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Data overview

General notation for data science

- Spots

Cells / Spots

Genes

Samples

Features

Count matrix

Transcriptomic data
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Data overview

Count matrix

Spatial data

High resolution microscopy 
image

Spatial location

New data modalities!

Transcriptomic data

- Spots
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Pipeline overview
Unsupervised analysis

Standardized pipeline for
scRNA-seq data

This pipeline can be applied on spatially resolved 

transcriptomics data to do a first exploration of 

the data.

Our aim shift from identifying and profiling:

Cell types Tissue regionsto
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Leverage new data modalities
High resolution microscopy image

• Rich source of morphological information

- Useful for visualization and qualitative result assessment

- We can extract image features to complement gene information
(transcriptomic features)

9

(2)



Leverage new data modalities
High resolution microscopy image

• ResNet(DL model) embedding cluster: Cluster labels obtained from 

a Deep learning model trained to predict Gene Cluster assignment.

• Image features cluster: Clustering based on the intensity mean, standard 

deviation and 0.1, 0.4 and 0.9 quantiles of the H&E stain at each spot location
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Leverage new data modalities
Spatial Location

o Spatial Statistics : This field studies entities by using 

topological, geographic or geometric properties. It offers statistical tests to 
score the spatial pattern shown by a gene (assess the spatial relevance of each 
of the features of our samples).

o Spatial Graphs : Graphs are incredibly flexible tools. Spatial 

graphs encode spatial proximity. Can be used for a wide variety of 
purposes, in preprocessing and downstream analysis.

Can be used for: • Feature selection
• Tissue "markers" exploration
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Spatially aware unsupervised analysis

An optimal integration of 

transcriptomics data and associated 

spatial information is essential

To properly dissect tissue 

heterogeneity and fully exploit the 

data:

Let's take a careful look to the 

pipeline up to the clustering step
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Spatially aware unsupervised analysis

Dimensionality reduction

Normalization

Feature selection

(~ 2000-5000)
PCA

(~ 20-50 PCs)

Neighborhood graphUMAP

ClusteringVisualization

COUNT data

Latent representation

Summarization of 

information
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Spatially aware unsupervised analysis

Dimensionality reduction

Normalization

Feature selection

(~ 2000-5000)
PCA

(~ 20-50 PCs)

Neighborhood graphUMAP

ClusteringVisualization

COUNT data
In terms of SUMMARIZATION:

We aim to compress spatial 

information in the latent 

representation of the data 

to conduct a spatially 

aware clustering and 

downstream analysis

Latent representation

For VISUALIZATION:

Alternatively to the UMAP, we can 

use SPATIAL COORDINATED to 

visualize CLUSTER ASSIGMENTS

We can increase the spatial 

resolution of the 

transcriptomic information with 

model-based approaches

Summarization of 

information
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Spatially aware normalization

TOOL : stLearn Spatial Morphological gene Expression Normalization

20
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Spatially aware normalization

TOOL : stLearn Spatial Morphological gene Expression Normalization
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Spatially aware normalization

TOOL : stLearnDL models can convert an image into a 2048-dimensional vector. Then we can apply PCA to 

extract the first 50 PCs as latent features to represent the spot morphology (M)
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Spatially aware normalization
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Morphological distance

Similarity metric
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Spatially aware normalization

TOOL : stLearnDL models can convert an image into a 2048-dimensional vector. Then we can apply PCA to 

extract the first 50 PCs as latent features to represent the spot morphology (M)

Morphological distance
Spatial Morphological gene Expression Normalization

if
25
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Spatially aware normalization

TOOL : stLearnDL models can convert an image into a 2048-dimensional vector. Then we can apply PCA to 

extract the first 50 PCs as latent features to represent the spot morphology (M)

Morphological distance
Spatial Morphological gene Expression Normalization

if

Alternatively, 

they propose 

to perform 

this 

normalization 

on the latent 

features

(PCs / UMAP)
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Spatially aware unsupervised analysis

Dimensionality reduction

Normalization

Feature selection

(~ 2000-5000)

PCA

(~ 20-50 PCs)

Neighborhood graphUMAP

ClusteringVisualization

COUNT data

Latent representation

stLearn (SME Normaliz.)

