

Atelier scRNA-seq

Checking signal with a genome browser (IGV)

Margot Tragin - Institut Imagine, Paris

D'après Sophie Lemoine, IBENS - GenomiqueENS, Paris

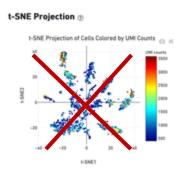
Single cell analysis is about counts, so why visualizing the reads in a genome browser?

- When to check?
- How to check?
- Solution(s) to improve results?
- Integrative Genomics Viewer

When to check?

- You do not understand the counts on your favourite gene?
- The global results look weird?

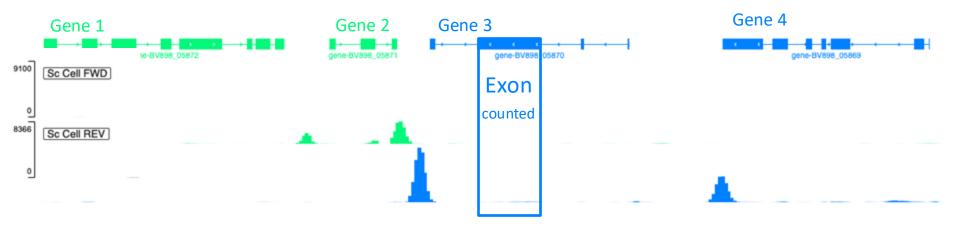
→ Your reads may not overlap annotations...



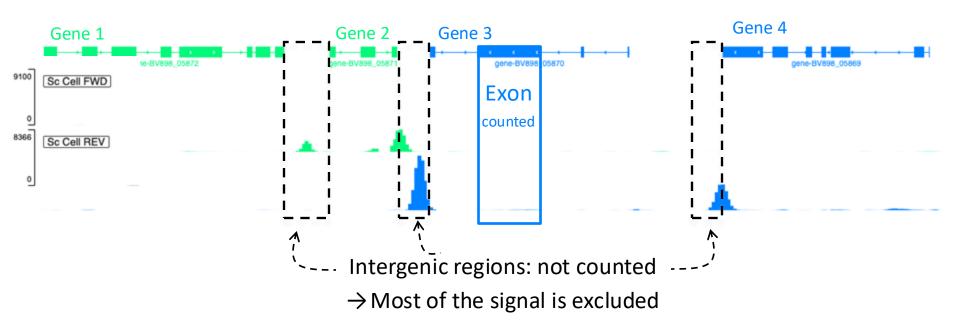
When to check?

The mapping statistics are not good

Alert Value Detail A Low Fraction Reads Confidently Mapped To Transcriptome Transcriptome Alert Value Detail Detail A Low Fraction Reads 23.3% Ideal > 30%. This can indicate use of the wrong reference transcriptome, a reference transcriptome with overlapping genes, poor library quality, poor sequencing quality, or reads shorter than the recommended minimum. Application performance may be affected.


- → The clusters are then based on a very limited amount of reads and will not be reliable
- → If the counted reads are low, the estimated number of cells will be smaller (relies on a smaller amount of BC+UMIs)

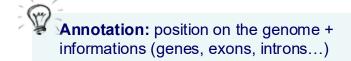
Bad counts result in poor and even fake results!!


How to check?

• Take a look at the signal

How to check?

Take a look at the signal

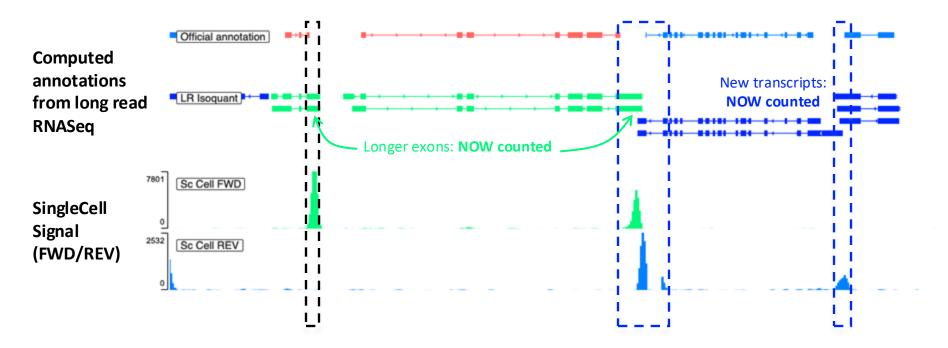


What is not annotated cannot be counted...

How to check?

- Are the annotations adapted to the biological question?
- If the gene annotations are deduced from the protein annotations, the 5' and 3' UTRs
 (10x data) are not included
- If you work on a not so popular model organism or cancer data, annotations may not
 fit your data

→ It's an issue for single cell analyses!



• CDS: coding sequences

ORFs: open reading frame

Solution(s) to improve results

Build new annotation using either long or/and short read bulk RNAseq (stranded if possible) and tools such as IsoQuant, Stringtie2, etc...

