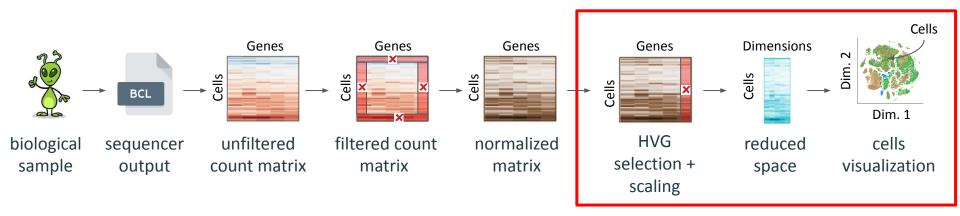


scRNA-seq: visualization

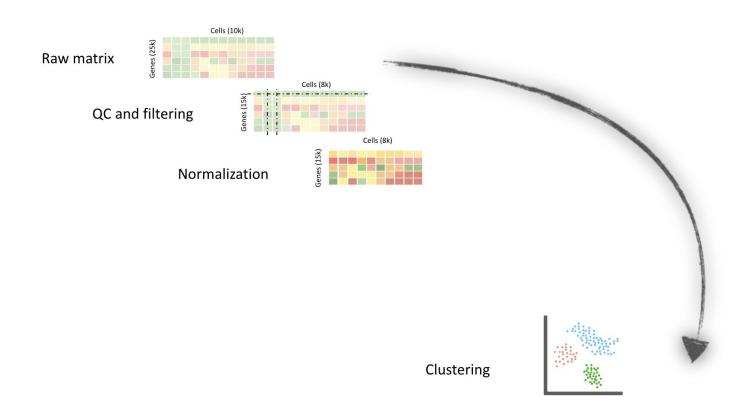
Bastien Job, Gustave Roussy, Villejuif
Lilia Younsi, Institut Cochin
Nathalie Lehmann, Institut Pasteur, Paris
Audrey Onfroy, Institut Mondor, Créteil

scRNA-Seq pipeline overview

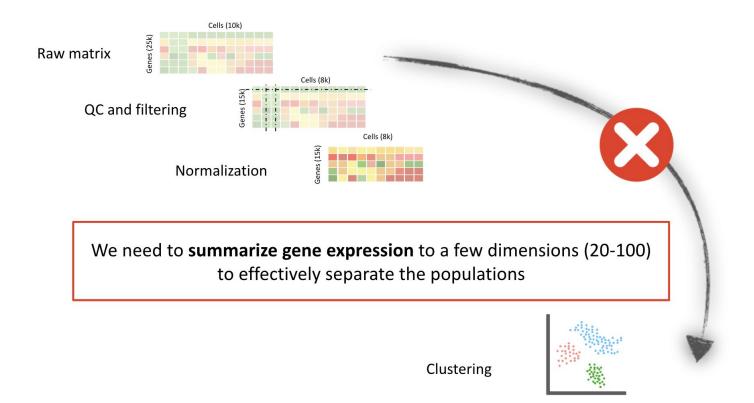


We want a <u>visual summary</u> of thousands cells' gene expression.

How do we get to data visualization and clustering?



How do we get to data visualization and clustering?



Why an intermediary step is necessary?

scRNA-Seq data are sparse

> 70 % of the expression matrix is 0 : **not very informative**

1	2	31	2	9	7	34	22	11	5
11	92	4	3	2	2	3	3	2	1
3	9	13	8	21	17	4	2	1	4
8	32	1	2	34	18	7	78	10	7
9	22	3	9	8	71	12	22	17	3
13	21	21	9	2	47	1	81	21	9
21	12	53	12	91	24	81	8	91	2
61	8	33	82	19	87	16	3	1	55
54	4	78	24	18	11	4	2	99	5
13	22	32	42	9	15	9	22	1	21

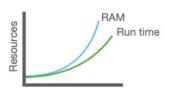
1	*:	3	*:	9	*	3		*	20
11	5	4	2					2	1
	10	1	10	-0	•	4		1	100
8	14		1	3	1		-11		*:
	81		9		×	1	8	17	*8
13	21		9	2	47	1	81	21	9
+	76		40	40	se.	ÿ.	¥.	\$1	91
S	26	à.	2	19	8	16		2	55
54	4			25	11	i.	33	į,	\$7
	(s)	2	-	100			22		21

prop(expr mat == 0)

