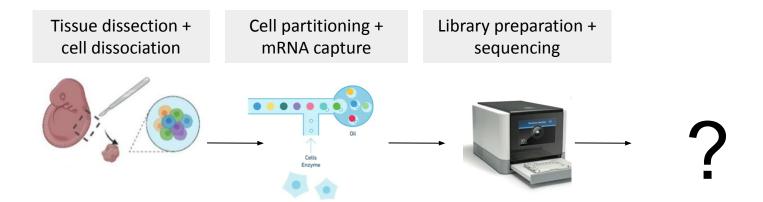
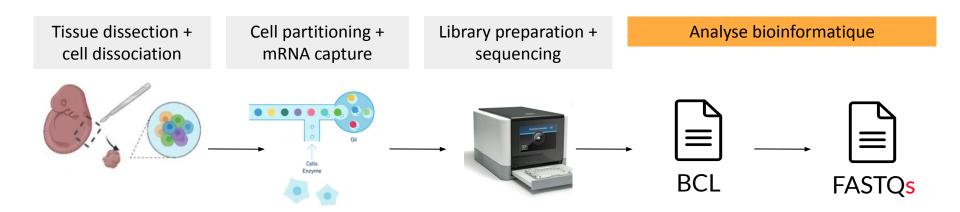


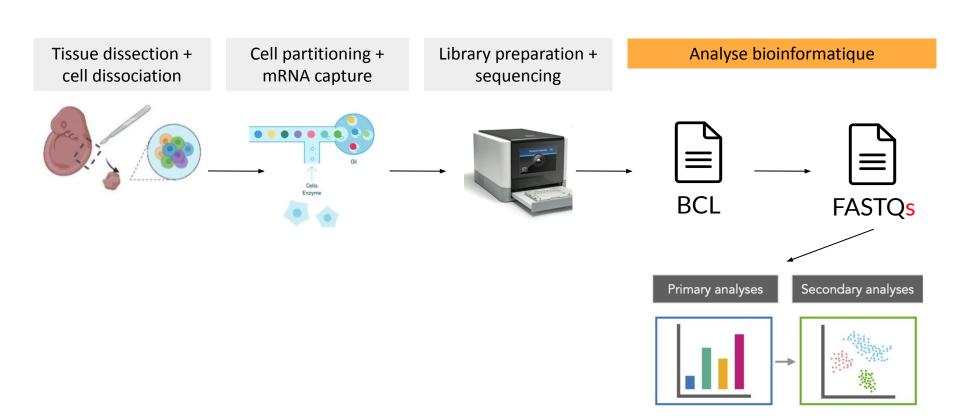
From reads mapping to count matrix

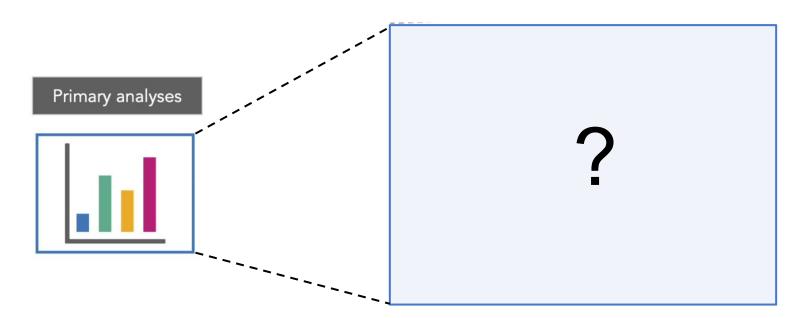
Margot TRAGIN Lilia YOUNSI

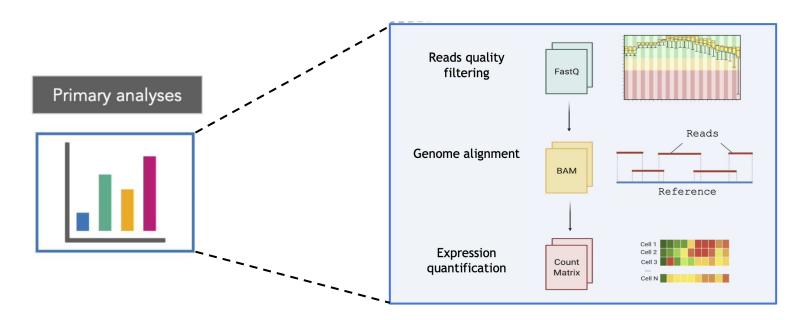
from Nathalie Lehmann, Institut Pasteur, Paris et Eulalie Liorzou, Institut Pasteur, Paris



