
2025 June 5th

ROUSSEAU Baptiste
SEILER Julien

Introduction to Git

2

● What is Git?

● Key concepts

● How to use the Git command?

● The Burger project
▪ Create a repository

▪ Add files

▪ Commit changes

▪ Modify files

▪ Check status

▪ Revert changes

▪ Use branches

Plan

3

4640 cores (9280 threads)
62TB of RAM
42 GPUs
2PB of scratch storage
2 PB of project storage
(with backup)
more than 600 tools

The French Institute of Bioinformatics and the Core Cluster

The French Institute of Bioinformatics, or IFB, is the national bioinformatics
infrastructure that provides support, deploys services, organizes training, and carries out
innovative developments for the life sciences communities.

The IFB offers a national-scale
computing infrastructure in addition
to the services provided regionally,
known as the Core Cluster.

The Core Cluster is a computing
infrastructure co-managed by system
administrators and bioinformaticians
from 5 IFB platforms.

4

The IFB Core Cluster

The Core Cluster offers three modes of access to its resources.

SSH
core.cluster.france-bioinformatique.fr

A connection node for launching
SLURM tasks

5

The IFB Core Cluster

The Core Cluster offers three modes of access to its resources.

Galaxy
https://usegalaxy.fr

French instance of Galaxy
3,174 tools available
6 thematic subdomains:

● Workflow4Metabolomics
● ProteoRE
● Covid19
● Metabarcoding
● Met4J
● MNHN

TiaaS : Training infrastructure as a Service

6

The IFB Core Cluster

The Core Cluster offers three modes of access to its resources.

Open OnDemand
https://ondemand.cluster.france-bioinformatique.fr/

Web portal for accessing computing resources
Interactive applications:

● JupyterLab
● RStudio
● XFCE Desktop
● And more to come

File manager
SLURM task launching and monitoring

7

This is an interactive training

▪ You will learn to use git by working with it

▪ You only need a web browser and an Internet
connection to follow this training.

▪ Each time you see this icon, you will have
something to do

https://ondemand.cluster.france-bioinformatique.fr/

https://ondemand.cluster.france-bioinformatique.fr/

8

This is an interactive training

Username Password

9

This is an interactive training

10

This is an interactive training

11

This is an interactive training

12

What is Git?

Git is

a command line tool command line (Git)
developed in C, Bash and Perl
Open Source (GNU GPL 2)

a version control system - track changes to a file/folder or a set of
files/folder
- navigation in the history of modifications
- sharing of changes

decentralized no need for a server

and distributed multi-user

13

Where does Git come from?

Git was invented in 2005 by Linus Torvalds.

Git is the successor of many similar tools like cvs or subversion.

git means “unpleasant person”
(Linus like to name his projects after himself…)

14

Why would I need a decentralized version control system?

A few examples
▪ Follow the steps of modification of a program

▪ Test a complex change and be able to go back easily

▪ Working with others on a project

▪ Invite collaborators on a project

▪ Contribute to OpenSource projects

15

How to use Git?

▪ Git is a command line tool

▪ the command is git

▪ you can use it from shell terminal

16

How does Git work?

For each project you track with Git, Git maintains a repository at the root of the
project in a .git folder

The git command let you interact with this repository.

17

Working directory vs. Repository

Working directory

Git repository

.git

Your working folder contains the files and folders that make up
your project.

Git can modify these files to update them or present them to
you at different versions of the project through its index.

Your Git repository contains the entire history of your project.
All file versions, all modifications, etc.

This is the .git folder at the root of your working folder.

18

A Git repository will allow you to track the history of changes in your project.

Each change is first recorded in an index (or indexed) to form a collection of
changes.

This collection of changes is then validated (or committed) in your repository

Each commit is a new version or revision in your project history.

Okay… but what is an index?

19

Before we start…

To use the latest version of Git, load the command using module

$ module load git
$ git --version
git version 2.40.1

20

How to use Git?