Data are noisy

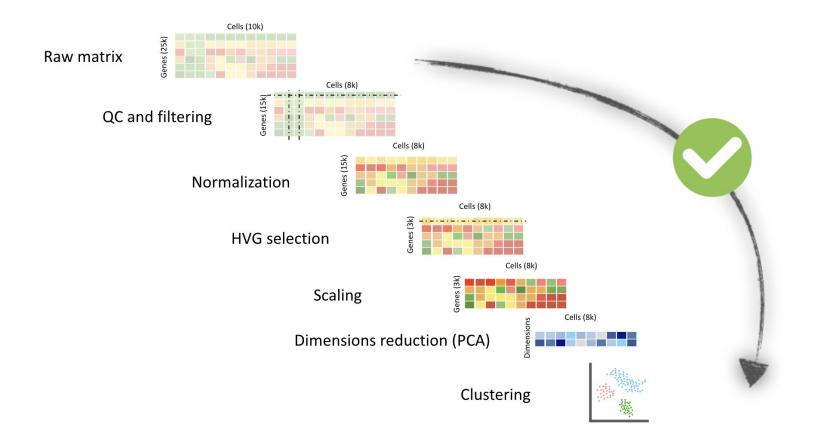
Some genes are more informative than some other. There is **biological / technical noise** in gene expression.

Computational time and ressources

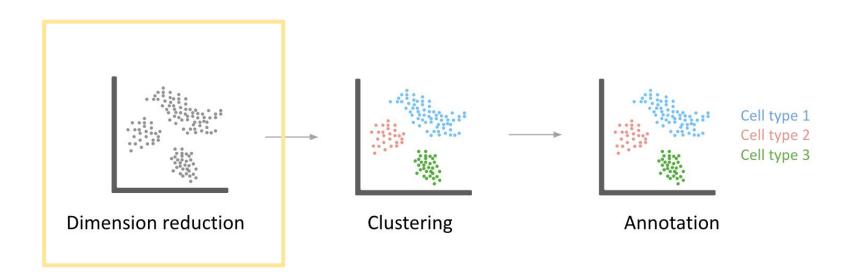


We will summarize genes expression in few dimensions, before building the 2D projection. 5

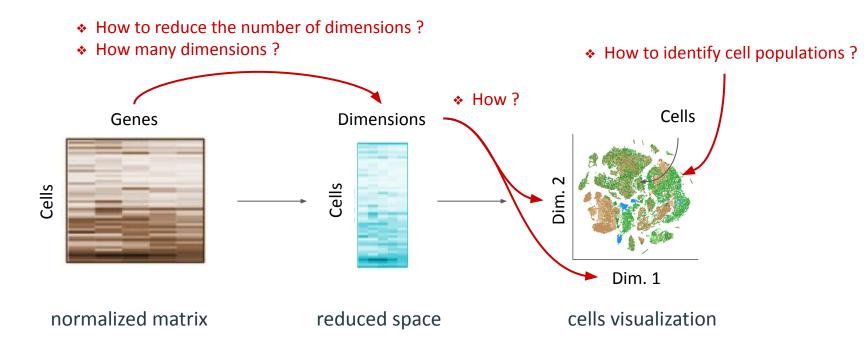
The right way to get to data visualization and clustering



Our analyses goals

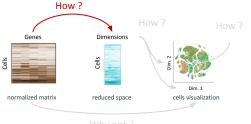


Challenges



We want a <u>visual summary</u> of thousands cells' gene expression.

Overview



Why not

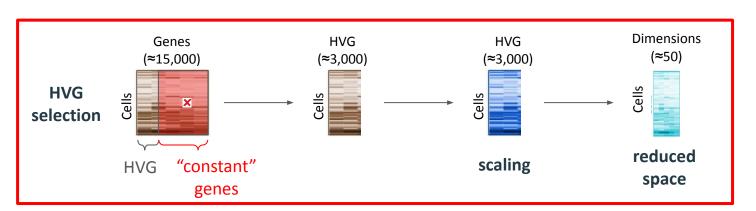
Commonly used dimensionality reduction methods

- PCA Principal Component Analysis
- BFA Binary Factor Analysis
- ICA Independent Component Analysis
- LSI Latent Semantic Indexing
- LDA Linear Discriminant Analysis

• ...