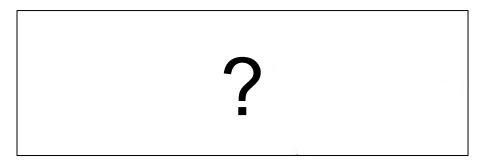



Recap of 10x scRNAseq library preparation


Recap of 10x scRNAseq library preparation


Recap of 10x scRNAseq library preparation

What are the main steps before getting to the count matrix?

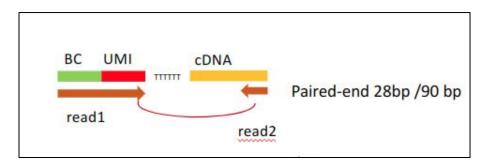


What are the main steps before getting to the count matrix?

How are the reads from 10x Genomics organised?

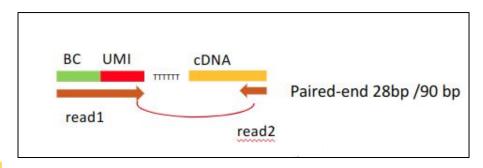
The sequenced library

How are the reads from 10x Genomics organised?


The sequenced library

How are the reads from 10x Genomics organised?

The sequenced library

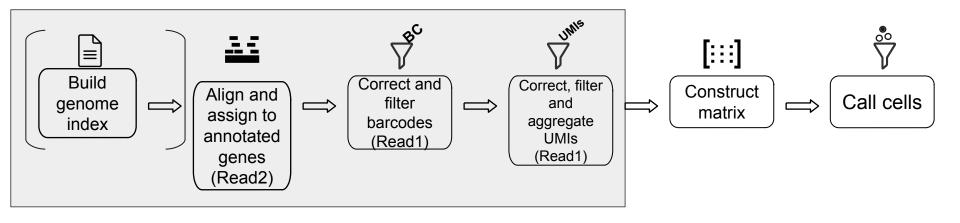

10X GENOMICS®

Read 1: unique cell barcode (16 nt) + UMI (12 nt)

Read 2: RNA 3' sequence

How are the reads from 10x Genomics organised?

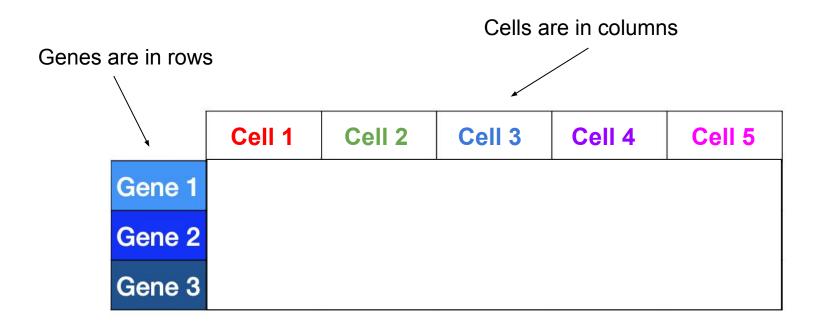
The sequenced library



Read 1: unique cell barcode (16 nt) + UMI (12 nt)

