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The context: Single-cell RNA-seq to uncover
cell heterogeneity associated to distinct cellular phenotypes

Sandberg R. Nature Methods 11, 22–24 (2014) doi:10.1038/nmeth.2764

Heterogeneity between samples arising from:

- Genetic factors (Donor)
- Environmental factors
- Treatments / Times of activation
- History of cells (e.g. clonal selection/expansion)
- Natural aging

Heterogeneity within samples arising from:

- Cell fate (permanent):
- Different lineages of differentiation
- Different compositions of cell types

- Cell state (transient):
- Stochasticity of gene expression
- Pulsation / Circadian-like
- Associated to cell cycle
- Different stages of activation

- Technical noise
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The questions

1- Is there functionally relevant cell  
heterogeneity in my data?

2- Are there distinct subpopulations of cells?

3- Are there continuums of differentiation /  
activation cell states?

4- Which are the genes driving such heterogeneity?

Rostom et al, FEBS 2017. 10.1002/1873-3468.12684

5- May we learn something about the cellular /  
molecular mechanisms involved?: e.g. cell  
differentiation, biological process, pathways,  
regulatory modules, etc?
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The computational challenges
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1. Lower coverage/depth than bulk RNA-seq

2. Technical & biological noise

3. High dimensionality

4. High variability

5. Dropouts => Zero-inflated data

6. Multimodality



The challenges - High dimensionality

The curse of dimensionality: When dimensionality increases, data becomes increasingly sparse  
in the space that it occupies

Taken from Tan, Steinbach & Kumar, Introduction to Data Mining course  
http://slideplayer.com/slide/6194466

Definitions of density and distance between points, which is critical for clustering and outlier detection,  
become less meaningful

Randomly generate 500 points

Compute difference between max and min distance  
between any pair of points
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http://slideplayer.com/slide/6194466


The computational challenges - Zero Inflated data

Percentile of median gene expression

Bulk and SC sets with comparable depths
Bulk 1: 60 female bulk RNA-seq samples of individual Drosophila flies  
SC1: 60 individual Mus musculus embryonic cells at various  
developmental time points
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The computational challenges - High variability (overdispersion)

Densities of gene-specific log variance for all genes in 
three bulk and three single-cell RNA-seq dataset

Bacher, Rhonda, and Christina Kendziorski. ‘Design and Computational Analysis of Single-Cell RNA-Sequencing 
Experiments’. Genome Biology 17, no. 1 (avril 2016): 63. https://doi.org/10.1186/s13059-016-0927-y. 7

• Much more variability of gene expression 
in single cell data than bulk.

• This is also true when taking in account 
the technical zero counts.

https://doi.org/10.1186/s13059-016-0927-y


The computational challenges - Multimodality

8

Bacher, Rhonda, and Christina Kendziorski. ‘Design and Computational Analysis of Single-Cell RNA-Sequencing 
Experiments’. Genome Biology 17, no. 1 (avril 2016): 63. https://doi.org/10.1186/s13059-016-0927-y.

• Much more “modes” of expression in 
single cell data.

• 1 modes -> “expressed – non expressed”
• 2 modes -> “non expressed, lowly 

expressed, highly expressed”
• 3 modes -> low, medium, high expression

https://doi.org/10.1186/s13059-016-0927-y


The bioinformatics pipeline: main “modular” components
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1. Feature selection

2. Dimensionality Reduction

3. Clustering / Hiearchy

4. Differential Expression / Gene signature extraction

5. Functional interpretation

6. Batch effect correction



The bioinformatics pipeline: Example 1

Andrews, Tallulah S., and Martin Hemberg. ‘Identifying Cell Populations with ScRNASeq’. Molecular Aspects of 
Medicine, The emerging field of single-cell analysis, 59 (février 2018): 114–22. 
https://doi.org/10.1016/j.mam.2017.07.002.
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https://doi.org/10.1016/j.mam.2017.07.002


The bioinformatics pipelineThe bioinformatics pipeline: Example 2
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Poirion, Olivier B., Xun Zhu, Travers Ching, and Lana Garmire. ‘Single-Cell Transcriptomics Bioinformatics and 
Computational Challenges’. Frontiers in Genetics 7 (2016): 163. https://doi.org/10.3389/fgene.2016.00163.