In your console, type git
$ git
usage: git [--version] [--help] [-C <path>] [-c <name>=<value>]
 [--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
 [-p | --paginate | -P | --no-pager] [--no-replace-objects] [--bare]
 [--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
 <command> [<args>]

These are common Git commands used in various situations:

start a working area (see also: git help tutorial)
 clone Clone a repository into a new directory
 init Create an empty Git repository or reinitialize an existing one

work on the current change (see also: git help everyday)
 add Add file contents to the index
 mv Move or rename a file, a directory, or a symlink
 restore Restore working tree files
 rm Remove files from the working tree and from the index
 sparse-checkout Initialize and modify the sparse-checkout

[…]

'git help -a' and 'git help -g' list available subcommands and some
concept guides. See 'git help <command>' or 'git help <concept>'
to read about a specific subcommand or concept.
See 'git help git' for an overview of the system.

21

How to use Git?

The git program allows you to run commands to manage your Git repository

$ git <command> <arguments>

22

First steps with Git

Defining your identity
Your identity will be associated with the changes you make in your repositories
It is defined in the file ~/.gitconfig or %USERPROFILE%\.gitconfig

$ git config --global user.name "Your name"
$ git config --global user.email your@email
$ git config --global init.defaultBranch main

23

The burgers project

To illustrate this training, we will work on a burger recipes
project.

Create a burgers folder in your home folder

$ mkdir burgers

24

Create your repository

Go to your burgers folder and run the git init comand

$ cd burgers
$ git init
Initialized empty Git repository in /Users/seilerj/burgers/.git
$ ls –a
. .. .git

25

git init <working dir>

creates a Git repository

If the specified working dir does not exist, it will be created.

Without parameters, the command creates a Git repository for the current
folder.

26

Add a file to your repository

Let’s cook a burger
Create the file doublecheese.txt in the burgers folder and write down the list
of ingredients to make a double cheese.

27

Add a file to your repository

28

Index a file in your Git repository
Index the doublecheese.txt file in your repo with the
git add doublecheese.txt command

$ git add doublecheese.txt

Add a file to your repository

29

Save changes
Validate this modification in order to save it in your repository with the
git commit command

$ git commit –m "Birth of the double cheese"
[main (root-commit) bb0188d] Birth of the double cheese
 1 file changed, 7 insertions(+)
 create mode 100644 doublecheese.txt

Add a file to your repository

30

burgers

My Git repo My project

R1

Add a file to your repository

New file

Git Index
(or Git stage)

addcommit

31

Modify a file

There is no tomatoes in the double cheese!

Correct the file doublecheese.txt

32

A new burger

Add the file bigmac.txt to your burgers project

steak
salad
tomatoes
onions
pickle
ketchup
mustard

33

Check the status of your project

Where are we now?
Check what has changed in your project with the git status command

$ git status
On branch main
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: doublecheese.txt

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 .ipynb_checkpoints/
 bigmac.txt

no changes added to commit (use "git add" and/or "git commit -a")

34

Files status in a Git repository

untracked unmodified
modified but not

staged
staged

add file

file deletion

file modification

file indexing

validation of changes (commit)

35

Index changes

Index the change on the doublecheese.txt file with the git add command

$ git add doublecheese.txt

36

Check the status of your project

 Check what has changed in your project with the git status command

$ git status
On branch main
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: doublecheese.txt

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 .ipynb_checkpoints/
 bigmac.txt

37

Add a new file to the repo

Add the new file bigmac.txt with the git add command

$ git add bigmac.txt

38

Check the status of your project

 Check what has changed in your project with the git status command

$ git status
On branch main
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 new file: bigmac.txt
 modified: doublecheese.txt

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 .ipynb_checkpoints/

39

Validate the changes

Run the git commit command

$ git commit -m "Add the big mac and correct the double cheese"
[main 299a6b2] Add the big mac and correct the double cheese
 2 files changed, 7 insertions(+), 1 deletion(-)
 create mode 100644 bigmac.txt

40

A new revision is here

burgers

My git repo My project

R1

R2

File
modification

New file

Git Index

addcommit

41

Let’s introduce an error

Edit the bigmac.txt file to add a bad ingredient.