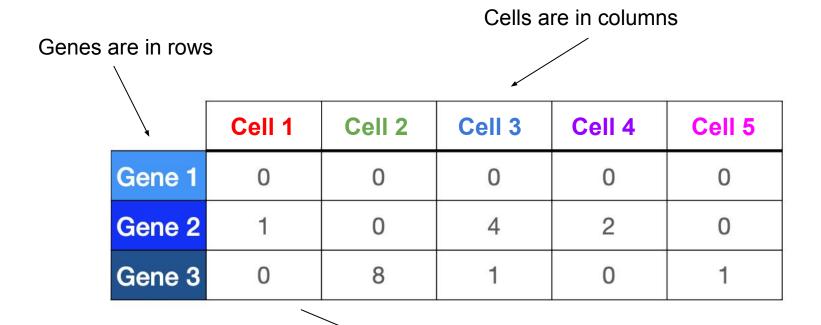
Read 2: RNA 3' sequence

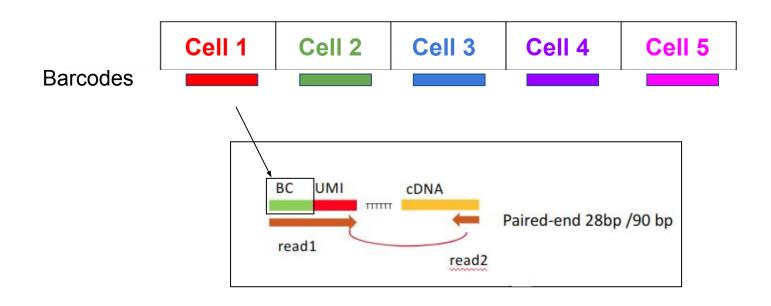
Primary analysis: overview of the workflow

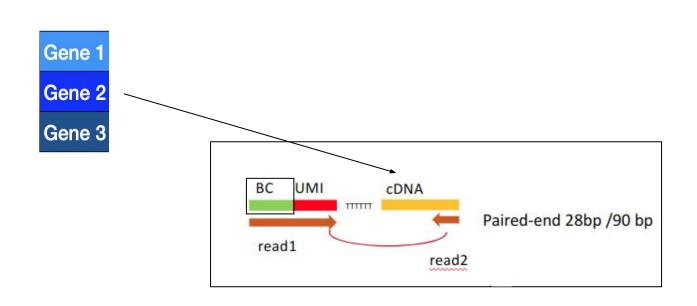


Organisation of the scRNA-seq course

- From cells to nucleotide sequences (reads)
 - focus on the 10X genomics technology
 - how are the reads organised
- Preprocessing : from reads to raw count matrix
 - quality check (FASTQC)
 - mapping (STAR)
 - how is annotation used
 - barcode and UMI treatment
 - visualizing the reads
 - constructing the count matrix
 - call cells / empty droplets filtering

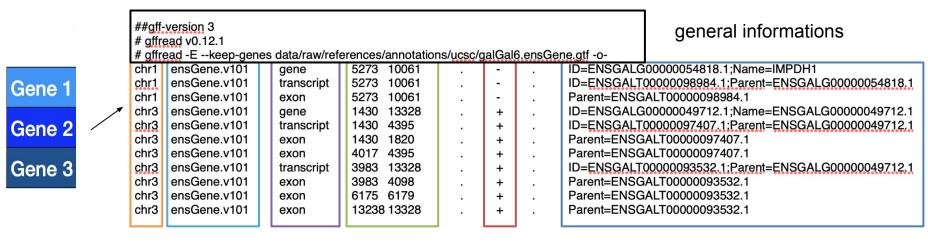

What is the count matrix?


What is the count matrix?



Content of the table : gene counts (expression levels)

Each cell is represented by a valid barcode (read1)


Each read2 is assigned to a gene after the mapping

Gene names are taken from your annotation

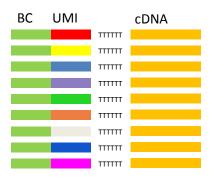
Structure of a GFF3 file (annotation file)

chromosome

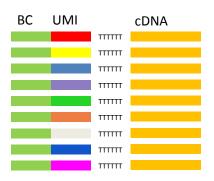
type

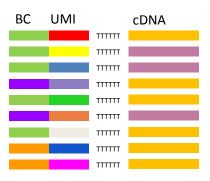
strand

attributes (eg. gene names, gene ID)