https://doi.org/10.3389/fgene.2016.00163


Online catalogue: scRNA-tools database
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Zappia, L., Phipson, B., Oshlack, A., 2018. Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database. 
PLOS Computational Biology 14, e1006245. https://doi.org/10.1371/journal.pcbi.1006245

https://doi.org/10.1371/journal.pcbi.1006245


Online catalogue: scRNA-tools database

Number of single cell methods
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Online catalogue: scRNA-tools database
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Examples of all-in-one environments: SEURAT

https://satijalab.org/seurat/Expression QC

Normalization

Highly variable genes  

Dealing with confounders  

Dimensional Reduction  

Visualization

Marker genes

Cell Cycle Regression  

Clustering cells  

Differential expression

Multimodal Analysis See tutorial at:
https://hemberg-lab.github.io/scRNA.seq.course/seurat-chapter.html
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https://satijalab.org/seurat/
https://hemberg-lab.github.io/scRNA.seq.course/seurat-chapter.html
https://hemberg-lab.github.io/scRNA.seq.course/seurat-chapter.html


Examples of all-in-one environments: SCANPY

SCANPY: large-scale single-cell gene expression data analysis.
Wolf et al. Genome Biology 2018, 19:15 https://doi.org/10.1186/s13059-017-1382-0
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https://doi.org/10.1186/s13059-017-1382-0


A word about Hardware
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Cumulus cloud solution

Li, B. et al. (2020) ‘Cumulus provides cloud-
based data analysis for large-scale single-cell and 
single-nucleus RNA-seq’, Nature Methods, 17(8), 
pp. 793–798. doi:10.1038/s41592-020-0905-x.
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https://doi.org/10.1038/s41592-020-0905-x


Cumulus cloud solution

Li, B. et al. (2020) ‘Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq’, Nature 
Methods, 17(8), pp. 793–798. doi:10.1038/s41592-020-0905-x.
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https://doi.org/10.1038/s41592-020-0905-x


The bioinformatics pipeline: main “modular” components

1. Feature selection

2. Dimensionality Reduction

3. Clustering / Hiearchy

4. Differential Expression / Gene signature extraction

5. Functional interpretation

6. Batch effect correction
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Feature extraction (I)

Andrews and Hemberg. Bioinformatics (2018)  
https://doi.org/10.1093/bioinformatics/bty1044

A. Simple filtering criteria, eg:

- Filtering of lowly expressed genes expressed in < x% of cells
- Genes with a mean average of expression < threshold
- Restrict to protein coding genes

B. M3Drop: Dropout-based feature selection for scRNASeq:

Michaelis-Menten function to the relationship between mean  
expression (S) and dropout-rate (M3Drop).

Since the Michaelis-Menten function has a single  
parameter (Km), we can test the hypothesis that the  
gene-specific Ki is equal to the Km that was fit for the  
whole transcriptome. This can be done by propagating  
errors on both observed dropout rate and observed  
mean expression to estimate the error of each Ki. The  
significance can then be evaluated using a t-test
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https://doi.org/10.1093/bioinformatics/bty1044


Accounting for technical noise in single-cell RNA-seq experiments.
Brennecke et al. Nature Methods (2013) 10:1093–1095

The coefficient of variation (CV) is defined as the ratio of the standard deviation to the mean

Feature extraction (II) - Highly Variable Genes (Brennecke et al)
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The bioinformatics pipeline: main “modular” components

1. Feature selection

2. Dimensionality Reduction

3. Clustering / Hiearchy

4. Differential Expression / Gene signature extraction

5. Functional interpretation

6. Batch effect correction
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Dimensionality reduction - Why?

1. Need of an orthogonal space

2. Minimize curse of dimensionality

3. Filter out noise

4. Allow visualization

5. Reduce computational load

Popular methods used for single- cell data analysis:

1. PCA
2. tSNE
3. UMAP
4. Others : Diffusion map, Isomap
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Dimensionality reduction (I) - Principal Component Analysis (PCA) (I)

