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Assessing the genetic variability of plant performance under heat and drought scenarios can contribute to reduce the negative
effects of climate change. We propose here an approach that consisted of (1) clustering time courses of environmental variables
simulated by a crop model in current (35 years X 55 sites) and future conditions into six scenarios of temperature and water
deficit as experienced by maize (Zea mays L.) plants; (2) performing 29 field experiments in contrasting conditions across Europe
with 244 maize hybrids; (3) assigning individual experiments to scenarios based on environmental conditions as measured in
each field experiment; frequencies of temperature scenarios in our experiments corresponded to future heat scenarios (+5°C);
(4) analyzing the genetic variation of plant performance for each environmental scenario. Forty-eight quantitative trait loci
(QTLs) of yield were identified by association genetics using a multi-environment multi-locus model. Eight and twelve QTLs
were associated to tolerances to heat and drought stresses because they were specific to hot and dry scenarios, respectively,
with low or even negative allelic effects in favorable scenarios. Twenty-four QTLs improved yield in favorable conditions but
showed nonsignificant effects under stress; they were therefore associated with higher sensitivity. Our approach showed a pattern
of QTL effects expressed as functions of environmental variables and scenarios, allowing us to suggest hypotheses for mechanisms
and candidate genes underlying each QTL. It can be used for assessing the performance of genotypes and the contribution of
genomic regions under current and future stress situations and to accelerate breeding for drought-prone environments.

With climate changes, crops will be subjected to more
frequent episodes of drought and high temperature that
may threaten food security (IPCC, 2014). Reducing the
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impacts of these effects is an urgent priority that (not
exclusively) involves the genetic progress of plant
performance under heat and drought stresses (Tester
and Langridge, 2010; Lobell et al., 2011). Because hun-
dreds of new genotypes of most cereals are commer-
cialized every year, a generic approach is needed to
avoid an endless series of experiments assessing the
performances of the newly released genotypes. A sys-
tematic exploration of the natural genetic diversity used
in breeding can provide information usable for large
groups of genotypes. This entails the identification,
among the thousands of accessions existing in gene
banks, of allelic variants exhibiting specific adaptation
traits by addressing three questions: (1) Is there a ge-
netic variability for yield and related traits in dry and
hot environments? (2) Can this genetic variability be
dissected into the effect of genomic regions (quantita-
tive trait loci, QTLs), and (3) have these genomic
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regions differential effects depending on environmental
conditions (QTL X environment interaction)? Ad-
vances in DNA marker analyses and sequencing
technologies have decreased the cost of genotyping so
the genome of thousands of plants can be densely
characterized (Langridge and Fleury, 2011). Genome-
wide association study (GWAS) allows associations
of phenotypic traits with causal polymorphisms (Zhu
et al., 2008) but, in our analysis, needs to be fine-tuned
for plant responses to climatic scenarios associated
with climate change. In particular, several options
exist for the experimental strategy. (1) The compari-
son of genotype performances can be addressed in
controlled infrastructures that simulate conditions in
2050—for instance, in phenotyping platforms (Tardieu
and Tuberosa, 2010; Fiorani and Schurr, 2013) or in
fields with managed environments (Salekdeh et al.,
2009; Bishop et al., 2015). However, these possibilities
do not address the diversity of environmental sce-
narios faced by plants in current and future conditions.
(2) Panels of genotypes can be analyzed in a network
of field experiments, resulting in the association of
performances with genomic regions depending on
environmental indices that best account for QTLXE
interaction (Vargas et al., 2006, Malosetti et al., 2013;
Boulffier et al., 2015). However, each network of ex-
periments results in its own set of indices that cannot
be easily compared between studies, nor extended to a
whole geographic region.

We propose here an approach that consists in utiliz-
ing the current year-to-year and site-to-site climatic
variability for genetic analyses of plant performance in
current climatic scenarios and in those predicted for the
future. It consists of (1) clustering current and future
environmental conditions into a limited number of
scenarios as experienced by the studied crop; (2) per-
forming a series of field experiments for a collection of
scenarios across Europe; (3) assigning individual ex-
periments to scenarios according to environmental
conditions measured in each field experiment; and (4)
analyzing the genetic variation for plant performances
as a function of environmental scenarios. Here, we
address these four steps for maize (Zea mays L.) in
Europe. Maize was chosen as a case study because it is
a C, species in which the increase of CO, has limited
effect on photosynthesis.

(1) The first step has been performed by running crop
simulations over a large range of sites over tens of years
and then clustering the simulated time courses of en-
vironmental variables into a limited number of envi-
ronmental scenarios at key phenological stages of the
crop (Chapman et al., 2000; Chenu et al., 2011). To ad-
dress the case of maize grown in Europe, we have used
the drought scenarios defined by Harrison et al., (2014)
based on 55 European sites over 35 years. We have used
the dataset collected in their paper to also identify three
scenarios of temperature during the maize cropping
cycle under current conditions. Future conditions have
been simulated by using the model LARS-WG (Semenov
and Stratonovitch, 2010).
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(2) The second step consisted in performing field
experiments with a panel of genotypes over a range of
conditions. This was done in 29 field experiments (de-
fined as combinations of site X year X watering re-
gime), in which a panel of 244 maize hybrids was
analyzed along a climatic transect from west to east
Europe, plus one experiment in Chile. This panel,
genotyped with 515 000 single nucleotide polymor-
phism (SNP) markers, maximized the genetic variabil-
ity in the dent maize group while restricting the range
of flowering time to 10 d in order to avoid confounding
the effects of phenology with intrinsic responses to
drought and heat. It included first-cycle lines derived
from historical landraces and more recent lines created
by public institutions and breeding companies.

(3) The third step ascribed each experiment to an
environmental scenario defined in step 1. This required
full environmental characterization of each individual
experiment. We expected that the proportion of ex-
periments belonging to each environmental scenario
might appreciably differ from those calculated over
55 sites X 35 years. Hence, this step allowed us to give a
weight to each experiment according to environmental
conditions in this experiment and to frequencies of en-
vironmental scenarios. It was therefore not a simple
classification of experiments of the network as per-
formed by other groups (Vargas et al., 2006; Malosetti
et al., 2013; Bouffier et al., 2015).

(4) The fourth step consisted in evaluating the genetic
variability of yield and of related variables within each
climatic scenario, in identifying genomic regions asso-
ciated with these traits in each scenario and in relating
allelic effects to measured environmental conditions.
Indeed, associations between markers and yield under
stress pose a specific challenge because every signifi-
cant marker may have opposite allelic effects depend-
ing on the timing and severity of drought or heat
stresses (Vargas et al., 2006; Boer et al., 2007; Collins
et al., 2008; Tardieu, 2012). The analysis of a network of
dry field experiments has shown that a given allele at a
QTL can have a markedly positive effect in one cate-
gory of experiments, a markedly negative effect in
another category, and nearly no effect in half of ex-
perimental fields (Bonneau et al.,, 2013). Hence, we
have first performed single-environment GWAS that
allows identification of QTLs strongly associated with
specific experiments and multi-environment GWAS
that allows identification of QTLs with both main effect
and QTL X E effects (Boer et al., 2007; Maccaferri
et al., 2008; Malosetti et al., 2008a; Maccaferri et al.,
2016). We have then analyzed the effects of QTL alleles
conditional on scenarios and measured environmental
conditions.