42

Retrieve the previous version of a file

Restore the last valid version of the file with the git checkout command

$ git checkout bigmac.txt

43

The revisions

Did you say revision number?
Each commit to your repository creates a new revision or version of your project.

Each revision is actually a set of changes.

44

View the revisions of your repository

Use the git log command to view the revisions of your local repository

$ git log
commit 299a6b210eed54e9f4c164b85ecbcb9ed899e6eb (HEAD -> main)
Author: Julien SEILER <seilerj@igbmc.fr>
Date: Tue May 16 12:14:35 2023 +0200

 Add the big mac and correct the double cheese

commit bb0188df5bf0c3cb3a152e52e22df1249d52e2be
Author: Julien SEILER <seilerj@igbmc.fr>
Date: Tue May 16 11:49:37 2023 +0200

 Birth of the double cheese

45

Return to a previous revision of your project

Revert to the initial version of your project (just the doublecheese.txt) using the

git checkout <id rev> command

$ git checkout bb0188df5bf0c3cb3a152e52e22df1249d52e2be
Note: switching to 'bb0188df5bf0c3cb3a152e52e22df1249d52e2be'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in
this
[…]
$ ls
doublecheese.txt

46

Introduction to the concept of branch

main

Add the big mac and correct the double cheese
299a6b210eed54e9f4c164b85ecbcb9ed899e6eb

Birth of the double cheese
bb0188df5bf0c3cb3a152e52e22df1249d52e2be

Main branch

HEAD

47

Introduction to the concept of branch

main

Birth of the double cheese
bb0188df5bf0c3cb3a152e52e22df1249d52e2be

git checkout bb01...

DETACHED HEAD

48

Introduction to the concept of branch

main

Birth of the double cheese
bb0188df5bf0c3cb3a152e52e22df1249d52e2be

dev

We can start a new branch

49

Introduction to the concept of branch

main

Birth of the double cheese
bb0188df5bf0c3cb3a152e52e22df1249d52e2be

We can go back to the last version
git checkout main

50

Go back to the last version of the project

Use the command git checkout main

$ git checkout main
Previous HEAD position was bb0188d Birth of the double cheese
Switched to branch 'main'
$ ls
bigmac.txt doublecheese.txt

51

Going further with the branches

52

Going further with the branches

main
r1

big changes

r2 r3 r5

r4 r6 r7

r8

Default branch

53

Going further with the branches

Our fast-food restaurant wants to go ORGANIC.
We need to change all our recipes!!!

That’s a « big change »…

54

Create a new branch

Create a new organic branch on your repository

$ git branch organic

55

Create a new branch

Consult the branches available on your repository

$ git branch
* main
 organic

56

Change branch

Use the git checkout command to switch branches.

$ git checkout organic
Switched to branch 'organic'

57

Going further with the branches

main
r1

organic

r2 r3

58

We go organic!

Modify the Big Mac recipe and commit the change

$ git commit –a –m "organic mac"
[organic a7a6f6e] organic mac
 1 file changed, 7 insertions(+), 7 deletions(-)

organic steak
organic salad
organic tomatoes
organic onions
organic pickles
organic ketchup
organic mustard

59

Going further with the branches

main
r1

organic

r2 r3

r4

Organic Mac

60

We go organic!

Modify the Double Cheese recipe and commit the change

$ git commit –a –m "organic cheese"
[organic 1ed7510] organic cheese
 1 file changed, 6 insertions(+), 6 deletions(-)

organic steak
organic cheese
organic onions
organic pickles
organic ketchup
organic mustard

61

Going further with the branches

main
r1

organic

r2 r3

r4

Organic Mac

r5

Organic Cheese

62

Let's go back to our main branch

Return to the main branch with the

git checkout command

$ git checkout main
Switched to branch 'main'

63

Merge of branches

We can retrieve the changes saved on the organic branch with the
git merge command

