1 Introduction
- 2 Description of raw data
- 3 Variability within the experiment: data exploration
- 4 Normalization
- 5 Differential analysis
- 6 R session information and parameters

Bibliography

#### 6 R session information and parameters

The versions of the R software and Bioconductor packages used for this analysis are listed below. It is important to save them if one wants to re-perform the analysis in the same conditions.

- R version 3.4.1 (2017-06-30), x86 64-pc-linux-anu
- Locale: LC\_CTYPE=fr\_FR.UTF-8, LC\_NUMERIC=C, LC\_TIME=fr\_FR.UTF-8, LC\_COLLATE=fr\_FR.UTF-8, LC MONETARY=fr FR.UTF-8, LC MESSAGES=fr FR.UTF-8, LC PAPER=fr FR.UTF-8, LC NAME=C, LC ADDRESS=C, LC TELEPHONE=C, LC MEASUREMENT=fr FR.UTF-8, LC IDENTIFICATION=C
- Running under: Ubuntu 16.04.3 LTS
- · Matrix products: default
- BLAS: /usr/lib/libblas/libblas.so.3.6.0
- LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
- · Base packages: base, datasets, graphics, grDevices, methods, parallel, stats, stats4, utils
- Other packages: Biobase 2.38.0, BiocGenerics 0.24.0, DelayedArray 0.4.1, DESeg2 1.18.1, edgeR 3.20.1, GenomeInfoDb 1.14.0, GenomicRanges 1.30.0, IRanges 2.12.0, Iimma 3.34.1, matrixStats 0.52.2, S4Vectors 0.16.0, SARTools 1.5.2, SummarizedExperiment 1.8.0, xtable 1.8-2
- Loaded via a namespace (and not attached); acepack 1.4.1, annotate 1.56.1, AnnotationDbi 1.40.0, backports 1.1.1. base64enc 0.1-3, BiocParallel 1.12.0, bit 1.1-12, bit64 0.9-7, bitops 1.0-6, blob 1.1.0, checkmate 1.8.5, cluster 2.0.6, colorspace 1.3-2, compiler 3.4.1, data.table 1.10.4-3, DBI 0.7, digest 0.6.12, evaluate 0.10.1, foreign 0.8-69, Formula 1.2-2, genefilter 1.60.0, geneplotter 1.56.0, GenomeInfoDbData 0.99.1, ggplot2 2.2.1, grid 3.4.1, gridExtra 2.3, gtable 0.2.0, Hmisc 4.0-3, htmlTable 1.9, htmltools 0.3.6, htmlwidgets 0.9, knitr 1.17, lattice 0.20-35, latticeExtra 0.6-28, lazyeval 0.2.1, locfit 1.5-9.1, magrittr 1.5. Matrix 1.2-10, memoise 1.1.0, munsell 0.4.3, nnet 7.3-12, plyr 1.8.4, RColorBrewer 1.1-2, Rcpp 0.12.13, RCurl 1.95-4.8, rlang 0.1.4, rmarkdown 1.8, rpart 4.1-11, rprojroot 1.2, RSQLite 2.0, scales 0.5.0, splines 3.4.1, stringi 1.1.6, stringr 1.2.0, survival 2.41-3, tibble 1.3.4, tools 3.4.1, XML 3.98-1.9, XVector 0.18.0, yaml 2.1.14, zlibbioc 1,24,0

Parameter values used for this analysis are:

- · workDir: .
- projectName: testdeseq2
- · author: Hugo Varet
- · targetFile: target.txt
- · rawDir: raw
- · featuresToRemove: alignment not unique, ambiguous, no feature, not aligned, too low aQual
- · varint: group
- · condRef: T0
- · batch: NULL
- fitType: parametric
- · cooksCutoff: TRUE
- independentFiltering: TRUE
- alpha: 0.05
- pAdjustMethod: BH
- typeTrans: VST
- · locfunc: median
- · colors: dodgerblue, firebrick1, MediumVioletRed, SpringGreen