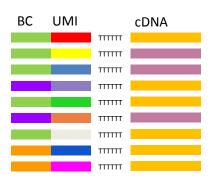

annotation source / version

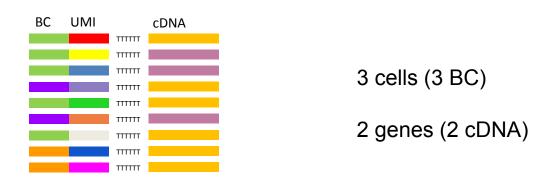
start / end



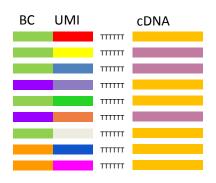


One cell (1 BC)

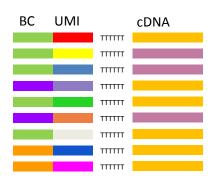

One gene, detected 9 times (1 cDNA - 9 UMI)



3 cells (3 BC)


2 genes (2 cDNA)

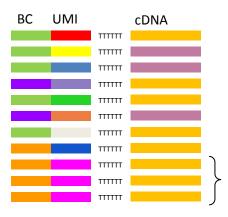
In practice, the count in the matrix corresponds to the number of **UMI** per barcode per gene



3 cells (3 BC)

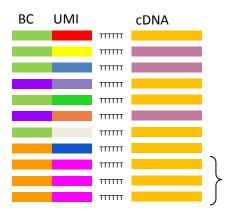
2 genes (2 cDNA)

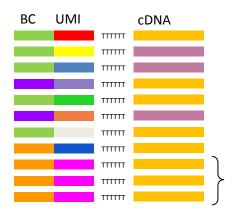
	Cell 1	Cell 2	Cell 3
Gene 1			
Gene 2			



3 cells (3 BC)

2 genes (2 cDNA)

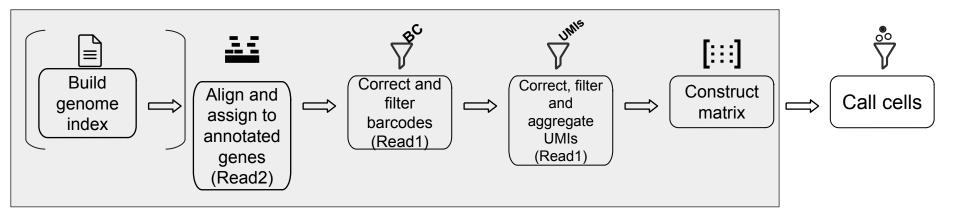

	Cell 1	Cell 2	Cell 3
Gene 1	3	1	2
Gene 2	2	1	0



Reads with the same BC+UMIs are assigned to the same gene (originate from 1 unique RNA molecule):

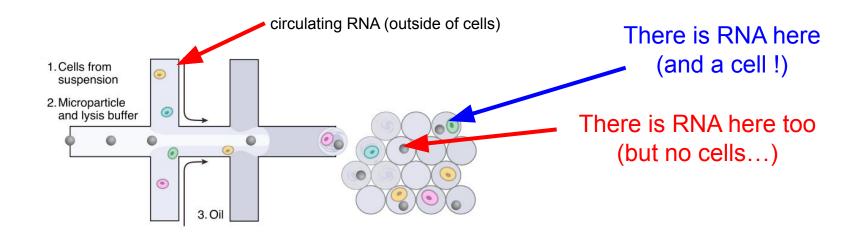
they count as 1

The UMIs are used to correct for amplification artefacts



Reads with the same BC+UMIs are assigned to the same gene (originate from 1 unique RNA molecule):

they count as 1


	Cell 1	Cell 2	Cell 3
Gene 1	3	1	2
Gene 2	2	1	0

Primary analysis: overview of the workflow

Counting the cells

- A million of droplets to recover ~10k cells
- Problem: RNA from dead cells circulates and is encapsulated in droplets
- Question: how to differentiate between "real cells" and "droplets with RNA"?