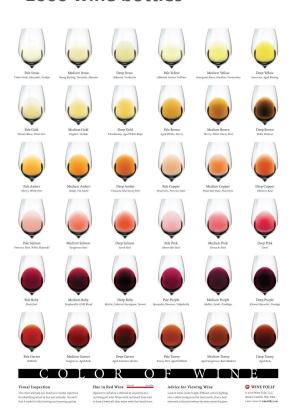
Important parameters

- **information** : number of <u>variable</u> genes (HVG)
- number of dimensions to generate (signal / noise)
- randomness: random seed
- convergence criteriac



PCA introduction

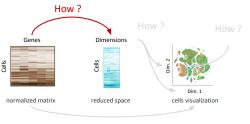
1000 wine bottles



Features that will vary from one bottle to another:

- Acidity
- Tannins
- Alcohol level
- Aroma
- Color
- Clarity
- Color intensity
- Freshness (acidity driven)

• ...



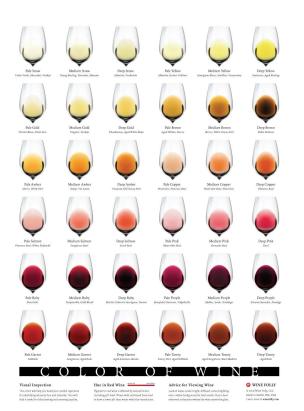
Why not?

Which features explain the big differences between my bottles?

How can I sum up this data?

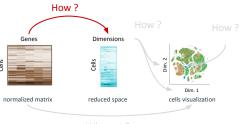
PCA introduction

1000 wine bottles



Features that will vary from one bottle to another:

- Acidity
- Tannins
- Alcohol level
- Aroma
- Color
- Clarity
- Color intensity
- Freshness (acidity driven)
- ..



Why not?

TOO MUCH INFO!

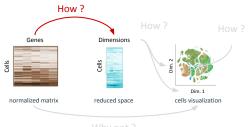
Impossible to compare all these variables 1 to 1 for all bottles without getting lost.

PCA introduction

1000 wine bottles

Features that will vary from one bottle to another:

- Acidity
- Tannins
- Alcohol level
- Aroma
- Color
- Clarity
- Color intensity
- Freshness (acidity driven)
- ..



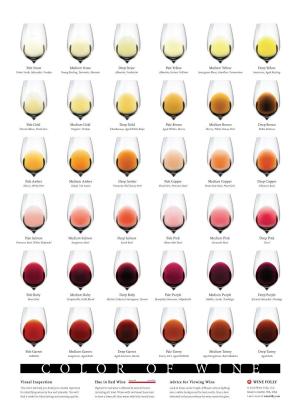
Why not?

REDUNDANT INFORMATION

Acidity ⇔ Freshness

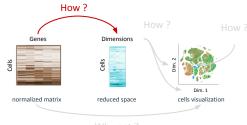
PCA introduction

1000 wine bottles



Features that will vary from one bottle to another:

- Acidity
- Tannins
- Alcohol level
- Aroma
- Color
- Clarity
- Color intensity
- Freshness (acidity driven)
- ...

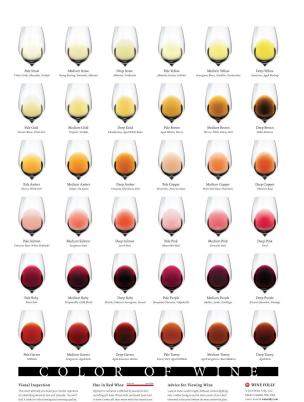


Why not?

Features can be combined in one dimension: "robe du vin" (or wine apprerance).

PCA introduction

1000 wine bottles



Features

- Acidity
- Tannins
- Alcohol level
- Aroma
- Color
- Clarity
- Color intensity
- Freshness (acidity driven)
- ...

Features can be combined in one dimension : "robe du vin" (or

How?

Dimensions

reduced space

cells visualization

Genes

normalized matrix

wine apprerance).

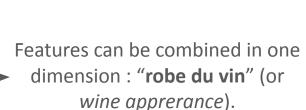
Principal Componant (PC)

PCA introduction

1000 wine bottles

Features

- Acidity
- Tannins
- Alcohol level
- Aroma
- Color
- Clarity
- Color intensity
- Freshness (acidity driven)
- ...