### Output: lists of differentially expressed genes

#### Three tab-delimited text files per comparison:

- \*.complete.txt: all the genes
- \*.up.txt: up-regulated genes ordered by adj. p-value
- \*.down.txt: down-regulated genes ordered by adj. p-value

**Columns:** gene id, log<sub>2</sub>(Fold-Change), adjusted *p*-value, ...



#### HTML tutorial

# SARTools vignette for the differential analysis of 2 or more conditions with DESeq2 or edgeR

SARTools version: r packageVersion("SARTools")

Authors: M.-A. Dillies and H. Varet (hugo.varet@pasteur.fr) - Transcriptome and Epigenome Platform, Institut Pasteur, Paris

Website: https://github.com/PF2-pasteur-fr/SARTools

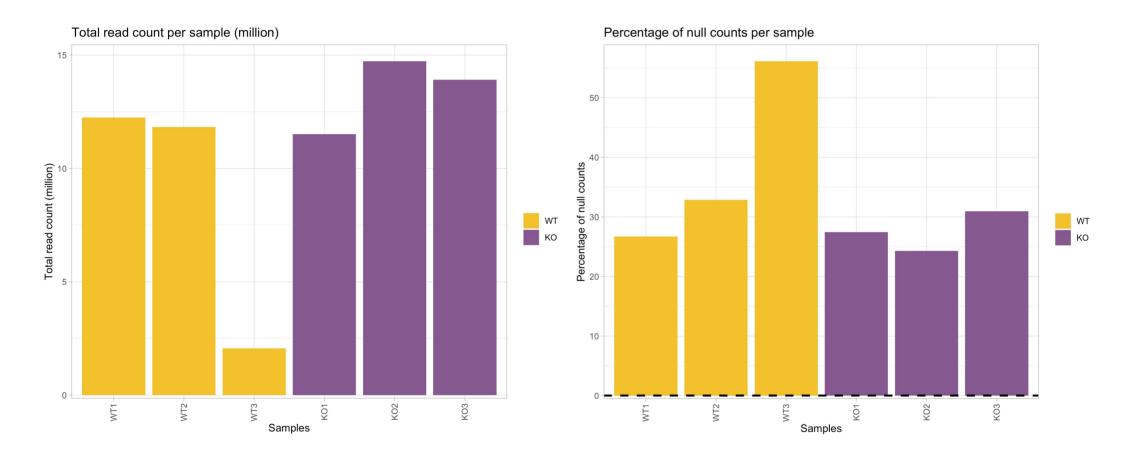
#### 1 Introduction

This document aims to illustrate the use of the SARTools R package in order to compare two or more biological conditions in a RNA-Seq framework. SARTools provides tools to generate descriptive and diagnostic graphs, to run the

- Installation
- Input files
- Definition of the parameters
- Potential issues: technical problems, inversion of samples, batch effects, outliers...