Solution(s) to improve results

Before and after re-annotation analyses

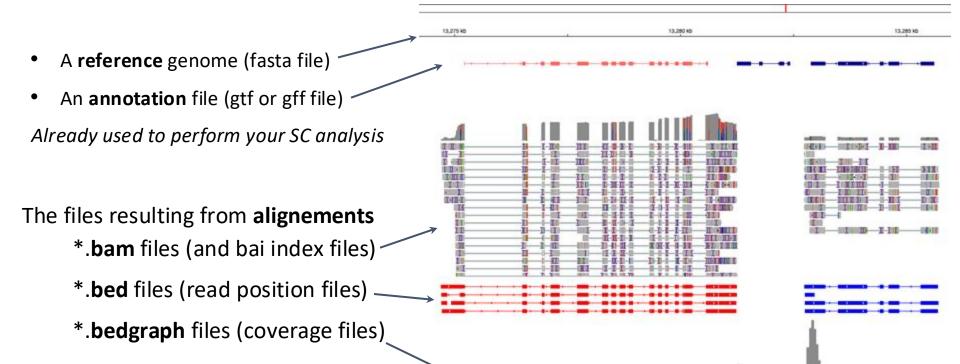
	Official annotation	Isoquant annotation
Estimated Number of Cells	2114	2624
Reads Mapped to Genome	82	82
Reads Mapped Confidently to Genome	79,9	80,2
Reads Mapped Confidently to Intergenic Regions	46,3	11,4
Reads Mapped Confidently to Intronic Regions	3,6	1,4
Reads Mapped Confidently to Exonic Regions	30	67,4
Reads Mapped Confidently to Transcriptome	23,3	66,1
Reads Mapped Antisense to Gene	0,5	2

Take home messages

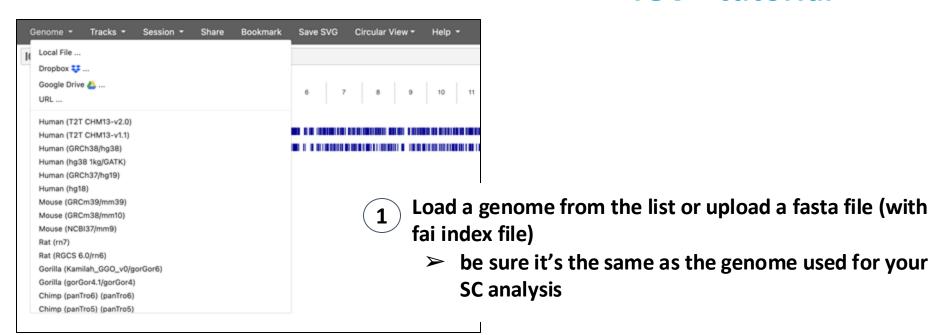
- If in doubt about single cell results → have a look at the signal!
- **Don't interpret your data**, clusters and number of cells will not be right.
- Check if reads and/or coverage match expected annotations
- If not, try new annotations...

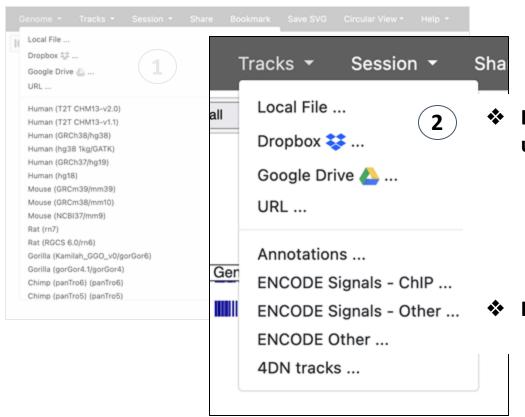
Integrative Genomics Viewer

- IGV is a java multiplatform tool: It will work under Linux, macOSX and Windows
- IGV is **open, free, lively** and maintained at the Broad Institute

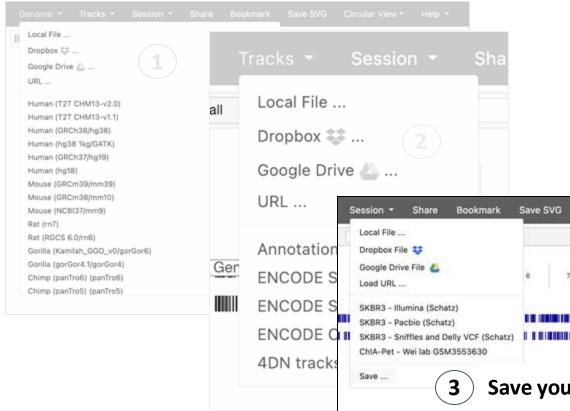


IGV is available in multiple forms, including:


- the original IGV a Java desktop application
- **IGV-Web** a web application


IGV - DATA list

IGV - tutorial



IGV - tutorial

- Load an annotation from the list or upload a gtf file
 - Again be sure it's the same as the annotation used for your SC analysis
 - ➤ Be sure it goes with your genome file (Chromosome name...)
- Load your bam, bed, bedgraph files

IGV - tutorial

Save you session to avoid reloading your files

References

Single cell analysis failure and gene annotation

Pool, AH., Poldsam, H., Chen, S. *et al.* Recovery of missing single-cell RNA-sequencing data with optimized transcriptomic references. *Nat Methods* **20**, 1506–1515 (2023).

IsoQuant

Prjibelski, A.D., Mikheenko, A., Joglekar, A. *et al.* Accurate isoform discovery with IsoQuant using long reads. *Nat Biotechnol* **41**, 915–918 (2023) https://github.com/ablab/IsoQuant

Stringtie2

Shumate A, Wong B, Pertea G, Pertea M Improved transcriptome assembly using a hybrid of long and short reads with StringTie, *PLOS Computational Biology* 18, 6 (2022) https://github.com/gpertea/stringtie

IGV

James T. Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander, Gad Getz, Jill P.Mesirov. Integrative Genomics Viewer. Nature Biotechnology 29, 24–26 (2011)

https://igv.org/doc/desktop/