Empty droplets filtering

 Need to filter the count matrix to retain the droplets most likely containing a true cell, removing the "empty" droplets containing only ambient RNA

Empty droplets filtering

- Need to filter the count matrix to retain the droplets most likely containing a true cell, removing the "empty" droplets containing only ambient RNA
- Problem: we have no prior knowledge about whether a barcode corresponds to cell-containing or empty droplets. We need to call cells from empty droplets based on the observed expression profiles.

Empty droplets filtering

- Need to filter the count matrix to retain the droplets most likely containing a true cell, removing the "empty" droplets containing only ambient RNA
- Problem: we have no prior knowledge about whether a barcode corresponds to cell-containing or empty droplets. We need to call cells from empty droplets based on the observed expression profiles.
- Principle: true cells will contain many different RNA molecules, compared to empty droplets containing few ambient RNA
 - => translates into: barcodes associated to many UMI are more likely to be true cells than barcodes associated to few UMIs

Identification of the "true" cells depends on UMI diversity

	Cell 1	Cell 2	Cell 3
Gene 1	3	1	2
Gene 2	2	1	0
Total	5	2	2

1 UMI = 1 single RNA molecule

Identification of the "true" cells depends on UMI diversity

Gene 1	30	1	2	1	0	6	7	0	0	2	0	9	2	0	0	1	2
Gene 2	8	1	0	4	0	2	1	4	1	3	0	3	15	1	0	1	0
Total	38	2	2	5	0	8	8	4	1	5	0	12	17	1	0	2	2

Identification of the "true" cells depends on UMI diversity

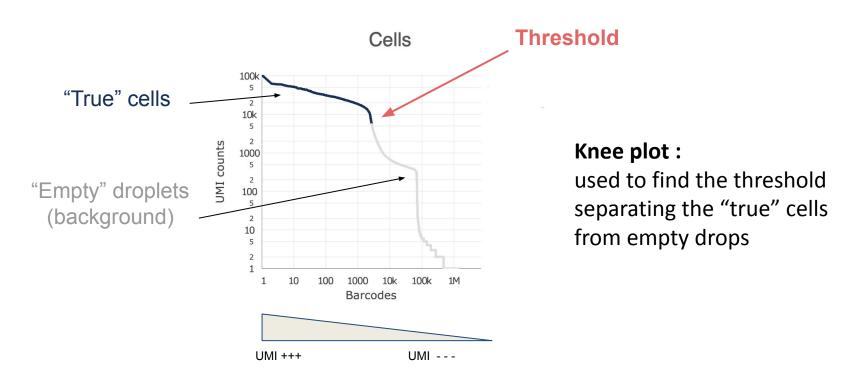
Gene 1	30	1	2	1	0	6	7	0	0	2	0	9	2	0	0	1	2
Gene 2	8	1	0	4	0	2	1	4	1	3	0	3	15	1	0	1	0
Total	38	2	2	5	0	8	8	4	1	5	0	12	17	1	0	2	2

"Low UMI cells" ~ "empty droplets"

Identification of the "true" cells depends on UMI diversity

Gene 1	30	1	2	1	0	6	7	0	0	2	0	9	2	0	0	1	2
Gene 2	8	1	0	4	0	2	1	4	1	3	0	3	15	1	0	1	0
Total	38	2	2	5	0	8	8	4	1	5	0	12	17	1	0	2	2

"Low UMI cells" ~ "empty droplets"

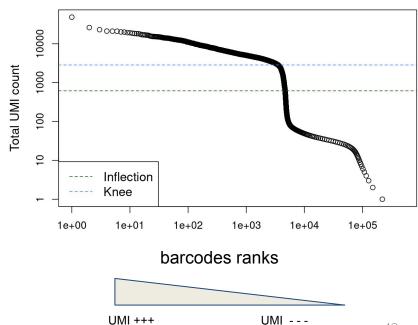

Identification of the "true" cells depends on UMI diversity

Gene 1	30	1	2	1	0	6	7	0	0	2	0	9	2	0	0	1	2
Gene 2	8	1	0	4	0	2	1	4	1	3	0	3	15	1	0	1	0
Total	38	2	2	5	0	8	8	4	1	5	0	12	17	1	0	2	2

"Low UMI cells" ~ "empty droplets"... ???