We could, in this way, estimate the frequencies of
positive, negative, or null effects for each QTL in each
climatic scenario, depending on measured environ-
mental conditions in each field. This resulted in a
pattern of QTL effects as a function of scenarios, envi-
ronmental variables (e.g. temperature versus evapora-
tive demand versus soil water potential) and traits
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(e.g. flowering time versus grain number versus grain
size). We have deduced from these patterns hypotheses
for the mechanisms underlying the QTLs, thereby
helping in the selection of candidate genes among the
small number of possible genes close to causal poly-
morphisms. Hence, this work aimed to bring together
GWAS and ecophysiological analyses for modeling and
providing biological/ecological interpretation of con-
ditional QTL effects associated to ranges of soil water
deficit, evaporative demand, and air temperature across
Europe in current and future climatic scenarios.

RESULTS

Environmental Scenarios in the Network of

29 Experiments Corresponded to Future Climatic Scenarios
of Heat (+5°C) but Respected the Frequencies of Current
Scenarios for Water Deficit

Temperatures had a large site-to-site variability (Fig.
1, A-G, Supplemental Table S1). Meristem temperature
during the night (T, during 20 equivalent days at
20°C (dypec) around ﬂowermg time of the reference
hybrid ranged from 15.6°C to 23.9°C, maximum meri-
stem temperature (T,,,) from 27.1°C to 37.9°C, and
maximum vapor pressure difference between leaf and
air (VPD,,,,) from 2.3 kPa to 4.2 kPa. These tempera-
tures were considerably warmer than the means over
the last 35 years in 55 European sites, referred to as
“present” hereafter. The most frequent temperature
scenario was Hot in which mean Trignt and T, ,, were
higher than 20°C and 33°C, respectively. It was ob-
served in 14 experiments (Fig. 1C, 48% of cases versus

0.2% at present). The second was Hot(day), involving

Allelic Effects for Climate Changes

T ... above 33°C but T, ;. lower than 20°C, observed in
eight experiments (Fig. %D, 28% versus 0.8% at present).
The Cool scenario with mean T, ..., and T,,, lower than
respective thresholds was observed in seven experi-
ments (Fig. 1E, 24% versus 99% at present). Hence, the
proportions of temperature scenarios in the network of
experiments were broadly similar to those in a climatic
scenario with a simulated increase in temperature of 5°
C. This may be due either to a slight overrepresentation
of southern sites in the network of experiments com-
pared to the 55 European sites (mean latitude 45.8°
versus 46.4°) or to warmer climatic years than average
due to climate change. T, ., and VPD,___were loosely
related with incident light (r = 0.22 ns and 0.24 ns,
respectively, Supplemental Table S2A; see also the
principal component analysis in Supplemental Fig. S1,
A and B).

Mean soil water potential (V) ranged from —0.01
to —0.42 MPa during 20 d,y. around flowering time of
the reference hybrid, representing about 80% of the
range of available water in most agricultural soils as
estimated using the equations of Van Genuchten (1980).
During this period, ¥ ; was not correlated with T
nor VPD_ .. (r = —0.13 ns and —0.34 ns; Supplemental
Fig. S1, A and B). The four scenarios of soil water status
identified by Harrison et al. (2014) were used for clus-
tering experiments. These scenarios were originally
based on the supply/demand ratio for water as simu-
lated by the APSIM model. Here, they were expressed
based on soil water potential measured at three soil
depths every day, in such a way that scenarios based
on supply/demand and on soil water potential
matched in those fields in which we had sufficient data to
carry out both approaches. The first scenario (WW cycle),

A B Figure 1. Time courses of soil water potential and
P temperature in each environmental scenario. A and B,
° Each line represents a time course corresponding to
i t of the field network in Europe (A )or
Martonvasar a Qebrecen one experiment of pe
.[‘M Graneros Chile (B). C to G, time courses were centered (time 0)
. "Campaggnoli N on the day of anthesis of the reference hybrid (vertical
aillac X .
. Cod Bno ° dashed line). Dark lines represent smoothed mean
N ® Craiova

values. Thermal time is in equivalent days at 20°C. C,
experiments with cool temperatures during both day

and night (Cool); D, experiments with hot tempera-
tures during the day but cool temperatures during the
night (Hot(day)); E, experiments with hot tempera-
tures (Hot, mean maximum temperatures > 33°C and
mean night temperatures > 20°C). C to E, The upper
series of lines represents maximum temperature and
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50 the lower series represents mean night temperature. F,
Well-watered experiments (WW) with experiments in
which mean soil water potential was higher than
—0.10 MPa (WW cycle, blue lines) and experiments
with well-watered conditions during flowering time
and water deficit during grain filling (late Term, red);
G, Water deficit experiments (WD) with early deficit
followed by recovery at flowering time (Rec, yellow
lines) and experiments with water deficit from vege-
tative stage to maturity (early Term, dark red lines).
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involving favorable soil water status throughout the
crop season, was observed in 18 experiments (62% of
cases if a threshold of ¥, ; was set at —0.1 MPa; Fig. 1F;
Supplemental Table S1) versus 41% of maize fields over
Europe in current conditions (Harrison et al. 2014).
Most WW cycle experiments showed average V¥, ; be-
tween —0.01 and —0.04 MPa except two. The second
most frequent scenario involved water deficit during
flowering time followed by recovery (Rec) and was
observed in five experiments (17%) versus 18% of
scenarios over Europe in Harrison’s study (Fig. 1G;
Supplemental Table S1). The last two scenarios with
early or late terminal stresses (early and late Term, re-
spectively) were less frequent (seven experiments, 24%)
than over Europe (40% in Harrison's study; Fig. 1, F and
G; Supplemental Table S1). The resulting number of
combined water X temperature scenarios was too large
in relation to the number of experiments, so scenarios of
soil water status were grouped in two classes (WW and
WD, Figure 1, F and G). Because grain number is de-
termined 10 d after anthesis (Oury et al., 2016a, 2016b),
we have grouped, on the one hand, scenarios WW cycle
and late Term (Fig. 1F) with favorable ¥ at flowering
time and, on the other hand, Rec and early Term (Fig. 1G)
with water deficit at flowering time. For grain size, the
scenarios were grouped depending on the water status
during grain filling (WW cycle and Rec with high water
potential versus both Term scenarios of water deficit).
The scenarios for yield followed those for grain number
in view of the high correlation between both traits
(Fig. 2A; Supplemental Table S1).

Overall, experiments were therefore clustered in six
scenarios obtained by the combination of two water
scenarios and three temperature scenarios. Incident
light cumulated during the same phenological stage
ranged, in European sites, from 256 to 594 MJ m *
(Supplemental Table S1) and were higher in the Chilean
experiment (682 and 776 M] m ™). It did not signifi-
cantly differ between scenarios, from 379 to 487 MJ m 2

o] A
r p 350
w10 A =
s 3 & E 300
T ° A g kY
© A4 8
> A £ 250
g9 A" [
R :

3

£ 200

1] A

except for the scenario that included the Chilean ex-
periments. Day length at floral transition of the reference
hybrid ranged from 15.3 to 16.0 h in European sites and
was 14.2 h in the Chilean experiment (Supplemental
Table S1).

