Baker, Monya. 2016.
“1, 500 Scientists Lift the Lid on Reproducibility.” Nature 533 (7604): 452–54.
https://doi.org/10.1038/533452a.
Di Tommaso, Paolo, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio Palumbo, and Cedric Notredame. 2017.
“Nextflow Enables Reproducible Computational Workflows.” Nature Biotechnology 35 (4): 316–19.
https://doi.org/10.1038/nbt.3820.
Gibney, Elizabeth, and Richard Van Noorden. 2013.
“Scientists Losing Data at a Rapid Rate.” Nature, December.
https://doi.org/10.1038/nature.2013.14416.
Grüning, Björn, John Chilton, Johannes Köster, Ryan Dale, Nicola Soranzo, Marius van den Beek, Jeremy Goecks, Rolf Backofen, Anton Nekrutenko, and James Taylor. 2018.
“Practical Computational Reproducibility in the Life Sciences.” Cell Systems 6 (6): 631–35.
https://doi.org/10.1016/j.cels.2018.03.014.
Hamilton, Daniel G., Matthew J. Page, Sue Finch, Sarah Everitt, and Fiona Fidler. 2022.
“How Often Do Cancer Researchers Make Their Data and Code Available and What Factors Are Associated with Sharing?” BMC Medicine 20 (1): 438.
https://doi.org/10.1186/s12916-022-02644-2.
Ioannidis, John P A, David B Allison, Catherine A Ball, Issa Coulibaly, Xiangqin Cui, Aedín C Culhane, Mario Falchi, et al. 2009.
“Repeatability of Published Microarray Gene Expression Analyses.” Nature Genetics 41 (2): 149–55.
https://doi.org/10.1038/ng.295.
Michener, William K., James W. Brunt, John J. Helly, Thomas B. Kirchner, and Susan G. Stafford. 1997.
“Nongeospatial Metadata for the Ecological Sciences.” Ecological Applications 7 (1): 330–42.
https://doi.org/10.1890/1051-0761(1997)007[0330:nmftes]2.0.co;2.
Mölder, Felix, Kim Philipp Jablonski, Brice Letcher, Michael B. Hall, Christopher H. Tomkins-Tinch, Vanessa Sochat, Jan Forster, et al. 2021.
“Sustainable Data Analysis with Snakemake.” F1000Research 10 (April): 33.
https://doi.org/10.12688/f1000research.29032.2.
Murphy, Denis J. 2014.
“Using Modern Plant Breeding to Improve the Nutritional and Technological Qualities of Oil Crops.” OCl 21 (6): D607.
https://doi.org/10.1051/ocl/2014038.
Open Data website, 5-star. 2012.
“5 ★ Open Data.” https://github.com/mhausenblas/5stardata.info.
Piazzi, Arthur C., Augusto S. Cerqueira, Leandro R. Manso, and Carlos A. Duque. 2018.
“Reproducible Research Platform for Electric Power Quality Algorithms.” In
2018 18th International Conference on Harmonics and Quality of Power (ICHQP), 1–6. IEEE.
https://doi.org/10.1109/ichqp.2018.8378938.
Ram, Karthik. 2019.
“How to Make Your Data Analysis Notebooks More Reproducible.” https://github.com/karthik/rstudio2019.
Recommandation de l’UNESCO Sur Une Science Ouverte. 2021. UNESCO.
https://doi.org/10.54677/ltrf8541.
The Turing Way Community. 2025.
“The Turing Way: A Handbook for Reproducible, Ethical and Collaborative Research.” Zenodo.
https://doi.org/10.5281/zenodo.15213042.
Whitaker, Kirstie. 2017.
“Showing Your Working: A How to Guide to Reproducible Research.” https://doi.org/10.6084/m9.figshare.5443201.v1.
Wilkinson, Mark D., Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, et al. 2016.
“The FAIR Guiding Principles for Scientific Data Management and Stewardship.” Scientific Data 3 (1).
https://doi.org/10.1038/sdata.2016.18.
Ziemann, Mark, Pierre Poulain, and Anusuiya Bora. 2023.
“The Five Pillars of Computational Reproducibility: Bioinformatics and Beyond.” Briefings in Bioinformatics 24 (6).
https://doi.org/10.1093/bib/bbad375.