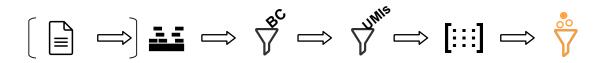
How do we set the **threshold** between "true" cells and "droplets"?

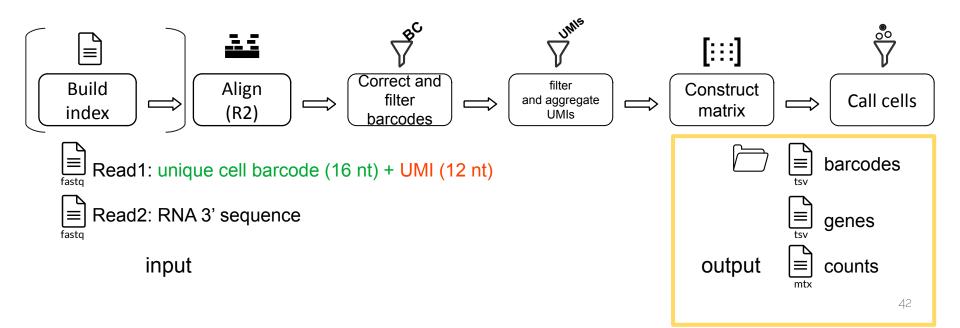
Identification of the "true" cells depends on UMI diversity


Knee plot

The knee plot (or *barcode rank plot*) is used for filtering the droplets

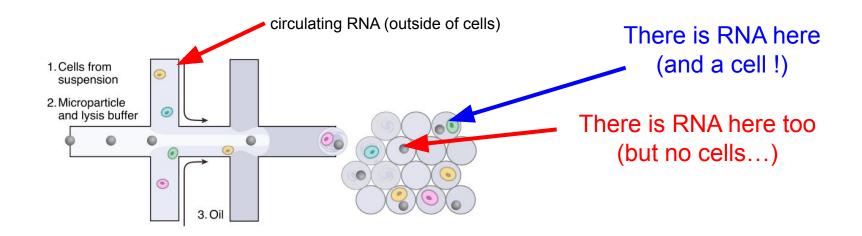
Steps:


- 1. Keep all barcodes over first knee point
- Deduce background from low content droplets
- Select droplets under knee point if the composition is very different from the background (cells with low-content RNA)


Cellranger

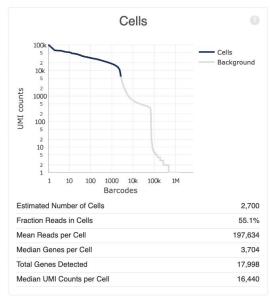
- Final number of cells can be < targeted cells
- With 10x Genomics data, cell capture is usually around 50% 60%
- A second round of cell filtering step is necessary. It is performed at the beginning of the data analyses (we will see that later in the course)

Output of CellRanger


Principle

Ambient RNA can be present in "true cells"

- Ambient RNA may also be encapsulated within droplets containing a cell ("true cells")
- There are tools that allow to correct for this biais
- Ex: SoupX that infers ambient RNA "soup" and removes it from the gene counting


CellRanger output report

Estimated Number of Cells 2,700

Mean Reads per Cell Median Genes per Cell 3,704

Sequencing	
Number of Reads	533,613,214
Valid Barcodes	96.0%
Sequencing Saturation	67.7%
Q30 Bases in Barcode	96.1%
Q30 Bases in RNA Read	90.8%
Q30 Bases in UMI	95.2%

Mapping	
Reads Mapped to Genome	74.6%
Reads Mapped Confidently to Genome	70.5%
Reads Mapped Confidently to Intergenic Regions	8.7%
Reads Mapped Confidently to Intronic Regions	8.4%
Reads Mapped Confidently to Exonic Regions	53.4%
Reads Mapped Confidently to Transcriptome	50.4%
Reads Mapped Antisense to Gene	1.0%