Variations of Mean Yield between Experiments Depended
on Temperature, Evaporative Demand, and Soil Water
Status around Flowering Time

Grain yield averaged over the whole panel ranged
from 1.5 to 11.2 t ha ! in our experiments (from 1.2 to
12.9 t ha! for best linear unbiased estimators (BLUESs)
of the reference hybrid; Fig. 2A; Supplemental Table
S1). The respective differences in yield between sites
and within each site is illustrated in Figure 3, A, C, and
E, for three experiments in either favorable conditions
or with water deficit or high temperature. Large dif-
ferences in yield were observed between experiments in
each scenario but with an overlap between the distri-
butions of yields in the panel (Supplemental Fig. S2).
Figure 4 presents the genotypic variability of yield for
hybrids belonging to the first (Fig. 4, A-C) and third
(Fig. 4, D-E) quartile of yield values in WW-Cool
scenarios, ordered in each quartile by yield values in
the scenario WW-Hot (all hybrids are presented in
Supplemental Fig. S3 and Supplemental Table S3).
Highest yields and grain numbers were observed in
experiments classified as Cool-WW (10.8 t ha™' average
for the reference hybrid, 9.4 t ha! for panel mean; Fig.
4; Fig. 2A, blue ellipse) while experiments in WD-Hot
had the lowest yields (4.6 and 4.5 t ha™!). Within WW
experiments, yield was much lower in Hot than in Cool
scenarios, with a smaller effect in Hot(day) scenarios
(Fig. 4). This pattern applied to hybrids with yield either
in the first or the fourth quartile. It is noteworthy that
the classical distinction between rain-fed and irrigated
fields did not help in this analysis. Indeed, coefficients
of variations of yield were 52% and 35%, respectively,

oA
A A Legend
A Rec - Hot
® Rec - Cool
I M Rec - Hot(day)
A = A“ A Early Term - Hot
l ) M Early Term - Hot(day)
A [] Late Term - Hot

Late Term - Cool
A WW cycle - Hot
A WW cycle - Cool
WW cycle — Hot(day)

1000 2000 3000 4000 5000
Grain number (nb m-2)

1000 2000 3000 4000 5000

Grain number (nb m-2)

Figure 2. Relationship between grain yield and grain number (A) and between grain size and grain number (B) for the reference
hybrid. Each symbol corresponds to one experiment. Blue and green symbols, Well-watered experiments (WW cycle); brown,
experiments with early deficit followed by recovery (Rec) at flowering time; red, experiments with water deficit from vegetative
stage to maturity (early Term); orange, experiments with water deficit during grain filling (late Term). Symbol shape indicates
temperature at flowering time. Circle, Cool temperatures; triangles, hot temperatures; squares, temperatures cool during the night
but hot during the day. Blue shapes in A and B indicate the region of the panel with maximum density of well-watered experiments
during grain filling (WW cycle and Rec). Salmon shape indicates experiments with water deficit during grain filling (Term).
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Figure 3. Genetic variability of grain yield
in three typical experiments. A and B,
Well-watered soil and cool air temperature

100{C

~l
[6)]

at flowering time (Gai12W); C and D, well-
watered soil and hot air temperature at
flowering time (Cam13W); E and F, soil
water deficit plus hot air temperature
(Bol12R). Histograms are based on the
BLUEs values of grain yield (A, C, and E)
estimated with a mixed model (Supplemental
Methods S1). Manhattan plots show results
of single-environment GWAS (B, D, and F),
with the red line indicating the -log; (P value)
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in irrigated and rain-fed regimes (means, 8.3 and 5.9
t ha™! for the reference hybrid), consistent with the fact
that ¥, at flowering time largely varied within watering
regimes. Because of high rainfall, four rain-fed fields were
WW (¥, higher than —0.01 MPa; Supplemental Table

soil

S1), whereas one irrigated field was in water deficit (W,
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down to —0.42 MPa) because of restrictions of irrigation
(Supplemental Table S1).

Overall, environmental variables that best accounted
for yield were T, ., and ¥ ; at flowering time (r = -0.56
P-value < 0.01 and 0.50 P-value < 0.01 respectively, for
the reference hybrid, Supplemental Table S2B). The

Figure 4. Genetic variability of grain yield in the six
studied environmental scenarios. Variability of grain
yield for six hybrids in the environmental scenarios
identified in Fig. 1 (WW cycle and lateTerm are
grouped as WW, Rec, and early Term are grouped as
WD, see text). A to C, Hybrids with high performance
in WW-Cool (first quartile of yield), D to F, hybrids
with lower performance in WW-Cool (third quartile of

Grain Yield yield). Three hybrids are shown in each category,
(tha) classified by yield values in the scenario WW-HotDN,
125 ranked as first, median, and last for yield in each
quartile. Accessions of genotypes are as follows: A,
10.0 PHG47_usda; B, B84_inra; C, Lo1087_bergamo; D,
Pa36_inra; E, F7058_inra; F, Mo15W_inra.
75
5.0
25
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same correlations were significant for all hybrids (P
value < 0.01) with values ranging from —0.59 to —0.52
for T\, and from 0.42 to 0.49 for ¥ ;. The amount of
light “Cumulated either for the whole cycle or during
flowering time had no clear relation with yield or grain
number (r = 0.11 ns and 0.01 ns, respectively). Differ-
ences in yield between experiments were essentially
accounted for by grain number per unit area in WW
scenarios at flowering time (WW cycle and Rec; Fig. 2A).
This suggests a major effect of environmental conditions
during the vegetative and flowering phases. Grain size
was high in these scenarios, with a loose, negative rela-
tion with grain number indicating a source limitation at
high grain numbers (r = —0.27 in the reference hybrid,
Figure 2B). Most experiments with terminal water deficit
(early and late Term) had a lower grain size at a given
grain number (Fig. 2B). Yield was still related to grain
number in these scenarios but at lower values due to a
lower individual grain size (P value < 0.05 for differ-
ences in intercepts). The relationships corresponding to
other hybrids shared most of the features presented in
Figure 2 (Supplemental Fig. S4, A and B). Grain number
was positively related to W ; and negatively to T,

and T, (r = 0.37; P value < 0.1, ~0.54 P-value < 0.01,
and —0.44 P value < 0.05, respectively; correlations were
significant for the reference hybrid and for 94% of
hybrids, Supplemental Table S2C). Grain size was pos-
itively related to W, and negatively to T, during
grain filling (r = —0.38; P value < 0.05 and 0. 67%3 value <
0.001, respectively, Supplemental Table S2D). Maximum
VPD and T, had slightly lower overall effects on grain
yield (r = —0.22 ns and —0.36 ns, respectively, ranging
from —0.35 to —0.25 and from —0.18 to —0.07).

High Genetic Variability and GXE Interaction for Yield
and Yield Components

The panel showed a large genetic variability of yield
and yield components within each experiment, with a
genotypic variation (G) affecting mean yield by = 18%
(Table I), and a genetic coefficient of variation ranging
from 0.10 to 0.49 (0.08 to 0.42 for grain number and 0.03
to 0.11 for grain size; Supplemental Table S4A). This
variability applied within each environmental scenario
(Fig. 4): Yield in the scenario WW-Hot ranged from 5.8

to 9.1 tha™" in highest yielding hybrids (first quartile of
yield; Fig. 4, A-C). The difference in y1e1d between
WW-cool and WW- Hot ranged from 3.1 t ha™' (sensitive
hybrids) to 1.2 t ha™* (stable hybrids). The same pattern
applied to hybrids in the third quartile (Fig. 4, D-F).
This illustrates the genotype X scenario interaction (G
X EC), which affected the yield mean by *+ 6% (Table I)
and captured part of the interactions with location (G X
L, = 10%), year (G X Y, = 7%), and location by year
(G XY X L, = 11%; Table I). The same analysis gave
similar results for grain number, while both G and G X
E were lower for grain size (Supplemental Table S5, A
and B). Narrow sense heritabilities for grain yield
ranged from 0.19 to 0.84 with a median of 0.52
(Supplemental Table S4A). Slightly smaller heritabil-
ities were observed for grain number and grain size
(Supplemental Table S4, B and C). Experiments in the
WW group showed more heritable grain yield than in
WD group (h? = 0.56 and 0.37, respectively). Within the
WW group, heritabilities were independent of temper-
ature (h* = 0.54 in Cool, 0.53 in Hot(day), and 0.58 in Hot).