How?

Dimensions

reduced space

cells visualization

Genes

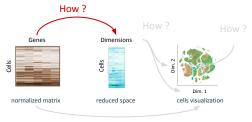
normalized matrix

Principal Componant (PC)

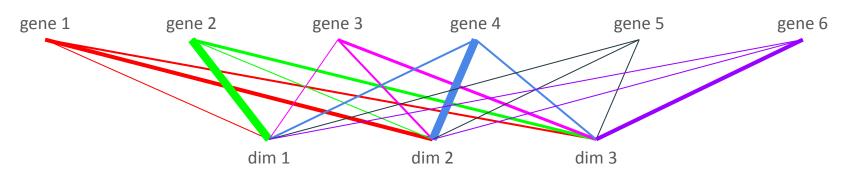
Principal Component Analysis - principle

• Input : X (≈ 2 000 - 5 000) HVG with scaled expression levels

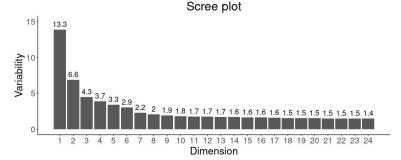
• Goal: Group genes by dimensions when they have similar expression across cells



Why not



- Output: **Z** (≈ 50 100) dimensions "Principal Component"
- Each PC summarizes a certain amount of the input data variability
 - First PC recapitulates the most part of information
 - Last PC can be considered as noise



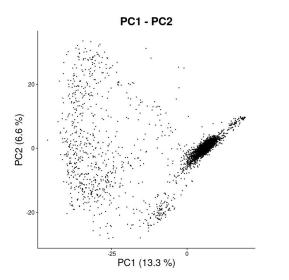
Principal Component Analysis - visualization

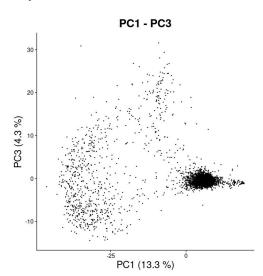
• Input : X most variable genes

• Goal : Group genes by dimensions when they have similar expression across cells

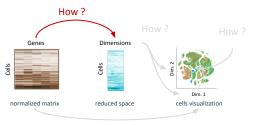
• Output: **Z** dimensions "Principal Component"

• Each PC summarizes a certain amount of the input data variability



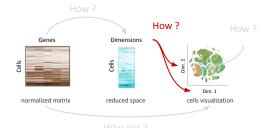


Now, we will use this reduced space to build a 2D graphical representation.



Why not?

2D space for cells visualization



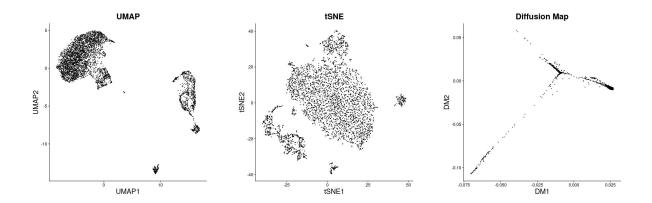
Commonly used 2D spaces

- UMAP
- tSNE
- Diffusion Map

• ..

Important parameters

- **input information** : number of dimensions
- cells **neighborhood**: number of neighbors, perplexity, distance method, ...



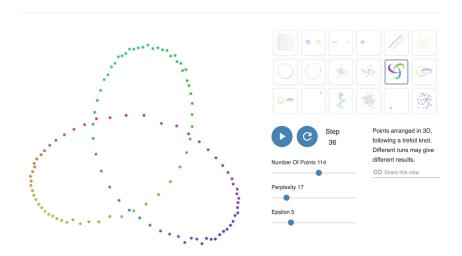
The same cells can be represented using **different 2D spaces**.

Do not make too many interpretations from the 2D space, it is an **over-simplified representation** of cells.