Source URL: https://onlinecourses.science.psu.edu/stat857/node/35
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https://onlinecourses.science.psu.edu/stat857/node/35


Dimensionality reduction (I) - Principal Component Analysis (PCA) (II)
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Selection of the number of principal axis to retain

Informative  
dimensions Most probably noise / no-relevant varianceTwilight  

zone

Further reading: https://hemberg-lab.github.io/scRNA.seq.course/seurat-chapter.html#significant-pcs
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https://hemberg-lab.github.io/scRNA.seq.course/seurat-chapter.html
https://hemberg-lab.github.io/scRNA.seq.course/seurat-chapter.html


Dimensionality reduction (II) - ZIFA

PCA Advantages and limitations

•
•
•
•
•

Based on linear transformations
Captures the dimensions with higher variance  
Objective control on the amount of retained dimensions  
Fast & scalable
Preserves both long-range and short-range relationships

Dimensionality reduction (I) - Principal Component Analysis (PCA) (III)

Extensions of the PCA approach

• A variation of PCA which explicitly deals with the large number of  
zero-values in scRNASeq data has been developed (ZIFA, Pierson  
and Yau, 2015) but the zero-inflation model employed may not fit all  
datasets (Andrews and Hemberg, 2016).

• Risso et al. (2017) proposed a method similar to PCA based
on a zero-inflated negative binomial model instead of a
Gaussian model.
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tSNE is a non-linear dimension reduction technique able to show structures in  
the data that cannot be found simply by changing the direction in which you look

Original PCA tSNE

tSNE: What the hell is it?, by Matthew Young  
https://constantamateur.github.io/2018-01-02-tSNE/

Dimensionality reduction (II) - tSNE
t-distributed stochastic neighbor embedding

28

https://constantamateur.github.io/2018-01-02-tSNE/


Dimensionality reduction (II) - tSNE

The Art of Using T-SNE for Single-Cell Transcriptomics
https://doi.org/10.1038/s41467-019-13056-x.

tSNE: What the hell is it?, by Matthew Young
https://constantamateur.github.io/2018-01-02-tSNE/

How to Use t-SNE Effectively, Wattenberg, et al. Distill, 2016
https://distill.pub/2016/misread-tsne/

t-SNE in wikipedia
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
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https://doi.org/10.1038/s41467-019-13056-x
https://distill.pub/2016/misread-tsne/
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding


Dimensionality reduction (II) - tSNE

30

tSNE doesn’t preserve global 
data structure…



Dimensionality reduction (III) -
Uniform Manifold Approximation and Projection (UMAP)

Uniform manifold approximation and projection (UMAP):
- Claimed to preserve as much the local and global data structure than t-SNE
- Shorter run time.

Dimensionality reduction for visualizing single-cell data using UMAP
Becht et al. Nature Biotechnology 2018. http://www.nature.com/doifinder/10.1038/nbt.4314
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http://www.nature.com/doifinder/10.1038/nbt.4314


Dimensionality reduction (III) -
Uniform Manifold Approximation and Projection (UMAP)

Kobak, D. and Linderman, G.C. (2021) ‘Initialization is critical for preserving global data structure in 
both t-SNE and UMAP’, Nature Biotechnology, 39(2), pp. 156–157. doi:10.1038/s41587-020-
00809-z.
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https://doi.org/10.1038/s41587-020-00809-z


Dimensionality reduction (III) -
Uniform Manifold Approximation and Projection (UMAP)

• Can you really blindly trust 
what you are seeing on these
embeddings?

• Can it be used for 
downstream analysis such as 
clustering?
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Dimensionality reduction (III) -
Uniform Manifold Approximation and Projection (UMAP)
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Dimensionality reduction (III) -
Uniform Manifold Approximation and Projection (UMAP)

https://twitter.com/satijalab/status/1372243222223806468?s=20
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Dimensionality reduction (III) -
Uniform Manifold Approximation and Projection (UMAP)

https://twitter.com/lpachter/status/1431326001414299650

• UMAP and tSNE distort the 
similarity/distance of the 
cells drastically compared to 
PCA.

