# 10x Genomics Visium Spatial scRNAseq

A feedback from early experiments @ Gustave Roussy

## 10x Visium Spatial scRNAseq



# 10x Genomics Visium Spatial Expression Lab Experiment

Because data never come from vacuum

#### Sample snap freeze and embedding







- Isopentane is **mandatory**
- Has to be cooled in liquid nitrogen in advance
- **Do not** directly freeze the tissue in nitrogen

### Cryosectioning



If inclusion is too large, **recut** with a 1mm deep shallow incision



Keep sample cold to avoid **condensation** 



Adapt cutting head temperature to tissue and section depth to avoid tearing



-10°C





-20°C



-30°C

-14°C

#### Section transfer





Hard to transfer section with frozen fingers !

#### Active section : $6.5 \times 6.5$ mm (8 x 8 mm with frame)

Fer ng, ng, ... Fiducial frames covered Folded tissue section Folded tissue section

Avoid transfer **imperfections** (folding, overlap, frame covering, surface scratching, ...)

# Hemoxylin Eosin Staining

**Discard Reagent** 

#### Incubate with Reagent







- Avoid reagent leaking
- Multiple preparations ahead: buffers (Tris Acetic acid), washing beakers, cooled methanol, warmed thermocycler with a specific adapter, ...
- Washing immersions :
  - Right speed is crucial (section may be washed away)
- Δ
- 5 + 15 + 15 + 5 + 15 = **55 rounds** !

Each immersion is ~1 sec
Correct
Incorrect



## Staining imaging

#### Bad exposition



#### **Bad resolution**



#### Stitching





#### Out of focus

| 000 | 0000 | 00000 |
|-----|------|-------|
|     |      | Sum   |
| 000 |      |       |

#### Bad shade correction



#### Unbalanced whites



## **Tissue permeabilization**







- Wells are dark and deep
- Be gentle while pipetting :
  - Avoid air **bubbles**
  - Gentle **flush** (sections may lose adherence)
  - Avoid **scratching** the surface with your tip



### **Permeabilization time**

- Dépénds on tissue type (guidelines exist)
- **Evaluated** on a time course :
  - Optimization Slide (7 test areas + 1 positive control)
  - + Best timepoint = Highest signal level / lowest spread



#### Mouse brain

### From RNA to amplified cDNA

- In-sitú reverse-transcription
- Second DNA strand synthesis
  - Dénaturation
- cDNA amplification (qPCR) :
  - + Identify the number of cycles to perform on the "real" sample



11

**Representative qPCR Amplification Plots** 

# Next : the Gene Expression slide

Redo ALL steps on the expression slide :
+ On other sections from the same sample
+ From the section transfer (without the permeabilization timescale : using the observed best elution time) ...

+ ... to the cDNA amplification step (using the identified best number of PCR cycles)

#### + Library construction

+ Analogous to "non-spatial" scRNAseq

+ Sequencing

+ Adapt expected generated reads per sample : Formula : Occupied area \* 5K spots \* 50K-100K reads / spot

Target : 100% \* 5K \* 100K \* 4 samples = 2 billion reads / run !



# Very first attempts @ Gustave Roussy

Preliminary work on osteosarcoma xenografts

# The OS Project

#### Osteósarcoma :

- **Rare (1/200,000), still most frequent** malignant bone tumor
- Affects children and young adults
- + Most common treatment : neoadjuvant
   chemotherapy (MTX) + surgical resection
- + Still the **lowest survival** rate for pediatric cancers

#### + The project :

- + Study the spatial **constitution** and **heterogeneity** of OS in murine patient-derived xenografts (PDX)
- + Murine host : tumor microenvironment





### Working on OS : Caveheats

- Sample type
  - # Bone = high calcification level
  - + Tumor = **heterogeneity** = wide different cells behavior = internal variance in permeabilization times
  - + PDX = cells from **two** species
- + Material
  - + Old cryostat = inhomogeneous temperature = small and teared sections = < 50% of active space used
- + cDNA amplification
  - + Low RNA quantity (despite good quality) = 25 cycles (16 max recommended)
- + Other :
  - + Problem with a permeabilization kit
  - + Limited budget (~100K€ = 8~9 experiments max)

#### **Calcium crystallization**





+ Calcium crystals formed during the permeabilization step
+ Could be removed using multiple warm water washings
+ Did not affect the Expression Slide

### **Permeabilization time**



- + Calcium crystals formed during the permeabilization step
- + Could be removed using multiple warm water washings
- + Did not affect the Expression Slide

# PDX2\_OPT 65% calcification



## **Gene Expression slide**

#### Performed on two sections for each PDX sample



PDX1\_A

PDX1\_B

PDX2\_A

PDX2\_B

| Sample                | PDX1 (A,B) | PDX2 (A,B) |
|-----------------------|------------|------------|
| Calcification         | 10%        | 65%        |
| Permeabilization time | 21 min     | 21 min     |
| Used area             | ~15%       | ~33%       |

#### Sequencing

Example for PDX1\_A



+ Performed on an Illumina NovaSeq S1 flowcell (up to 2.5 billion reads)

- + PDX1\_A = 534.50 million reads
- + PDX1\_B = 788.02 million reads
- + PDX2\_A = 593.95 million reads
- + PDX2\_B = 575.29 million reads