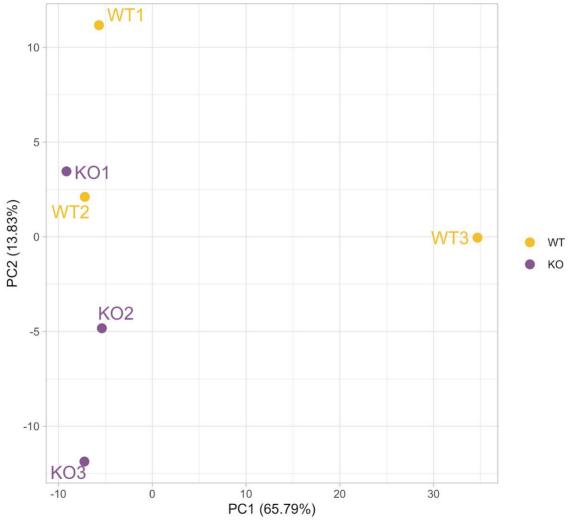
### Potential issue: detecting outliers





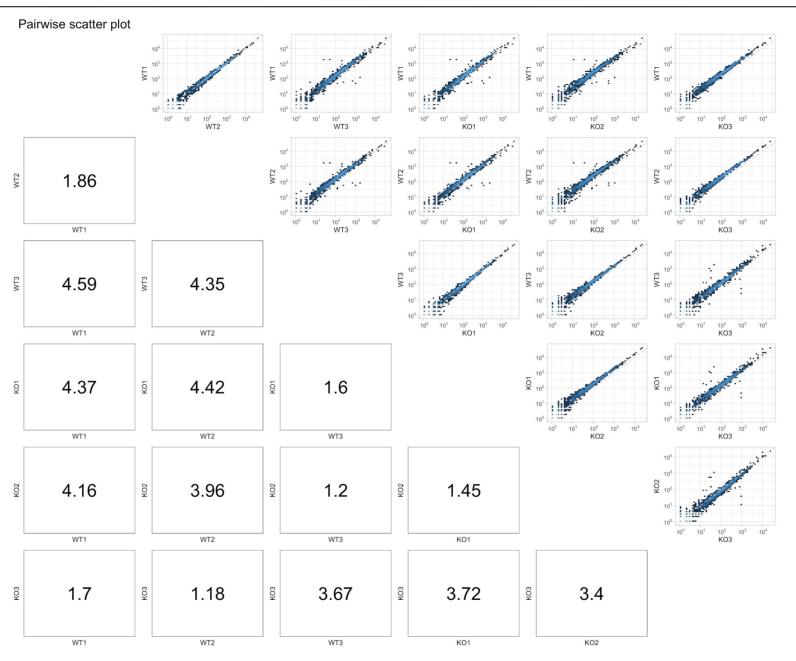
### Potential issue: detecting outliers





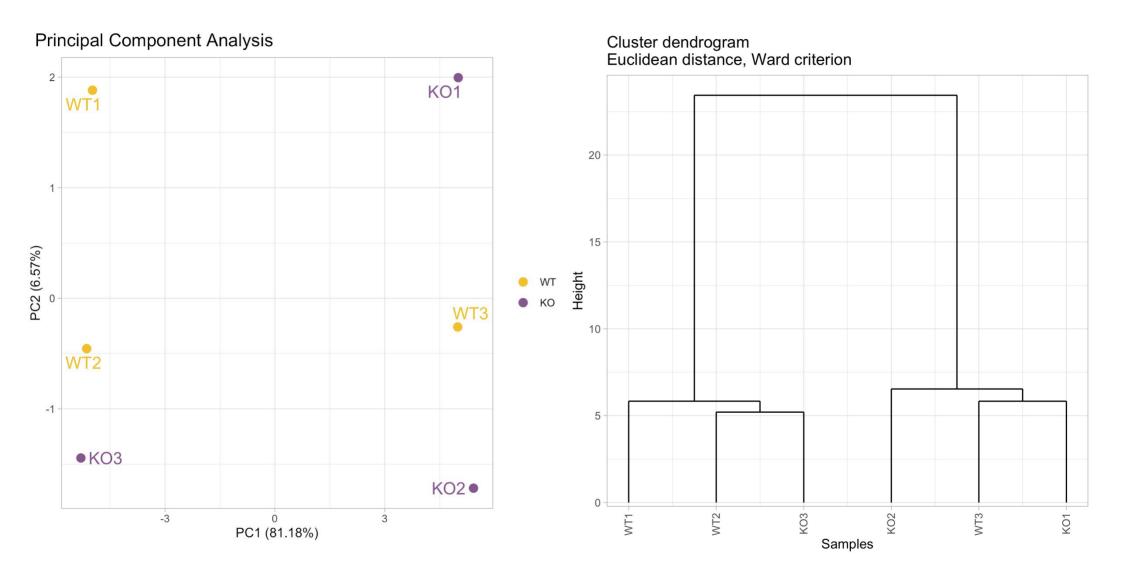


### Potential issue: inversion of samples



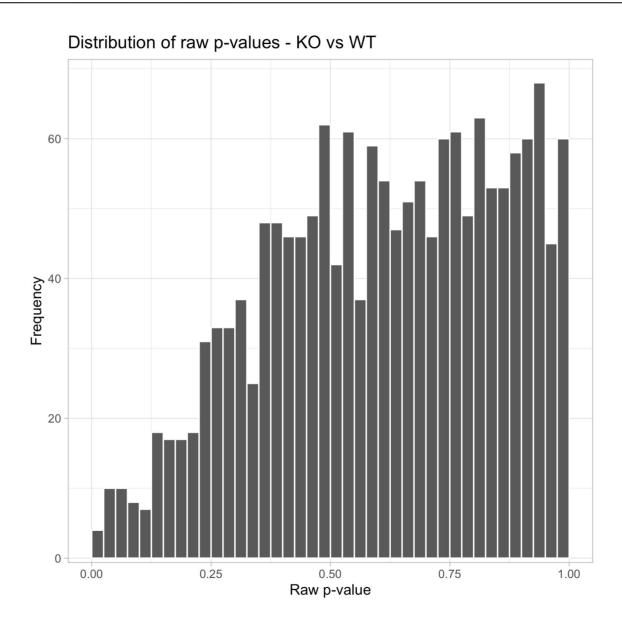


### Potential issue: inversion of samples



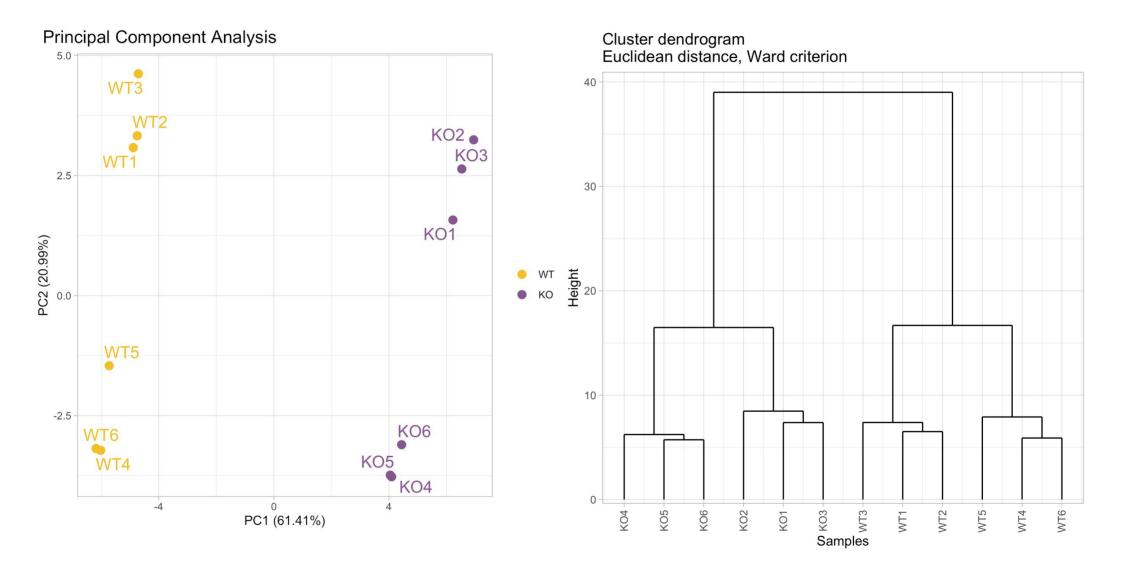


### Potential issue: inversion of samples



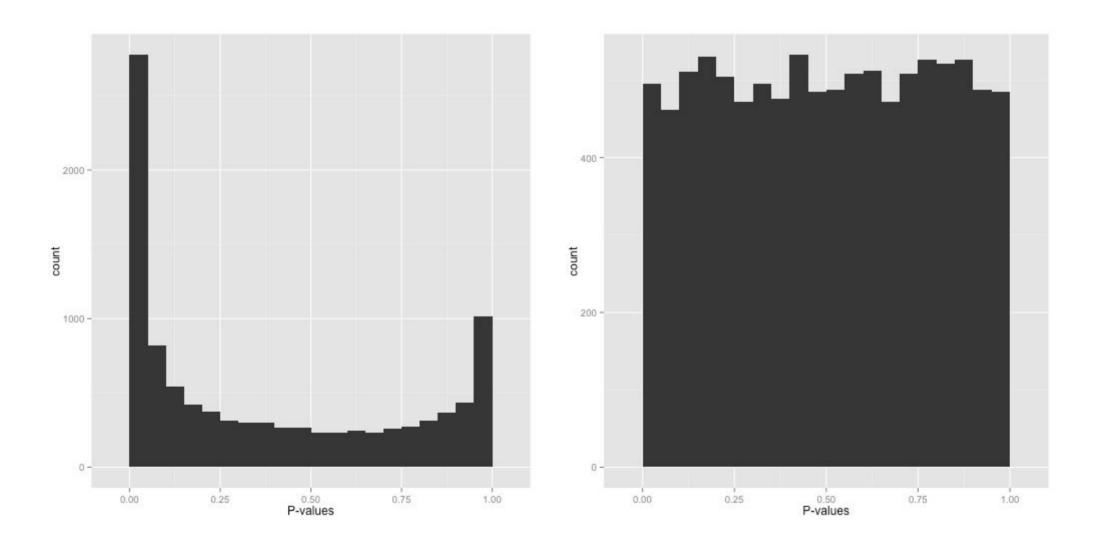


#### Potential issue: batch effect





### Other cases:





### DESeq2 and edgeR common parameters

- Project and author names
- Target and count files paths
- Rows of the count files to remove
- Factor of interest and the reference biological condition
- Adjustment variable (batch effect, pairing) in the target file
- Multiple testing adj. method and significance threshold  $\alpha$
- Colors for the graphics