There are an infinite way to represent our data into 2D

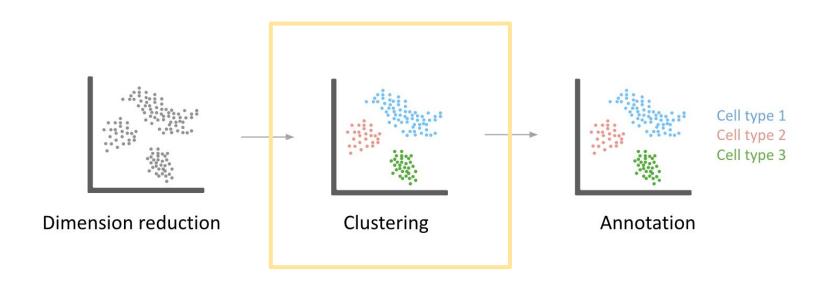
How to Use t-SNE Effectively

Although extremely useful for visualizing high-dimensional data, t-SNE plots can sometimes be mysterious or misleading. By exploring how it behaves in simple cases, we can learn to use it more effectively.

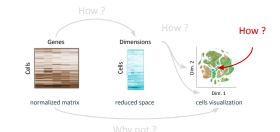


https://distill.pub/2016/misread-tsne/

Our analyses goals



Clustering

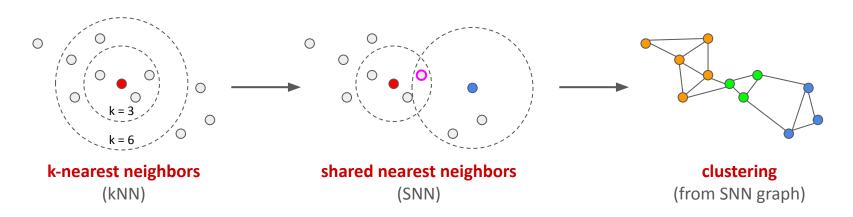


Commonly used methods

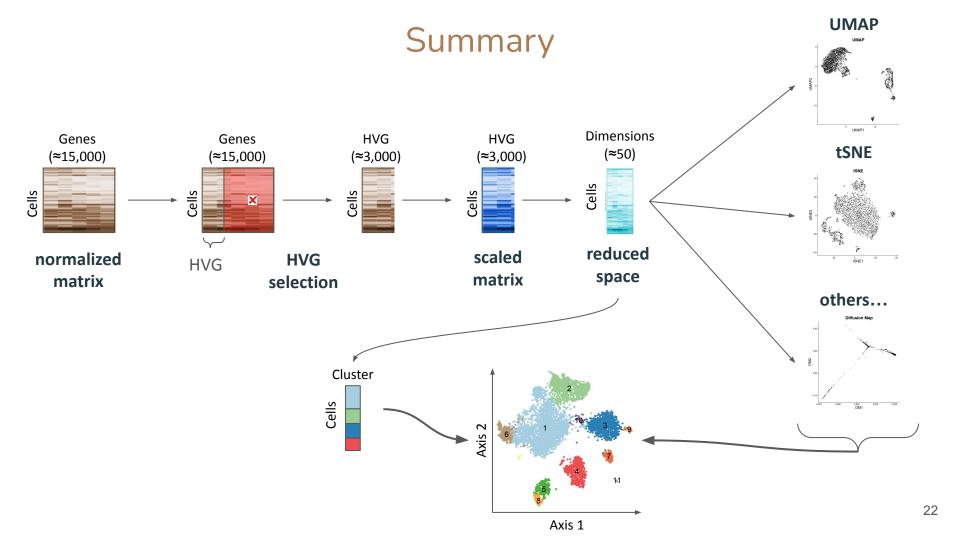
- Louvain clustering
- Leiden clustering
- k-means
- ...

Important parameters

- **input information** : number of dimensions
- cells **neighborhood** parameters : number of neighbors, distance measurement method, **resolution**...



Clustering is made on expression matrix or reduced space, <u>not</u> on the 2D projection. The 2D projection is not a clustering. A clustering is an **annotation**.