The genotypic variation of time to anthesis was from
63.9 to 75.9 dy.c in the panel, with narrow sense heri-
tabilities from 0.19 to 0.83 (median = 0.68). The corre-
lation between time to anthesis and yield tended to be
positive in WW fields (r from 0.10 ns to 0.56, P value <
0.001; data not shown), indicating that latest hybrids
had slightly higher yield and grain number than earlier
hybrids, most likely due to a longer cumulated photo-
synthesis. This correlation was not observed in fields
with terminal water deficit, and was even negative in
fields in which plants experienced most severe terminal
stress, typical of an avoidance strategy (e.g. r = —0.38, P
value < 0.001 in Bol12R).

Genomic Regions Controlling Grain Yield Displayed
Scenario-Dependent Effects

The single environment (SE) and multi-environment
(ME) GWAS together identified 467 SNPs significantly
associated with grain yield, as illustrated in Figure 3
for three experiments, 296 with grain number and
215 with grain size. Significant SNPs were then grouped
according to genetic distances, with a threshold at 0.1 cM,
leading to the identification of 115 QTLs for grain yield,

Table 1. Variance components of the different mixed models for grain yield

Statistical Model Type G GXEC® GxXL° GxY' GXLXY Res
Model M1: Multi-envt Variance component (t ha™")? 0.359 0.130 0.054 0.133 0.480
Model M2: Multi-envt + EC Variance component (t ha™")? 0.353 0.039 0.118 0.053 0.140 0.452
Model M3: Multi-envt, multilocus Variance component (t ha™")? 0.074 0.012 0.064 0.039 0.080 0.370
Model M1: Multi-envt sp as % of mean 9.1 5.5 3.5 5.5 10.5
Model M2: Multi-envt + EC sp as % of mean 9.0 3.0 5.2 3.5 5.7 10.2
Model M3: Multi-envt, multilocus sp as % of mean 4.1 1.7 3.9 3.0 4.3 9.3
QTLs (diff. var. comp. model 2-3 in %) 79 69 45 26 43 18

The general mean of grain yield was 6.57 t ha™'.

dGenotype by year. “Genotype by location by year.

“Genotype.

PGenotype by environmental classification.
‘Experiment-specific residual error variances.

“Genotype by location.
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Allelic Effects for Climate Changes

Figure 5. Final set of significant QTLs for grain
yield in the 29 experiments. Circle diameters
are proportional to the absolute value of allelic
effect. Colors indicate the direction of effect:

green when the reference hybrid allele in-
creases grain yield, and blue when the other
allele increases grain yield. Physical positions

of the markers are based on the B73 reference
genome RefGen_v2. Each horizontal line con-
tains QTLs of one experiment, organized by
scenarios of water status and temperature.
Vertical white lines indicate bin position (bins
are subdivisions of chromosomes in maize).
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84 QTLs for grain number, and 105 QTLs for grain size.
The number of QTLs for grain yield was reduced to
48 after backward elimination (Fig. 5; Table II). These
QTLs captured 79% of the additive genetic variance
(TableI) and large part of the G X E, in particular 69% of
the interaction between genotype and environmental
scenarios (G X EC). Individually, six QTLs retained
10% or more of the genetic variance, and five QTLs
captured more than 10% of the G X EC (data not
shown). The 48 QTLs appeared on average in seven
experiments, from 2 to 23 (Fig. 5; Supplemental Table
S5). Forty-six QTLs were identified for grain number
and 33 for grain size after backward elimination
(Supplemental Fig. S5, A and B).

Among the resulting 48 QTLs of grain yield, 38 dis-
played significant interaction with environmental sce-
narios (27 QTLs for grain number and 23 QTLs for grain
size, Supplemental Table S6; Supplemental Table S7,
A-D). This is illustrated in Figure 6, in which the allelic
effects of 12 QTLs are presented in each scenario (see
Supplemental Figure S6 for heat maps of the remaining
36 QTLs). The interaction between QTL and scenario
(QTL X EC) can be visualized by the fact that allelic
effects of a given QTL ranged from negative to highly
positive depending on scenarios, with patterns ana-
lyzed hereafter. Fourteen interactions were significant
for water scenarios and 18 for temperature scenarios,
including 11 QTLs significant for both water and tem-
perature scenarios. Temperature scenarios were tested
in WW only to avoid confounding effects.

Combining the Analyses QTL X Scenarios and QTL X
Environmental Variable Increased Insight and Allowed
Identification of QTLs Associated to Tolerance to Water
Deficit and High Temperature

The 48 QTLs of yield were classified in groups de-
fined by the conditional effect of their alleles (Fig. 5;

Plant Physiol. Vol. 172, 2016

Table II; Supplemental Table S6) based on discrete en-
vironmental scenarios as above, combined with a
continuous analysis with individual environmental
variables (Fig. 7).

Eight QTLs Showed Significant Responses to Temperature
with Large Allelic Effects at High Temperatures and Small
or No Effects in Cool Temperaturel Low Evaporative Demand

These QTLs can be qualified as providers of heat
tolerance because their allelic effects ranged from
shghtly negative in cool situations (—0.16 to —0.05
tha™') to h1ghly positive in hot situations (+0.22 to
+0.47 tha™'; Fig. 5; Table II). They harbored from two to
16 genes, except the QTL on bin 6.01 (Table II). Some of
them are presented with more detail below.

A QTL on bin 6.01 (18. 9 Mb, Fig. 6A) had a largely
positive effect (+0.36 t ha™ Y in Hot scenarios, was sig-
nificant in most Hot(day) scenarios (Fig. 5) and had
lower effects in other scenarios (even reversed in
WD-Cool scenarios). The environmental variable best
related to QTL effect was VPD,,,., with maximum effect
at VPD,, . higher than 3 kPa versus negligible effects at
low VPD,,,.or T, .. (Fig. 7A). It affected yield and grain
number, but not grain size, suggesting that it acted
during the vegetative period or flowering time. Because
allelic effects were significantly related to VPD, . (r =
0.32), but not to T,,,, (r = -0.05), it is likely to act via
transpiration rate. K candidate gene was identified in
the QTL region (Supplemental Table S7), whose effect is
consistent with the above analysis. It codes for an ABA/
water deficit stress induced protein (Canel et al., 1995;
Padmanabhan et al., 1997). Three QTLs of this category
on bins 6.01 (25.6 Mb), 10.06 (141.6 Mb), and 5.01 (5.8
Mb) are illustrated in Figure 6, B to D. Three genes in-
volved in ABA or ethylene responses were identified
in the region of the QTL on bin 10.05 (132.2 Mb,
Supplemental Table S7).
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Allelic Effects for Climate Changes

Twelve QTLs Showed Large Allelic Effects at Low Water
Potentials and Small or No Effects in Moist Soils, in
Combination or Not with Temperature Effects

10
2

DT non <k <t

Nb of genes"

These QTLs can be qualified as providers of drought
tolerance. In eight of them, allelic effects ranged from
slightly negative in WW situations (—0.02 to —0.18 t
ha ') to highly positive in WD situations (+0.24 to
+0.55 t ha™ ; Fig. 5; Table II). Four of these QTLs (bins
2.03,2.04, 4.03, and 6.00) even showed clear inversion of
effects in WW and WD scenarios, with —0.34 to —0.19 t
ha™' in WW and from +0.19 to +0.34 t ha™' in WD
scenarios. These QTLs harbored from one to 50 genes
(median = seven genes).