### **DESeq2-specific parameters**

- fitType: type of link to model the intensity-dispersion relationship,
   parametric (by default) or local
- cooksCutoff: TRUE (by default) to detect genes having outlier counts
- independentFiltering: TRUE (by default) to filter out lowly expressed genes and gain power on the others
- typeTrans: VST (by default) or rlog to make the data homoscedastic to perform exploratory data analysis (PCA, clustering, heatmaps)
- **locfunc:** median (by default) or shorth. shorth allows to improve the normalization for some cases



### edgeR-specific parameters

- cpmCutoff: low counts filtering threshold (in counts per million of reads)
- gene.selection: genes selection method for the MDS-plot (pairwise by default)
- **normalizationMethod:** TMM by default, RLE (DESeq2), or upperquartile



#### **Conclusion**

#### SARTools...

- facilitates the utilization of DESeq2 and edgeR
- performs quality control and helps to detect potential problems
- fits the reproducible research criteria

Take time to interpret each figure/table in the HTML report!



### Interpreting lists of DE genes: gene-set level analysis

#### What is a gene-set?

→ Any group of genes having a biological meaning

Note: some genes can belong to several sets and others to none

#### Two main approaches:

- Competitive null hypothesis: genes in the set are "as DE as" genes not in the set
- Self-contained null hypothesis: genes in the set are not DE

#### Several methods:

- Over-Representation Analysis (competitive): are genes in the set more DE than genes not in the set? → Fisher's hypergeometric test
- Linear models using limma R package's functions:
  - competitive: camera() and romer()
  - o self-contained: roast() and fry()