Take Home Messages

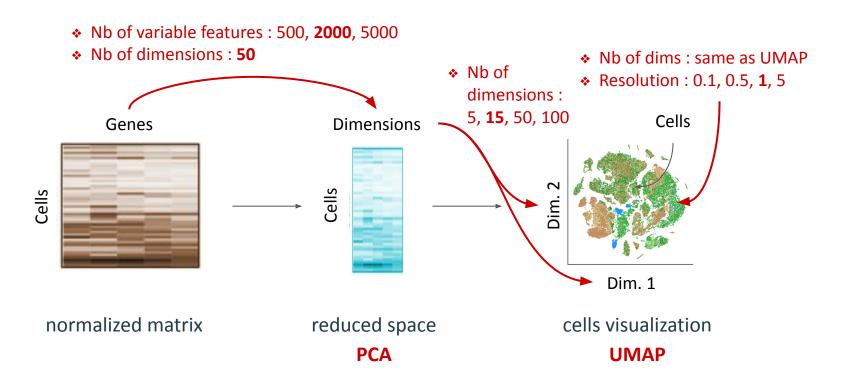
- The **number of variable genes** impact the PCA, thus the 2D space. It depends on the expected number of cell populations in the dataset.
- Number of dimensions = amount of information (not enough < - > noisy data)
- UMAP is suited to visualize several cell types and their global transcriptomic profile
- tSNE is suited to visualize sub cell types and their <u>local</u> transcriptomic particularity
- **Diffusion Map** is suited to visualize cell **differentiation** data
- The **resolution** impacts the number of clusters : not enough clusters / not biologically interpretable clusters

Advice:

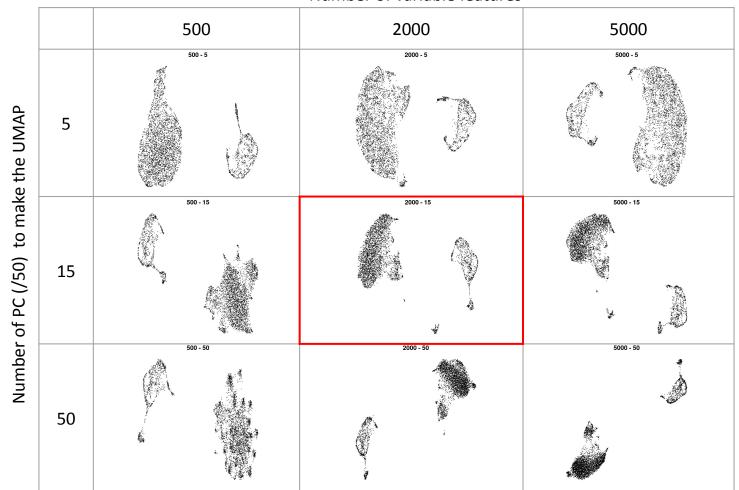
- 1. Make the analysis with all default settings :
 - 2000 HVG
 - **15** PC to generate a UMAP (or tSNE)
 - Resolution 1 for the clustering
- 2. Identify your cell populations
- 3. Change the settings to make the representation showing what you identified

The goal is to generate a quick representation for your cells. Run your favorite analyses and represent results on the representation. Do not make to many interpretations from the 2D representation itself.

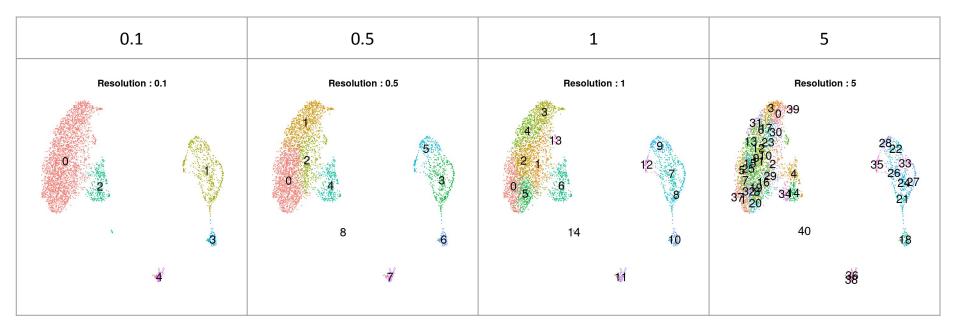
Let's go to practice



Number of variable features



Resolution



Choosing resolution wisely

- Too low resolution \rightarrow losing information of populations
- Too high resolution → overclustering
 - → Clustering trees can be used to help choose the optimal resolution!

Step 1 - Clustering at multiple resolutions

res < c(0.1,1.2,0.1)

k = 2

k = 3

0 2 1 4 3 3 5 9

02 83 09

Step 2 - Building and visualizing the clustering tree