For example, a QTL on bin 2.04 (44.5 Mb) showed
inversion of allelic effects in WW and WD scenarios
(Fig. 6H). It was found to constitutively affect leaf ABA
content (Giuliani et al., 2005), consistent with the fact
that a gene coding for a zeaxanthin epoxidase involved
in ABA biosynthesis was identified in the region of the
QTL (Supplemental Table S7). This could explain the
inversion of allelic effects of this QTL in WW and WD
scenarios because high ABA can cause reduction in
growth in WW while maintaining growth in WD
(Tardieu et al., 2010; Tardieu, 2012). Two QTLs on bins
3.05 (150.4 Mb) and 1.03 (50.4 Mb) had positive effects
in WD scenarios but no significant effect in WW sce-
narios (Fig. 5; Fig. 6, E and F; Table II). Across scenarios,
their allelic effects increased in dry soils (r = 0.63 and
0.43 with soil water potential, respectively; Fig. 7B), but
also with evaporative demand (r = 0.51 and 0.48). The
QTL on bin 3.05 colocated with a gene coding for a Cys-
rich TM (Supplemental Table S7) with roles in stress
response or stress tolerance (Venancio and Aravind,
2010) and a strong up-regulation under drought stress
(Zheng et al., 2010). A QTL on bin 6.01 (84.4 Mb)
showed similar pattern of allelic effects although with
less effect of climatic scenarios (Fig. 6G). As the effects
of the former two QTLs, it also correlated with evapo-
transpiration (r = 0.36) and VPD,,,. (r = 0.41). It colo-
cated with a gene that codes for a protein of type zinc
finger domain and may be involved in protein-protein
interactions (K and Laxmi, 2014).

‘Chromosome and bin (a

)
day)
)
)

(
t(
(

WW Hot(day
Environmental scenarios in which

Scenarios with
max. effects8

All Hot(day)
WW Hot(day
WW Hot(day

WW Ho
WW Cool
WW Cool

relationship with any variable
PSNP physical position.

min. effects’
High positive effect in all scenarios
No contrast for scenarios and no

Scenarios with
WD Hot
WD Hot
All WD
WD Hot
WD Hot
WD Hot(day)
WD Hot(day)

0.33
0.56
0.49
0.32
0.27
0.53
0.53
0.39

1

Allelic effect
range (t ha™")
Min® Max®
0.02
—-0.12
—0.05
-0.14
-0.14
0.31

—-0.18

-0.18

0.03

—-0.14

—0.24
"Number of genes in the region of the QTL.

7.5
5.4
5.2
5.8

5.3
5.4
6.4
5.0

5.3

-log,,(P)

4SNP with the highest —log, ,(P-value).
“Minimum and maximum effects in individual experiments.

Region (CM)d
117.84-118.08
72.71-73.15
161.22-161.42
23.42-23.62
72.45-72.65
34.22-34.42
34.76-34.96
40.54-40.77
173.26-173.5

136.69-136.89

6.64-6.71
70.61-71.08
15.55-15.95

Region (Mbp)d
16.71-17.21

187.3-187.53
159.43-159.84
218.74-218.85
159.43-159.58

96.12-97.71
173.04-173.12

Bin®
3.06
3.05
3.09
5.01
5.03
02
7.02
06
02
8.08

Chr®

Two QTLs of Yield Acted via Changes in Flowering Time

The QTL on bin 3.05 (159.0 Mb; Fig. 6I) colocated
with a QTL of flowering time in our dataset, as ob-
served by another group (Salvi et al., 2011). It delayed
flowering time by 0.8 d, ., and had a positive effect on
yield in WW scenarios (16 experiments out of 20; Fig.
5), but not in WD scenarios, consistent with a correla-
tion with ¥, in which the QTL effect disappeared at
—0.35 MPa (r = 0.63; Fig. 7C). The scenario-dependent
effect on yield of this QTL is probably linked to the fact
that it increased cumulated photosynthesis in well-
watered conditions, while this effect disappeared un-
der water deficit because of a negative impact of a late
flowering time on soil water balance. Among the genes
under this QTL, we have identified a gene coding for a

4QTL region (in physical and genetic units).
SEnvironmental scenarios in which allelic effects were maximum.

6672502
70841813
15743645
16948400

ith No Clear Pattern of Allelic Effects

AX-91405380**
AX-91047031
AX-90571454

SNP position (pb)°
187430601
159743301
218787839
159499687

97064114
173077597

03171561
643166
654943
715582
026565

—_—— = —

SNP Name?
AX-90539808
AX-90597453

AX-9
AX-9
AX-9

3
3
PZE- 3
AX-9 5
5
7
7
8
7
8
*, QTLs that displayed inversion of effects; **, QTLs that colocated with QTLs of anthesis.

Table Il. (Continued from previous page.)
subdivision of the maize chromosomes).

allelic effects were minimum.
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Figure 6. Heat map of the allelic effects of 12 QTLs of grain yield in the
six environmental scenarios. Green, The allele increases grain yield;
orange, the allele decreases grain yield; yellow, the effect is null. By
convention, the plus allele is the one that is favorable for mean per-
formance. Allelic effects were estimated per experiment and then av-
eraged across experiments per environmental scenario. A to D, QTLs
conferring tolerance to heat with high effect in HotN and null effect in
Cool: A, bin 6.01 (18.9 Mb); B, bin 6.01 (25.6 Mb); C, bin 10.06 (141.6
Mb); D, bin 5.01 (5.8 Mb). E to H, QTLs conferring tolerance to drought
with effects in WD and lesser or reversed effect in WW: E, bin 3.05
(150.4 Mb); E, bin 1.03 (50.4 Mb); G, bin 6.01 (84.4 Mb); H, bin 2.04
(44.5 Mb). I'to L, QTLs of plant performance under favorable conditions
with lesser effect in dry and hot conditions, including two genes af-
fecting flowering time (I,K): I, bin 3.05 (159.0 Mb); J, bin 8.06 (159.5
Mb); K, bin 5.01 (5.4 Mb); L, bin 1.01 (2.4 Mb).

MADS box, which is a transcription factor class often
involved in vegetative and reproductive develop-
ments (Supplemental Table S7). A common QTL for
both yield and flowering time was also observed on
bin 8.06 (159.5 Mb) in 23 experiments (Figs. 5 and 6])
with most often a highly positive allelic effect. Because
this QTL shows smaller differential effects on yield in
water and temperature scenarios (Table II) compared
to that on bin 3.05, it may affect yield via another
mechanism in addition to flowering time. It is note-
worthy that this QTL is located at more than 15 cM
from vgtl, a classical QTL of flowering time (Salvi
et al., 2007).