• One should not use these
embeddings for downstream
analysis.
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Dimensionality reduction (III) -
Uniform Manifold Approximation and Projection (UMAP)
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Dimensionality reduction (IV) -
PAGA

Wolf, F. A. et al. (2019) ‘PAGA: graph abstraction reconciles clustering with trajectory inference through a 
topology preserving map of single cells’, Genome Biology, 20(1), p. 59. doi: 10.1186/s13059-019-1663-x.

PAGA graphs for data for the flatworm Schmidtea
mediterranea
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https://doi.org/10.1186/s13059-019-1663-x


Dimensionality reduction (V) -
Poincarémap

Klimovskaia, A. et al. (2020) ‘Poincaré maps 
for analyzing complex hierarchies in single-
cell data’, Nature Communications, 11(1), p. 
2966. doi: 10.1038/s41467-020-16822-4.

Analysis of C. elegans cell atlas with poincaré map
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https://doi.org/10.1038/s41467-020-16822-4


Dimensionality reduction (V) scBFA

Li, R. and Quon, G. (2019) ‘scBFA: modeling detection patterns to mitigate technical noise in large-scale single-cell 
genomics data’, Genome Biology, 20(1), p. 193. doi:10.1186/s13059-019-1806-0.

• Based on gene
detection pattern and 
not count.

• Especially useful for 
highly noisy data with
low amount of UMI.
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https://doi.org/10.1186/s13059-019-1806-0


Dimensionality reduction (VI) -
SWNE/SIMBA embedding of both cells and genes

Wu, Y., Tamayo, P. and Zhang, K. (2018) ‘Visualizing and Interpreting Single-Cell Gene Expression Datasets 
with Similarity Weighted Nonnegative Embedding’, Cell Systems, 7(6), pp. 656-666.e4. 
doi:10.1016/j.cels.2018.10.015.
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https://doi.org/10.1016/j.cels.2018.10.015


The bioinformatics pipeline: main “modular” components

1. Feature selection

2. Dimensionality Reduction

3. Clustering / Hiearchy

4. Differential Expression / Gene signature extraction

5. Functional interpretation

6. Batch effect correction
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Unsupervised clustering: broad method catergories borrowed for  
scRNA-seq data analysis
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1) K-means based 2) Hierarchical clustering

3) Model-based clustering (Mclust) 4) Graph-based clustering (iGraph)
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http://www.biomedcentral.com/1756-0500/7/829


SC3: consensus clustering of single-cell RNA-seq data. Kiselev et al. Nature Methods 2017, 14:483–486

Unsupervised clustering. Examples of dedicated methods for scRNA-seq (I):  
SC3
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Unsupervised clustering. Other dedicated methods for scRNA-seq (III)

Krzak, M. et al. (2019) ‘Benchmark and Parameter Sensitivity Analysis of Single-Cell RNA Sequencing Clustering 
Methods’, Frontiers in Genetics, 10, p. 1253. doi:10.3389/fgene.2019.01253.
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https://doi.org/10.3389/fgene.2019.01253


Figure 4. Clustering of the methods based on the average similarity of their partitions across data sets

Duò A, Robinson MD and Soneson C. A systematic performance evaluationof  
clustering methods for single-cell RNA-seq data [version 2]. F1000Research  
2018, 7:1141 (doi: 10.12688/f1000research.15666.2)

Benchmark of (some) clustering methods (I)Benchmark of (some) clustering methods (I)
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Benchmark of (some) clustering methods (II)

Figure 1. Median ARI scores, representing the agreement between the true partition and the one  
obtained by each method, when the number of clusters is fixed to the true number.

Each row corresponds to a different data set, each panel to a different gene filtering method, and each column to a different clustering  
method. The methods and the data sets are ordered by their mean ARI across the filterings and data sets. Some methods failed to  
return a clustering with the correct number of clusters for certain data sets (indicated by white squares).

Duò A, Robinson MD and Soneson C. A systematic performance evaluationof  
clustering methods for single-cell RNA-seq data [version 2]. F1000Research  
2018, 7:1141 (doi: 10.12688/f1000research.15666.2)

... when forcing the methods to cluster with the right number of groups as truth...
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How many clusters?

