

scRNA-seq : cell type annotation

Audrey Onfroy

Eulalie Liorzou

École de bioinformatique AVIESAN-IFB-INSERM 2022

scRNA-Seq pipeline overview

What is available ?

We have :

- gene expression matrix : for each cell, gene expression is available
- reduced space : gene expression matrix is summarized in N dimensions
- clustering : each cell belongs to a specific cluster
- **2D space** : cells can be visualized on a 2D representation
- biologist knowledge
- internet connection

Objectives

Method 1 : Manual cluster annotation using differential expression

- Input data : which parts of the Seurat analysis are necessary to annotate clusters ?
- Analysis tools : know and understand the functions used to define marker genes
- Visualisation of marker genes

Method 2 : Automatic annotation

Optional

- Understand why it can be useful
- Know the limits

Method 1 : Manual cluster annotation using differential expression

For each cluster : Exemple using cluster 4

- 1) Differential expression between **cluster 4** and all others
- 2) Look at gene expression on the 2D projection, to validate **specificity** and **representativeness**
- 3) Find the cell population corresponding to your gene set
- 4) Annotate cluster 4

Advantages	Limits
 Easy to implement May be the only solution Everything is possible 	 Clustering : resolution, merged clusters, "bio-informatic" cluster Change clustering ? Change annotation Knowledge : time-consuming

Method 2 : Automatic annotation using reference markers

Cell type A	A, B, C
Cell type X	X, Y, Z

Steps :

1) Find a good marker gene reference (PanglaoDB, CellMarker, CancerSEA...)

Algorithm

Scoring Function f(E, M)

2) Select a tool / model : classifier, scoring function ...

3) Annotate your dataset

Advantages	Limits
 Single cell level is possible Design your own reference Made with human, mouse dataset 	 Find the good reference markers Cell types arborescence Limited number of cell types : all cells are annotated, or "unknown" is possible ? Made with human, mouse dataset

Method 3 : Automatic annotation using reference dataset

Take Home Messages

Method	Advantages	Limits
Manual cluster annotation using differential expression	 Easy to implement May be the only solution Everything is possible 	 Clustering : resolution, merged clusters, "bio-informatic" cluster Change clustering ? Change annotation Knowledge : time-consuming
Automatic annotation using reference markers	 Single cell level is possible Design your own reference 	 Find the good reference markers Cell types arborescence Limited number of cell types : all cells are annotated, or "unknown" ?
Automatic annotation using reference dataset	 Single cell level Design your own reference 	 Find the good reference dataset Limited number of cell types : all cells are annotated, or "unknown" ?

Advice :

- 1. Use manual cluster annotation to identify quickly your cell populations
- 2. Identify good markers for each cell populations \rightarrow your reference markers
- 3. Use automatic cell annotation using your set of marker \rightarrow your reference dataset
- 4. Use your references to annotate new dataset

Method 1 : Manual cluster annotation using differential expression

Analysis :

Input data :

Exemple using cluster 4

Visualisation :

Dataset with :

- Normalised count matrix
- Pick one clustering resolution

For each cluster :

• Differential expression between cluster 4 and all others

In Seurat the function used is : FindAllMarkers()

For each cluster :

- Validate the specificity and representativeness of your marker
- Annotate your cluster