Twenty-Five QTLs of High Plant Performance Disappeared
under Hot or Dry Conditions

These QTLs were significantly associated with a
comparative advantage in WW and/or cool conditions
(from 0.25 to 1.34 t ha™'), but their allelic effect de-
creased, disappeared, or even reversed under soil water
deficit or high temperature (from —0.25 to +0.03 t ha *;
Table II; Fig. 5). They are classified in Table Il according
to the environmental condition that had the larger
detrimental effect on yield. They harbored from two to
23 genes (median = five genes), except one QTL that
harbored 166 genes.
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For example, a QTL on bin 5.01 (5.4 Mb; Fig. 6K)
showed a larger allelic effect on yield in WW com-
pared to WD scenarios. Seven QTLs were significant
for grain yield in cool temperatures but disappeared at
high temperature (Table II; Fig. 5) as shown in Figure
6L and Figure 7D for a QTL of grain yield on bin 1.01
(2.4 Mb) with a high correlation between its allelic ef-
fect and T, (r = —0.42) and with T, (r = —0.34).
Eleven QTLs appeared only in WW and cool experi-
ments and tended to disappear in hot and/or drought
scenarios. This is consistent with candidate genes po-
tentially involved in growth per se, such as a gene
coding for a cell wall protein that affects cell wall
mechanical properties (QTL on Bin 7.02, 75.2 Mb; Basu
et al., 2016), with a cyclin-dependent protein kinase
regulator (QTL on bin 3.06, 187.4 Mb) or in auxin
signaling (QTLs on bins 3.04, 13.3 Mb, and 3.09, 218.8
Mb; Supplemental Table S7).

Three QTLs Did Not Display a Clear Pattern of Allelic Effect
in Environmental Scenarios

We have classified in this category the QTL on bin
8.06 (159.5 Mb) presented above because it had a posi-
tive allelic effect on yield in most scenarios (Fig. 6]). The
other two QTLs showed significant interaction with
neither scenarios nor environmental variables (bin 8.08,
173.1 Mb, and bin 7.02, 97.1 Mb).

DISCUSSION

A Method for Classifying Genotypes and QTLs According
to Environmental Scenarios, which Can Be Extrapolated to
the Whole Maize-Cropping Area in Europe in Current or
Future Conditions

Our approach for classifying environmental condi-
tions sensed by plants in field experiments allowed
identifying allelic effects in favorable scenarios or in
stressing scenarios involving combinations of drought
and heat stresses. Because maize is a C, species with
limited effect of CO, on photosynthesis, these scenarios
can apply to both current and future environmental
conditions but with different frequencies. An important
output was that an appreciable genetic variability was
observed in stressing scenarios (e.g. 6 to 9 t ha™' in
scenarios with heat stress), thereby offering opportu-
nities for breeding in these scenarios.

The classification of environment-related QTLs
combined two methods, namely the test for a contrast in
environmental scenarios and that for responses to in-
dividual environmental variables. The first method is
original to our knowledge, while the second has al-
ready been used in other studies (Vargas et al., 2006;
Boer et al., 2007; Malosetti et al., 2013) as proof of con-
cept on smaller datasets. Classification in environ-
mental scenarios can serve to estimate the comparative
interest of any given genomic region, for any European
region, by calculating the product of the mean allelic
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Figure 7. Allelic effects of QTLs on grain yield
in relation to environmental variables. A, Al-
lelic effect of QTL on chromosome 6.01 (19.0
Mb) as a function of VPD, ..; B, allelic effect of
QTL on chromosome 3.05 (150.4 Mb) as a
function of soil water potential; C, allelic effect
of QTL on chromosome 3.05 (159.0 Mb) as a
function of soil water potential; D, allelic effect
of QTL on chromosome 1.01 (2.4 Mb) as
function of T,,,;,,. Colors and shapes of symbols
asin Fig. 2. Allelic effects of grain yield (tha™")
were estimated using model M3. Environ-
mental variables were averaged within a pe-
riod of = 10 d, . around the flowering time of
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value in every scenario and the frequency of each sce-
nario in the considered region. The method based on
the regression of allelic effects with environmental
variables can serve in marker assisted selection (MAS),
by calculating the additive value of an allele as a func-
tion of environmental conditions. It can be extended to
genomic selection (Jarquin et al., 2014).

This approach allows prediction of QTL effects in
European regions to the difference of others: in par-
ticular, the classifications based on the datasets col-
lected during experiments using either a hierarchical
clustering of the G X E interaction (Moreau et al., 2004;
Hageman et al., 2012) or composite environmental
indices (Pidgeon et al., 2006; Boulffier et al., 2015). The
difference between these approaches appears strik-
ingly in the case of temperature. Our experiments were
performed in sites and years classified as Hot in 76% of
cases, versus only 2% in 52 European sites in the past
35 years by using the same thresholds. Although we
cannot state whether this difference in frequency is
due to climate change or to our sampling of sites and
years, it is clear that the QTLs of tolerance for high
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temperatures identified in this study are relevant for
future climatic scenarios, more than for current Euro-
pean climatic scenarios in the last 35 years. This could
not have been detected with a classification based on
the experimental dataset only. Similarly, Harrison
et al. (2014) showed that any of the four water sce-
narios identified in Europe and used here for classi-
fying experiments will probably be observed in the
maize-producing area in 2050, although with mark-
edly different frequencies. Hence, we think that the
approach proposed here allows using field experi-
ments performed in 2012 to 2013 for identifying ge-
nomic regions capable to reduce the impacts of climate
change.

Modeling Allelic Effects as a Function of Environmental
Conditions in Order to Identify QTLs for Heat and
Drought Tolerance

The instability of QTL positions was similar to that
observed in other multi-site experiments (Tuberosa
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et al., 2002; Malosetti et al., 2008b; Bonneau et al., 2013).
Nearly all QTLs identified here displayed a high and
significant QTL X E interaction, with strong effects in a
subset of experiments only. Overall, the QTL detection
was satisfactory because the final set of QTLs of grain
yield explained a high proportion of the genetic vari-
ance (79%), similar to that observed for more functional
traits in maize, e.g. leaf elongation rate (74% in
Reymond et al., 2003) or leaf architecture (83% in Tian
et al., 2011).

The added value of our work was to model allelic
effects according to environmental scenarios and vari-
ables, resulting in a predictive value of allelic effects
instead of their instability in other studies.

(1) A first series of QTLs are involved in heat toler-
ance because allelic effects improved yield in hot ex-
periments, but not in cooler experiments. Therefore,
these QTLs may be considered to enhance tolerance to
high temperatures. QTLs associated with maximum
temperatures can affect yield through their effect on
evaporative demand that lowers leaf water potential, or
via heat stress per se, e.g. on pollen viability (Schoper
et al., 1987). QTLs associated with night temperatures,
some also observed by Hatfield et al. (2011), may act
through carbon metabolism, in particular on the way in
which starch is mobilized during the night (Stitt et al.,
2010; Welch et al., 2010). The mechanisms underlying
the responses of night and maximum temperatures are,
therefore, markedly different. Candidate genes identi-
fied in QTL regions were involved in ABA signaling,
thereby suggesting an effect via evaporative demand
that decreases plant water potential.

(2) A second series of QTLs are involved in drought
tolerance, with an improvement of yield in drought
experiments, but not in well-watered conditions. Un-
derlying mechanisms may act by improving hydraulic
conductance of the root system (Chaumont and Tyer-
man, 2014) or by a reduction in the demand for tran-
spiration by stomatal closure under high evaporative
demand. Both processes maintain the growth of leaves
or reproductive organs (Welcker et al., 2007; Oury et al.,
2016a). The colocation of the QTL on bin 2.04, which
showed negative effects in WW and positive effects in
WD, with a gene of ABA biosynthesis whose effect is
expected to present the same pattern, is an interesting
example of how allelic effects in different scenarios can
help suggesting a candidate gene among those har-
bored by the QTL.