• The number of cluster depends on the biological hypothesis you want
to answer.
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Alternative – SCAAF

Miao, Z. et al. (2020) ‘Putative cell type discovery from single-cell gene expression data’, Nature 
Methods, 17(6), pp. 621–628. doi:10.1038/s41592-020-0825-9.

• Through a series of clever
optimisation SCAAF is
able to find the « ground
truth » cell types without
specifying the number of 
cluster.

• … But again what is really
ground truth? Cell types? 
Cell states?

Seurat
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https://doi.org/10.1038/s41592-020-0825-9


How many clusters: Clustree

Zappia, L. and Oshlack, A. (2018) ‘Clustering trees: a visualization for evaluating clusterings at multiple 
resolutions’, GigaScience, 7(7), p. giy083. doi:10.1093/gigascience/giy083.
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https://doi.org/10.1093/gigascience/giy083


Alternative – TooManyCells

TooManyCells tree with cell type overlay in 
mammary gland.

Schwartz, G. W. et al. (2020) ‘TooManyCells identifies and visualizes relationships of single-cell clades’, 
Nature Methods, 17(4), pp. 405–413. doi: 10.1038/s41592-020-0748-5. 51

https://doi.org/10.1038/s41592-020-0748-5


The bioinformatics pipeline: main “modular” components

1. Feature selection

2. Dimensionality Reduction

3. Clustering / Hiearchy

4. Differential Expression / Gene signature extraction

5. Functional interpretation

6. Batch effect correction
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Differential expression analysis of single-cell data: The statistical concepts

1st. Modeling the measurement of cells as a  
mixture of two probabilistic processes:

i.The transcript is amplified & detected at a level  
correlating with its abundance (count data)

Negative binomial distribution

ii.The transcript fails to amplify or is not detected for  
other reasons (to account for abundance of dropout  
events)

Poisson distribution
Zero-inflated negative binomial

Kharchenko et al. Nature Methods (2014)

2nd. Empirical Bayesian framework to regularize model parameters
- helps to improve inference for genes with sparse expression
- based on measurements of individual cells in order to estimate both the likelihood of a gene being expressed  
at any given average level in each subpopulation and the likelihood of expression fold change between them

SCDE Kharchenko et al. Nature Methods (2014) 11:740

3rd. Extend to Generalized linear modeling (GLM) in order to:
- Accommodate complex experimental designs
- Controlling for covariates (including technical factors) in both the discrete and continuous parts of the model.

MAST. Finak et al. Genome Biology 2015, 16:278
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Differential expression analysis: The methods (I)
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Wang, T. et al. (2019) ‘Comparative analysis of differential gene expression analysis tools 
for single-cell RNA sequencing data’, BMC Bioinformatics, 20(1), pp. 1–16. 
doi:10.1186/s12859-019-2599-6.

https://doi.org/10.1186/s12859-019-2599-6


Differential expression analysis: The methods (II)

Soneson, C. and Robinson, M.D. (2018) ‘Bias, robustness and scalability in single-cell differential 
expression analysis’, Nature Methods, 15(4), pp. 255–261. doi:10.1038/nmeth.4612. 55

https://doi.org/10.1038/nmeth.4612


Differential expression analysis: The benchmark

Soneson, C. and Robinson, M.D. (2018) ‘Bias, robustness and scalability in single-cell 
differential expression analysis’, Nature Methods, 15(4), pp. 255–261. 
doi:10.1038/nmeth.4612.

Single cell specific methods

Methods borrowed from bulk-RNA-seq

Naïve approaches
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The bioinformatics pipeline: main “modular” components

1. Feature selection

2. Dimensionality Reduction

3. Clustering / Hierarchy

4. Differential Expression

5. Functional interpretation

6. Batch effect correction
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CelID: cell signatures extraction and enrichment analysis