	Sample
Name	CellRanger_Report_1
Description	
Transcriptome	cellranger_mkref_output_v3_191003
Chemistry	Single Cell 3' v3
Cell Ranger Version	3.0.1

CellRanger output report

- Turnkey solution
- Many QC-metrics in 1 html summary
- Some secondary analysis
- More complex experiences: VDJ analysis, feature-barcoding
- Versions for ATAC-Seq, multi-omics

- Proprietary
- Only 10X product (cannot customize BC and UMI patterns)
- Not highly configurable
- (A lot of resource and time)
 but less true for recent versions

There are other alternatives than CellRanger

М	1	2	n	_	0	_

	Tech	nnical Overview r	napper		Summary					
	Cell Ranger	STARsolo	Alevin	Kallisto		Cell Ranger	STARsolo	Alevin	Kallisto	
Mapping scheme	Exact alignment	Exact alignment	Pseudo mapping	Pseudo mapping		Lowest runtime	Similar results with Cell Ranger that	Whitelisting causes loss or gain of	Fastest runtime with highest	
Internal Mapper	Star	Star	Salmon	Kallisto	Mapping performance		are accomplished in a shorter time	barcodes depending on the data	mapping rate, more cells are detected with a	
Reference	Genome	Genome	Transcriptome + Genome	Transcriptome				uuu	small gene content	
Supported sequence technology	10X Chromium v1 – v3	10X Chromium v2;v3, Smart-seq, Drop-seq, inDrop	10x Chromium v2;v3, Drop-seq, Cel-seq, Cel-seq2, Quartz-seq2	10x Chromium v1 – v3, Cel-seq, Cel- seq2, Drop-seq, inDrops v1-v3, SCRB-Seq, SureCell	Barcode correction and filtering			Final barcode set included barcodes that are not present in the whitelist	Reports more cells with a low gene content	
Barcode correction	1-Hamming distance based	1-Hamming distance based	Edit distance calculation	1-Hamming distance based					Detection of more genes than all	
Whitelisting	Whitelist based	Whitelist based	Frequency based, no whitelist needed	Whitelist based	Gene discovery				other tools. Highest UMI count for genes not	
Alternative Splicing detection	no	yes	no	no					expressed in studied tissue	
UMI correction	Two round correction by barcode, read count and annotation	Two round correction by barcode, read count and annotation	graph based correction	NA	MT-content	Highly affected by complete annotation including pseudogenes	See Cell Ranger	Smaller difference of MT-content between the mapping with filtered and	See Cell Ranger	
Index	Suffix array	Suffix array	Colored De-Bruijn Graph	Colored De-Bruijn Graph				unfiltered annotation		
Handling of multimapped reads	discarded	discarded	Distributing read count between genes by EM- algorithm	discarded	Clustering	Highest Overlap with SCINA classification	Very similar to Cell Ranger with minor differences	Cell types contain lower amount of cells with SCINA classification	Cell types contain the lowest amount of cells with SCINA classification	
Output	Matrix + Bam-File and summary file as html-file with primary results as well as clustering and DEG analysis	Gene count matrix and primary results summary	Gene count matrix ready for analysis	External software required to create gene count matrix	DEG	No difference detected	No difference detected	No difference detected	No difference detected	

Take-home messages

- Take time to visualize the scRNA-seq signal in a genome browser (IGV)
- Results can be hugely affected by the annotation
- Exotic /poorly-annotated / non-model organisms : generate a new annotation from bulk data with long-read sequencing (or reconstruct with short-reads)

[:::]

Count matrix = nb of UMI per barcode (columns) per gene (row)

- Call the cells: remove the empty droplets containing ambient RNA => use of the knee plot to decide on the threshold and obtain the number of "true" cells
- Sometimes, need to lower this threshold for small cells/low-RNA content
- More filters will be applied in the downstream analysis

Acknowledgements

- Slides from Nathalie Lehmann
- ... and originally taken or inspired from Bastien Job
- Some illustrations were created by
 - Kevin Lebrigand
 - Morgane Thomas-Chollier