(3) A third series of QTLs showed alleles associated
with high performance in favorable conditions but
higher sensitivity to temperature and water deficit. At
least one of them (bin 3.05) was linked to a change in
flowering time in our study, although it is not among
best-known QTLs causing greatest effects on flowering
time (Chardon et al., 2004; Salvi et al., 2007; Buckler
etal., 2009). The low number of QTLs of flowering time
is probably due to the restricted window of flowering
time of our panel, thereby eliminating major actors of
the genetic control of flowering time. Later flowering
time causes an increased cumulated photosynthesis
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over the crop cycle, resulting in a higher potential yield
in well-watered conditions. It also results in increased
soil depletion in water deficit so flowering occurs when
the soil is drier, thereby increasing grain abortion that
counteracts the positive effect of later flowering time on
cumulated photosynthesis. QTLs independent of flow-
ering time harbored candidate genes involved in cell
wall properties, cell cycle, or auxin signaling, expected
to increase growth in favorable conditions.

Finally, it is noteworthy that one QTL only (Bin 8.06)
increased yield regardless of the environmental condi-
tions explored here, and that only two QTLs had allelic
effects that could not be classified according to envi-
ronmental scenarios. Hence, the vast majority of QTLs
had context-dependent effects that were specific of
precise scenarios and environmental conditions. We
believe that this result reinforces the idea that breeding
for tolerance to climate change will be more efficient
if environmental scenarios during key phenological
stages are explicitly taken into account for analyzing
QTL effects (Tardieu, 2012). Furthermore, the response
of allelic effects to environmental conditions across all
experiments (regardless of QTL significance in indi-
vidual experiments) has allowed identification of most
likely candidate mechanisms and genes.

MATERIALS AND METHODS

Plant Material, Experiments, and
Environmental Characterization

A maize hybrid population was generated by crossing a common flint parent
(UHO007) with 244 dent lines displaying a restricted flowering window. The
resulting panel of hybrids had a flowering time within 7 d. Lines were genotyped
using 50K Infinium HD Illumina array (Ganal et al., 2011) and a 600K Axiom
Affymetrix array (Unterseer et al., 2014). After quality control, 515 081 poly-
morphic SNPs were retained for the analysis. All physical positions referred to
hereafter are based on the B73 reference genome (Schnable et al., 2009)
RefGen_V2.

The hybrid panel was evaluated in 29 experiments defined by a combination
of year (2012 and/or 2013), site, and water regime. Sites were distributed on a
West-East transect across Europe in France, south Germany, northern Italy,
Hungary, and Romania at latitudes from 44° to 49° N compatible with the
adaptation region of the panel (Supplemental Table S1). One experiment
was performed in Chile (34° S). Experiments were designed as alpha-lattice
designs with two and three replicates for watered and rain-fed regimes,
respectively.

Light, air temperature, relative humidity (RH), and wind speed were mea-
sured every hour in each experiment at 2 m height over a reference grass canopy
(Supplemental Fig. S7). Light was measured with PPFD sensors or pyran-
ometers, depending on local practices; air temperature and RH were measured
in ventilated shelters for calculation of vapor pressure deficit (VPD,;,). Meteo-
rological data obtained in each site were first converted to a unique set of
variables with common units and then systematically checked for consistency
and compared with those obtained in weather stations belonging to national/
European networks. This led in some cases to new calibrations of the sensors
used in local weather stations. Soil water potential was measured every day in
the majority of fields (from every second hour to every fourth day) at 30, 60, and
90 cm depths in watered and rain-fed microplots sown with the reference hy-
brid B73 X UH007 with three and two replicates, respectively. Meristem tem-
perature (T, .;gem) Was calculated every hour in each field, based on a simplified
energy balance in which T, qem increases with light (import of energy) and
decreases with VPD,,, (increases transpiration, with an energy loss due to latent
heat; Guilioni et al., 2000). A first equation was used until the beginning of stem
elongation (eight-leaf stage), when T, ;sem iS affected by the temperature of the
upper soil layer:
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Tneristem = 6.46 + 0.77 Tair + 0.01 Rg — 0.48 Weoii — 0.22 VPD,;r

where T is air temperature at 2 m height (°C), R, is global solar irradiance
(W m™?), and W, is soil water content (g g ') calculated via a water balance in
the 0 to 3 cm soil layer. A second equation was used for later stages during

which the apex is in the air:
Tneristem = 1.18 + Tair +0.01 Rg — 1.65 VPDjir

Coefficients were determined with a linear model established on datasets col-
lected in Mauguio (near Montpellier) and Grignon (near Paris). Resulting
meristem temperatures were checked in independent datasets (Supplemental
Fig. S8).

The leaf-to-air vapor pressure difference (VPD) was calculated from RH and
T eristem- Each day was characterized by the mean VPD for the three hours in the
afternoon during which VPD was maximum (most often 12:00 to 15:00 solar
time), referred to as VPD,,,.. Reference evapo-transpiration (ET,) was calculated
based on the Penman-Monteith equation as revised in the FAO-56 estimation
(Allen et al., 1998). The progression of the crop cycle in each site was charac-
terized via thermal time after emergence, expressed in equivalent days at 20°C
(d,ec; Parent et al., 2010).

Three scenarios of temperature were identified, depending on mean night
and maximum temperature (T, and T,,,) over 20 dyy.. encompassing
flowering time of the reference hybrid. The threshold of Ty, was set at 20°C
and that of T, at 3°C above 30°C, the temperature at which the rate of de-
velopmental processes decreases with temperature in maize (Parent et al., 2010,
2016). Meteorological values used for temperature scenarios in current condi-
tions (1975-2010) were obtained from the AGRI4CAST database (Joint Research
Centre [JRC], 2013) for 35 years in 55 European sites (Harrison et al., 2014). The
same meteorological data have been used (Harrison et al. 2014) for generating
scenarios of plant water status. Briefly, this involved the simulation of the
supply/demand ratio for water with the APSIM model, resulting in 35 X
55 time courses that were subsequently clustered into four scenarios. The
dataset that we have collected here includes time courses of soil water potential
at three soil depths, thereby providing “real” environmental data. Conversely,
the soil permanent characteristics necessary for running APSIM, such as the
maximum soil water depletion at each depth, were not available to us. Hence,
drought scenarios have been expressed based on measured soil water potential;
they were also renamed here with more intuitive names. The limit of —0.1 MPa
for mean soil water potential was appropriate for distinguishing WW and WD
scenarios based on APSIM simulations carried out in fields for which the
datasets were available for both modeling and direct measurement of soil water
potential (data not shown).

Phenotypic Analyses

Grain yield and its components and male flowering dates were measured in
each experiment. Grain yield was recorded simultaneously with the grain water
content and adjusted to 15% moisture.

For each of the 29 experiments, genotypic means were calculated for each
hybrid using a mixed model based on fixed hybrid and replicate effects, random
spatial effects, and spatially correlated errors (Supplemental Methods S1) fitted
with ASReml-R (Butler et al., 2009; R Core Team, 2013). The best linear unbiased
estimations (BLUEs) of the genotypic means were then used for the rest of the
analyses. The same model, but with random hybrid effects, was used to esti-
mate variance components. Narrow-sense heritability was estimated at the plot
level with a model assuming additive SNP effects using the R-package Heri-
tability (Kruijer et al., 2015).