$ git merge organic
Updating 299a6b2..1ed7510
Fast-forward
 bigmac.txt | 14 +++++++-------
 doublecheese.txt | 12 ++++++------
 2 files changed, 13 insertions(+), 13 deletions(-)

64

Going further with the branches

main

organic

r1 r2 r3

r4 r5

r6

Organic Mac Organic Cheese

65

The Git cycle

Working directory

git repository

.git

commitcheckout
merge

66

git command Description

init Creating a repository for a project/folder

add Indexing of a modification or addition of a file or folder

rm Deleting a file or folder

mv Moving a file or folder

status Visualization of the repository status

diff Viewing changes between two revisions or between a revision and the current version

checkout Retrieving a file from the repository

log Consultation of the list of revisions (commits) registered on the repository

The Git commands to manage your local repository

67

Exercise

1. Delete the bigmac and save the change in your repository

2. Add a burger and save the change to your repository

3. Restore the bigmac to your working folder

68

Exercise

1. Delete the bigmac and save the change in your repository

$ git rm bigmac.txt
$ git commit –m “bye bye big mac“
[main 916c075] bye bye big mac
 1 file changed, 7 deletions(-)
 delete mode 100644 bigmac.txt

69

Exercise

2. Add a burger and save the change to your repository

$ git add newburger.txt
$ git commit -m "add a new burger"
[main 26f9033] add a new burger
 1 file changed, 1 insertion(+)
 create mode 100644 newburger.txt “

70

Exercise

3. Restore the bigmac to your working folder

$ git checkout <rev> bigmac.txt
Updated 1 path from 69a5a31
$ git commit -a -m "return of the big mac"
[main 9a4a1c6] return of the big mac
 1 file changed, 7 insertions(+)
 create mode 100644 bigmac.txt

<rev> is the last revision at which the bigmac.txt was present

71

Next step? Share you work!

To share our work and be able to collaborate with other people, we need to
use a “code forge”

72

Connect to Github

73

Connect to Github

74

Your Dashboard

75

Generating a new SSH key

$ ssh-keygen -t ed25519 -C "your_email@example.com"
$ Generating public/private ALGORITHM key pair.
$ Enter a file in which to save the key
(/home/YOU/.ssh/id_ALGORITHM):[Press enter]
$ Enter passphrase (empty for no passphrase): [Type a passphrase]
$ Enter same passphrase again: [Type passphrase again]

In a terminal in Jupyter

https://docs.github.com/fr/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-a
dding-it-to-the-ssh-agent

mailto:your_email@example.com
https://docs.github.com/fr/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/fr/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

76

Get your SSH key

$ ls -al ~/.ssh
total 28
drwx------ 2 tdenecker tdenecker 4096 Apr 4 10:40 .
drwx------ 30 tdenecker tdenecker 12288 Apr 4 10:37 ..
-rw------- 1 tdenecker tdenecker 419 Apr 4 10:40 id_ed25519
-rw-r--r-- 1 tdenecker tdenecker 106 Apr 4 10:40 id_ed25519.pub
-rw-r--r-- 1 tdenecker tdenecker 1063 Jul 13 2023 known_hosts

$ cat ~/.ssh/id_ed25519.pub

In a terminal in Jupyter

Copy the output

77

Add your SSH key

78

Add your SSH key

79

Create a new repository

80

Create a new repository

81

Main commands

git remote

Push an existing repository from the command
line
$ git remote add origin git@github.com:<repository_URL>/burgers.git
$ git push -u origin main

82

Main commands

git clone

Clone a remote repository to your local machine.

git clone <repository_URL>

83

Main commands

git push

Send local commits to the remote repository.

git push <remote_name> <branch_name>

84

Main commands

git push

Fetch the latest changes from the remote
repository and merge them into your local
branch.

git pull <remote_name> <branch_name>

85

Main commands

git remote

Show or add remote repositories.

git remote -v
git remote add <remote_name> <remote_URL>

86

Main commands

git fetch

Fetch branches and commits from the remote
repository, but do not merge the changes into
your local branch.

git fetch <remote_name>

Thank you for your
attention !