Framed steps are tackled or replaced by the same-colored framed methods

Summarization of 

information
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Spatially aware feature selection – Spatial Graphs

TOOL : Giotto (Binary Spatial extract / BinSpect)

- Binarize the gene expression value (0/1)

- Assess the spatial pattern by checking whether a gene is usually expressed in 

neighboring cells

Does not exhibit more potential than Spatial Statistics approaches but 

is COMPUTATIONALLY MORE EFFICIENT

29
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Spatially aware feature selection – Spatial Graphs

TOOL : Giotto (Binary Spatial extract / BinSpect)

- Binarize the gene expression value (0/1)

- Assess the spatial pattern by checking whether a gene is usually expressed in 

neighboring cells
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Suitable for cases such as: seqFISH+ mouse somatosensory cortex
(underlying layered structure)
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Spatially aware feature selection – Spatial Statistics

TOOL : SPARK (Spatial pattern recognition via kernels)

CHALLENGES

Statistical

PREVIOUS APPROACHES

SpatialDE(2)

Trendseek(3)

Based on efficient linear mixed models

Poor control of type I errors*

Not Scalable

*Type I errors lead to concluding that purely random results are statistically significant

Expensive permutation strategies with 

non-parametric test statistics

Computational
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Spatially aware feature selection – Spatial Statistics

TOOL : SPARK (Spatial pattern recognition via kernels)

32

MVN ~ Multivariate normal distribution

Kernels

Gaussian

Periodic

(5)



Spatially aware feature selection – Spatial Statistics

Number of detected genes

displaying spatial patterns:

SPARK: 772
SpatialDE: 67 (62 overlaps)

TOOL : SPARK (Spatial pattern recognition via kernels)

ClusteringOlfactory bulb

Markers

Ontology enrichment analysis

•SYNAPTIC ORGANIZATION

•BULB DEVELOPMENT
33
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Spatially aware feature selection – Spatial Statistics

TOOL : SPARK-X (Non-parametric version)

More suitable than SPARK for sparse, large-scale data

Intuition: if y (gene expression) is independent of S

(spatial coordinates), then the spatial distance

between two locations i and j would also be

independent of the gene expression difference

between the two locations

Scalable for dataset with more than

~10.000 of genes

measured on

~10.000 spots.

34
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Spatially aware unsupervised analysis

Dimensionality reduction

Normalization

Feature selection

(~ 2000-5000)
PCA

(~ 20-50 PCs)

Neighborhood graphUMAP

ClusteringVisualization

COUNT data

Latent representation

stLearn (SME Normaliz.)

Spatially aware 

feature selection

Framed steps are tackled or replaced by the same-colored framed methods

Summarization of 

information
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Model based approaches

TOOL : BayesSpace

Fully Bayesian Model with Markov Random Field. Inspired on widely used computer vision models for 

denoising and segmentizing images in a statistical / probabilistic manner

• Preprocessing : Normalization + Log-Transformation + top HVG + top PCs (~ 15 ).

• Performance relies on empirical knowledge for the selection of HVG, PCs, nº of Clusters

• BayesSpace performs iterative clustering, CONSTRAINING spots to join neighboring clusters (spatial awareness)

Provides the SPOT CLUSTER ASSIGMENTS + SUB-SPOT RESOLUTION

37
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Model based approaches

TOOL : BayesSpace

if the model only works with the PCs of the data:

HOW CAN WE GET SUBSPOT RESOLUTION EXPRESSION MAPS ?

Provides the SPOT CLUSTER ASSIGMENTS + SUBS-POT RESOLUTION

38

(6)



Model based approaches

TOOL : BayesSpace

if the model only works with the PCs of the data:

HOW CAN WE GET SUBSPOT RESOLUTION EXPRESSION MAPS ?

Provides the SPOT CLUSTER ASSIGMENTS + SUB-SPOT RESOLUTION

39

Need an additional step Train a model to predict gene expression from PCs on original data

Use this model on the sub-spot PCs values to get Enhanced gene expression maps

(6)



Spatially aware unsupervised analysis

Dimensionality reduction

Normalization

Feature selection

(~ 2000-5000)

PCA

(~ 20-50 PCs)

Neighborhood graphUMAP

ClusteringVisualization

COUNT data

Latent representation

stLearn (SME Normaliz.)