Multienvironment Analyses

Wefirst fitted a mixed-model with random effects for genotype (G), genotype
by location interaction (G X L), genotype by year interaction (G X Y), genotype
by location by year interaction (G X L X Y), and experiment specific residual
error variances (E):

Y=Eno+PC+EmwXPC+G+GXL+GXY +GXLXY +E Ml

where Y is the vector of all phenotypic observations, Env represents fixed
experiment-specific means, and PC denotes a fixed term that refers to the first
10 principal components of the kinship matrix used to correct for population
structure (Supplemental Methods S2). Following van Eeuwijk et al. (2010), the
interaction between experiment and PC was also taken into account (Env X PC).
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The variance components of random terms were extracted and the standard
deviations were expressed as a percentage of the general phenotypic mean
(Gelman, 2005). Any effect in the model can contribute to differences in phe-
notype for individual genotypes within a range of * twice the sp. This range
was also expressed as a percentage of the general mean.

Next, we extended model M1 with a random effect accounting for the in-
teraction between genotype and environmental classification (G X EC):

Y = Env + PC + Env X PC
+G+GXEC+GXL+GXY+GXLXY+E M2

GWAS Analysis

GWAS was first performed on individual traits for each single experiment
(SE) using the single locus mixed model

Y=p+XB+G+E

where Y is the vector of phenotypic values, u the overall mean, X is the vector
of SNP scores, 8 is the additive effect, and G and E represent random polygenic
and residual effects. As in Rincent et al. (2014), the variance-covariance matrix
of G was determined by a genetic relatedness (or kinship) matrix, derived from
all SNPs except those on the chromosome containing the SNP being tested
(Supplemental Methods S2). The SNP effects B were estimated by generalized
least squares, and their significance (H;: B = 0) tested with an F-statistic.
Analyses were performed with FaST-LMM v2.07 (Lippert et al., 2011).

Subsequently, we performed single locus multienvironment (ME) GWAS
with the same dataset (Supplemental Methods S3). To overcome the compu-
tational burden posed by the large number of experiments, we combined the
diagonalization approach of Zhou and Stephens (2014) with the factor analytic
models commonly used in multitrait and multienvironment QTL-mapping in
experimental populations (Boer et al., 2007; Malosetti et al., 2008a).

An initial set of SNPs was selected based on the joint result of single locus SE
and ME GWAS by including all SNPs with —log,,(P value) larger than five. This
initial screening for candidate QTLs was deliberately performed with a rela-
tively mild significance threshold to ensure that we would not miss potentially
interesting SNPs. The protection against false positives was ensured by back-
ward elimination of candidate QTLs from a multilocus ME mixed model.
Physical positions of significant SNPs were projected on the consensus genetic
map for Dent genetic material (Giraud et al., 2014). Candidate SNPs distant less
than 0.1 cm were considered as belonging to a common QTL, described via the
most significant SNP in the QTL and the interval between all SNPs belonging to
the QTL.

Dissection of G X E and QTL X E

To investigate the structure of G X E and QTL X E effects, we fitted a ME
model with multiple QTLs:

Y = Env + PC + Env X PC+ ¥, QTL]™
7€Q
+G+GXEC+GXL+GXY +GXLXY+E M3

with QTLqE”” = QTL,; + (QTL X Env) = We have fitted environment-specific
QTL effects that are the sum of a QTL main effect and a QTL by environment
interaction term. Model M3 extends model M2 with a final set of QTLs called Q.
The final composition of Q was determined by first including the complete set of
candidate QTLs, and then performing backward elimination based on the Wald
tests for the individual terms QTLE"™, removing at each step the least significant
QTL, until all QTLs were significant at 0.01 (Supplemental Methods S4). To
assess the amount of genetic (co)variance explained by the QTLs, we compared
the estimated variance components in M3 with those obtained from M2. A short
description of each model is presented in Supplemental Table S9.

For each of the QTLs inmodel M3, the part due to (QTL X Env) , was dissected
by modeling this interaction as the sum of index-specific effects and a residual
term representing QTLXE variation not captured by the environmental index:

(QTL X Env)q _ (QTLgensi.‘ivily X index) + QTLé{esiduul

Substituting this in model M3 gave an equivalent model, but also gave a Wald
test for the significance of the interaction (QTL[?E”S”MW X index) that could be
either a test for contrast in scenarios (e.g. test for QTL X EC) or a continuous

environmental variable (e.g. QTL X T,,..).
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Allelic effects of all candidate QTLs were extracted from model M3.
When no indication is provided, a positive effect indicates that the ref-
erence hybrid allele increased the trait value, while a negative effect in-
dicates that the alternative allele increased the trait value (Supplemental
Methods S5).

Candidate Genes

Each identified region was queried in the maize 5b annotation file
ZmB73_5b_FGS_info.txt downloaded from maizesequence.org using a custom
Perl script. It was functionally annotated using the MapMan annotation and
cross-referenced to Affymetrix microarray probes using the publicly available
Affymetrix information file Release 35. To this aim, data from Zheng et al. (2010)
was obtained from GEO and analyzed using ROBINA (Lohse et al., 2012), and
RNASeq results from the supplement of Liu et al. (2015) were integrated using a
custom script.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Principal component analysis on the weather
variables.

Supplemental Figure S2. Variability of grain yield per experiment.

Supplemental Figure S3. Genotypic variability of grain yield for all hy-
brids in the six environmental scenarios.

Supplemental Figure S4. Relationship between grain yield and grain num-
ber (A) and between grain size and grain number (B) for the whole panel
of hybrids.

Supplemental Figure S5. Final set of significant QTLs for grain number (A)
and size (B) in the different experiments.

Supplemental Figure S6. Heatmap of the allelic effect the 36 QTLs of grain
yield per environmental scenario.

Supplemental Figure S7. Time courses of weather variables in one location
(Gail3).

Supplemental Figure S8. Comparison of estimated and observed meristem
temperature.

Supplemental Table S1. Weather variables, grain yield and yield compo-
nents over the network of experiments.

Supplemental Table S2. Correlations between environmental variables,
grain yield, and its components.

Supplemental Table S3. Genotypic variability of grain yield for all hybrids
in the six environmental scenarios.

Supplemental Table S4. Statistical indicators of the genetic variability for
grain yield (A), grain number (B), and grain size (C) in individual ex-
periments.

Supplemental Table S5. Variance components of the different models for
grain number (A) and grain size (B).

Supplemental Table S6. Dissection of QTL X Env on the 48 QTLs of grain
yield (t ha™).

Supplemental Table S7. Final set of QTLs for grain number (A and B,
nb m™~?) and grain size (C and D, mg) and QTL X E tests.

Supplemental Table S8. Candidate genes found in QTL regions.
Supplemental Table S9. Short description of statistical models.

Supplemental Methods S1. Additional methodological details on the sin-
gle environments phenotypic analysis.

Supplemental Methods S2. Additional methodological details on the es-
timates of genetic relatedness and the use of marker information.

Supplemental Methods S3. Additional methodological details on the ME
GWAS.

Supplemental Methods S4. Additional methodological details on the ME
multi-QTL model.
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Supplemental Methods S5. Additional methodological details on the dis-
section of G X E and QTL X E.
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