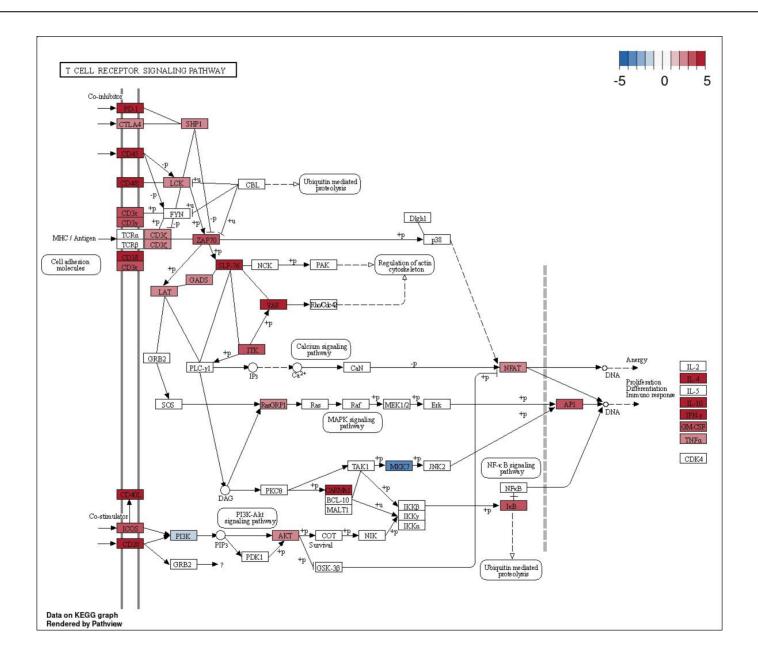
### Interpreting lists of DE genes: gene-set level analysis

#### Several issues/options to deal with:

- Make gene IDs compatible with the gene-sets by converting diff. analysis
   Ensembl IDs (for instance) into ENTREZ IDs: no perfect matching and
   be careful with the annotation version(s) used
- Which gene-sets to test?
  - depends on the biological question
  - will impact the p-value adjustment for multiple testing
  - restrict the background to genes belonging to at least one set?
- Separate down- and up-regulated genes?
- Import gene-sets into R and make them ready for the analysis: from MSigDB or R packages... but there may be some differences



### Interpreting lists of DE genes: gene-set level analysis





#### General conclusion

- RNA-Seq project = discussions between biologists, bioinformaticians and biostatisticians... as soon as the project starts!
- Statistical needs during all the project, not only for the differential analysis
  - Normalization step is critical: the assumptions have to be checked
  - No magic recipe: need to choose the statistical model according to your biological question
  - Statistical analysis must not be a black box!
- Data visualization is a crucial tool along all the steps of the analysis



Complex experimental design → difficult interpretation of the results



#### The end

## Thank you for your attention!



### **Bibliography**

- [1] A. Mortazavi, B. Williams, K. McCue, L. Schaeffer and B. Wold. *Mapping and guantifying mammalian* transcriptomes by RNA-Seq. Nature Methods. 2008.
- [2] S.-K. Schulze, R. Kanwar, M. Gölzenleuchter, T.-M. Therneau and A.-S. Beutler. SERE: Single-parameter quality control and sample comparison for RNA-Seq. BMC Genomics, 2012.
- [3] M. Love, W. Huber and S. Anders. Moderated estimation of fold change and dispersion for RNA-Seq. data with DESeq2. Genome Biology, 15, 2014.
- [4] M.-D. Robinson and A. Oshlack. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 2010, 11:R25, 11(R25), 2010.
- [5] M.-A. Dillies, A. Rau, J. Aubert and others. A comprehensive evaluation of normalization methods for Illumina RNA-seg data analysis. Briefings in Bioinformatics, 2012.
- [6] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57(1):289-300, 1995.
- [7] C. Soneson and M. Delorenzi. A comparison of methods for differential expression analysis of RNA-seg data. BMC Bioinformatics, 14, 2013.
- [8] M.-D. Robinson, D.-J. McCarthy and G.-K. Smyth. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2009.
- [9] H. Varet, L. Brillet-Guéguen, J.-Y. Coppée and M.-A. Dillies. SARTools: A DESeg2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. PloS One, 2016.
- [10] C. Evans, J. Hardin and D.-M. Stoebel. Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions. Briefings in Bioinformatics, 2017.