Cortal, A. et al. (2021) ‘Gene signature extraction and cell identity recognition at the single-cell level 
with Cell-ID’, Nature Biotechnology, 39(9), pp. 1095–1102. doi:10.1038/s41587-021-00896-6. 58

https://doi.org/10.1038/s41587-021-00896-6


CelID: cell signatures extraction and enrichment analysis

Cortal, A. et al. (2021) ‘Gene signature extraction and cell identity recognition at the single-cell level 
with Cell-ID’, Nature Biotechnology, 39(9), pp. 1095–1102. doi:10.1038/s41587-021-00896-6. 59

https://doi.org/10.1038/s41587-021-00896-6


The bioinformatics pipeline: main “modular” components

1. Feature selection

2. Dimensionality Reduction

3. Clustering / Hiearchy

4. Differential Expression

5. Functional interpretation

6. Batch effect correction
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Mutual Nearest Neighbors (MNN): (I) Overview

Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.  
Haghverdi et al. Nature Biotechnology 2018 doi:10.1038/nbt.4091

61



Mutual Nearest Neighbors (MNN): (II) Correction vectors

Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.  
Haghverdi et al. Nature Biotechnology 2018 doi:10.1038/nbt.4091
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Mutual Nearest Neighbors (MNN): (III) Example

MEPs: megakaryocyte–erythrocyte progenitors  
CMPs: common myeloid progenitors
GMPs: granulocyte–monocyte progenitors

Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.  
Haghverdi et al. Nature Biotechnology 2018 doi:10.1038/nbt.4091
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Seurat v3’s integration: CCA + “anchors”

Comprehensive integration of single cell data Stuart et al. BioRxiv (2018)  
https://www.biorxiv.org/content/10.1101/460147v1
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https://www.biorxiv.org/content/10.1101/460147v1


Summary of integrative methods

Chazarra-Gil, R. et al. (2021) ‘Flexible comparison of batch correction methods for single-cell RNA-seq 
using BatchBench’, Nucleic Acids Research, 49(7), p. e42. doi:10.1093/nar/gkab004.
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https://doi.org/10.1093/nar/gkab004


Summary of integrative methods

Tran, H.T.N. et al. (2020) ‘A benchmark of batch-effect correction methods for single-cell RNA sequencing 
data’, Genome Biology, 21(1), p. 12. doi:10.1186/s13059-019-1850-9.

66

https://doi.org/10.1186/s13059-019-1850-9


Normalisation: scran deconvolution normalisation

Highly variable genes: Seurat FindVariableGenes

Dimensionality reduction: Seurat PCA

Two dimensional embeddings: Seurat UMAP, SWNE

Integration methods: Harmony

Differential expression: Wilcoxon-test or MAST

My Routine Pipeline

Framework: Seurat

Clustering:  Seurat graph clustering

Cell type inference: sciBet, SCINA 

Functionnal Analysis: CellID, AUCell
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Benchmarks evaluating each of the analytical steps:

Assessment of Single Cell RNA-Seq Normalization Methods.  
http://www.g3journal.org/content/7/7/2039.long

Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data  
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby011/4898116

A systematic performance evaluation of clustering methods for single-cell RNA-seq data  
https://f1000research.com/articles/7-1141/v2

Bias, robustness and scalability in single-cell differential expression analysis.  
https://www.nature.com/articles/nmeth.4612

A comparison of single-cell trajectory inference methods: towards more accurate and robust tools 
https://www.nature.com/articles/s41587-019-0071-9

A test metric for assessing single-cell RNA-seq batch correction (KBet)  
https://www.nature.com/articles/s41592-018-0254-1

Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments
https://www.nature.com/articles/s41592-019-0425-8

A benchmark of batch-effect correction methods for single-cell RNA sequencing data
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1850-9

A comparison of automatic cell identification methods for single-cell RNA sequencing data
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1795-z
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Orchestrating Single-Cell Analysis with Bioconductor
https://osca.bioconductor.org/

Seurat Vignettes
https://satijalab.org/seurat/vignettes.html

Complete course on Single-cell RNA-seq data analysis from U. Cambridge  
http://hemberg-lab.github.io/scRNA.seq.course/index.html

Bioinformatics Training channel on YouTube  
https://www.youtube.com/channel/UCsc6r6UKxb2qRcDQPix2L5A

A step-by-step workflow for low-level analysis of single-cell RNA-seq data  
https://f1000research.com/articles/5-2122/v1

Recommended online courses
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Thanks for your attention!
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