#### Analysis workflow



#### Xenome mapping rates

| Read address  | PDX1_GE_A | PDX1_GE_B | PDX2_GE_A | PDX2_GE_B |
|---------------|-----------|-----------|-----------|-----------|
| Human (graft) | 39.0%     | 42.8%     | 30.7%     | 35.1%     |
| Mouse (host)  | 13.8%     | 13.7%     | 14.8%     | 15.3%     |
| Both          | 16.3%     | 18.0%     | 39.9%     | 36.3%     |
| Ambiguous     | 30.1%     | 24.8%     | 13.7%     | 12.9%     |
| Neither       | 0.7%      | 0.6%      | 0.9%      | 0.5%      |

- + Both + Ambiguous reads account for **40-50%** of total reads
- + Hypothesis : Half of captured reads belong to conserved (housekeeping ?) genes



## Mapping stats on human



- + 15 30% of spots covered by tissue
- + ~ 30% of reads confidently mapped to transcriptome (most mapped to exons) ...
- + ... but 16 ~ 36% of reads mapped antisense to gene ?!
- + ~ 150 genes / spot (median)
- + ~ 300 UMIs / spot (median)
  - + Libraries complexity is low
  - + Few genes mapped, with high read depth





Reads Mapped Confidently to Intergenic Regions
 Reads Mapped Confidently to Intronic Regions
 Reads Mapped Confidently to Exonic Regions



# Mapped SC QCs





#### Example for PDX2\_B



### **Clustering and visualization**

Louvain clusters (Seurat)



- + 4 clusters identified by Louvain
- + Nice spatial mapping of clusters
- + Spatial mapping of some markers (below) sounds interesting, but poorly correlated with clusters





## Interaction with non-spatial SC





- + Non-spatial scRNAseq already available for PDX2\_B
- + Slingshot trajectory : builds a path from cluster 0 to 7, and 0 to 8
- + **Concentric** location of clusters 7 and 8 in spatial (7 surrounding 8): correction of the trajectory with a path **from 7 to 8**

# Update in late 2021

- TBH results were disappointing
  - + high spread on uMAP
  - + low distance between clusters
  - + clusters mapping on spatial *very* noisy
- + Why?
  - + Optimal elution time *IS NOT OPTIMAL* :
  - + RNA spread for long times







## Update in late 2021

#### Improvements

- +/Løwer elution time
- Out of protocol step removed : usage of *Sybrgreen* for RNA quantification involving a damaging 90°C heating step
- + PCR bubbles observed in BioAnalyzer profile due to too many cycles (not sequenced)

#### + Problems solved !

- + First good results on 2 PDX !
- + First successful tumor !
- + Successful shift to 2 new tumor types :
  - + Glioma
  - + Rhabdomyosarcoma
- + Results are under NDA ;)

## Update in late 2021

#### New problem emerged

early isopentane bath induce a heavy deformation of cells on HES (can't identify osteoblasts from osteoclasts!)

#### Looking for a solution

- + Use an alternative embedding that does not alter cells for staining
- + 10x Genomics released Visium FFPE !

# 10x Genomics Visium FFPE Spatial Expression Lab Experiment

Because on frozen samples, it was way too easy ...



A look at CG000408 protocol from 10X

### **FFPE-specific difficulties**

Samples quality unlinked to the age of FFPE block, but to the quality of their processing (reagents used, wait time before inclusion) and conservation (T°C variations, number of rehydratations, ...). You can't know this by ocular inspection...

- Grey plastic cassette does not handle well a heavy heating step : deformation, leakage !
- + Frozen Visium = 1 full day of sample prep, can freeze the slide for long periods
- + FFPE Visium = 2 full days, can store the slide in dehydrated container for 2 days max

### FFPE+OS-specific difficulties

Included biopsies are really small (~ 1 mm wide)

Included samples are already de calcified, most often using an acidic protocol (faster than EDTA), incompatible with Visium FFPE

- Y+ None of our samples did adhere to the test slide (but all did on the real one!)
  - + Many washing steps during deparaffinization (after HES) : sections moved (can't be mapped to image !)

After 4 attempts, first library ready for sequencing!

Latest news

## Acknowledgements

- Nathalie Gaspar, MD, PhD (Pediatric oncologist)
- Antonin Marchais, PhD (Bioinformatics project manager)
- Doris Lebeherec (PETRA)
- 4 Nicolas Signolles (PETRA)

UNICANCE

- + Maria Eugenia Marques da Costa, PhD (Biologist)
- + Maela Francillette (Genomics facility)
- + Hanane Boudhouche, Graduate student (Bioinformatics facility)

LA LIQUE

dell children's

WE ARE HIRING

Antonin.MARCHAIS@gustaveroussy.fr

### Credits

Lab experiments illustrations : 10x Genomics manuals : + CG000239\_revA

- + CG000240\_revB
- + CG000241\_revB
- + Osteosarcoma analysis : Gustave Roussy Pediatrics Bioinfo Team
- + OS skeleton image : Wikipedia
- + OS survival curve : ResearchGate
- + Xenome Venn : Xenome publication (<u>https://doi.org/10.1093/bioinformatics/bts236</u>)