Spatially aware 

feature selection

Framed steps are tackled or replaced by the same-colored framed methods

BayesSpaceSummarization of 

information
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Model based approaches

TOOL : Spatially Embedded Dimensionality Reduction (SEDR) Provides a Refined Latent Representation

(Spatial Graph)

41
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Autoencoder
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Model based approaches

TOOL : Spatially Embedded Dimensionality Reduction (SEDR) Provides a Refined Latent Representation

(Spatial Graph)
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Autoencoder

Variational graph 

autoencoder
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Model based approaches

TOOL : Spatially Embedded Dimensionality Reduction (SEDR) Provides a Refined Latent Representation

(Spatial Graph)

(Spatial awareness)

44

(7)



Model based approaches

TOOL : Spatially Embedded Dimensionality Reduction (SEDR)

Preprocessing : 
Normalize, log-norm. and 

PCs computation.
Authors recommendation:

~ 300 PCs as input

Provides a Refined Latent Representation

Latent Representation Z is composed by : - Encoded features of the gene expression +

- Spatial embedded features outputted by the Variational Graph Autoencoder

(Spatial Graph)

(Spatial Graph)

(Spatial awareness)

(encoded features)
45
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Spatially aware unsupervised analysis

Dimensionality reduction

Normalization

Feature selection

(~ 2000-5000)

PCA

(~ 20-50 PCs)

Neighborhood graphUMAP

ClusteringVisualization

COUNT data

Latent representation

stLearn (SME Normaliz.)

Spatially aware 

feature selection

Framed steps are tackled or replaced by the same-colored framed methods

BayesSpaceSummarization of 

information

SEDR
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Benchmarking results - DLPFC

Anatomical structure detection

48
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Benchmarking results - DLPFC

SEDR - Trajectory Inference

Monocle3

Tool for pseudotime

estimation

SEDR results reflected the 

correct “inside-out” 

developmental

ordening of cortical layers

**In tumoral samples 

pseudo-time can show 

the tumor progression

49(7)



Benchmarking results - DLPFC

SEDR - Trajectory Inference & Batch effect

50

Harmony

Batch effect removal tool that aligns the samples information in the PC space

(7)



Benchmarking results – Saggital Posterior

Seurat / Scanpy stLearn

Complex anatomical regions detection – Dentate gyrus

51
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Benchmarking results – Saggital Posterior

stLearn BayesSpace SEDR
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Specific results – SEDR

Allows for user-supervised re-clustering

1.- Isolate clusters

of interest (4,11,17)

2.- Compute finer 

granularity clusters

3.- Select finer granularity 

clusters of interest and merge.

2, 6 18 ; 8 19

53



Specific results – BayesSpace

Authors defined cell types 

based on literature markers:

• Tumor cell (PMEL)

• Fibroblast (COL1A1)

• B cell (CD19, MS4A1)

• T cell (CD2, CD3D CD3E, CD3G, CD7)

• Macrophage (CD14, FCGR1A, FCGR1B)

Melanoma sample

Tumor-proximal lymphoid tissue

54
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Latent representation from reference-based deconvolution

56

ST technologies not always provide single cell resolution 

Is common to perform spot deconvolution:

Here we obtain a 

spot representation 

based on the cell 

type proportion

Latent representation 

of the data
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Deep Data Fusion

Provides SUPER-RESOLVED gene expression maps

• Deep generative model that merge ideas from computer vision and generative statistical modeling

Model scheme

58
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Spatial approaches
Model based approaches

TOOL : Deep Data FusionProvides SUPER-RESOLVED gene expression maps

59(8)



Spatial approaches
Model based approaches

TOOL : Deep Data FusionProvides SUPER-RESOLVED gene expression maps

• Instead of clustering assigment we have a latent tissue state

• We can still run differential expression analysis: we select measurement locations overlapping with an

annotation region (eg. Mitral Cell Layers) . Then, we log-normalize the data and compute differentially 

expressed genes using the FindMarkers (Seurat) function

60
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METHODS SUMMARY

61

INPUT OUTPUT

stLearn RAW ST + Histological Image Spatial Morphological Gene 

Expression Normalization

SPARK(-X) // GIOTTO RAW ST DATA Spatially Variable Genes

BayesSpace (~15) Top PCs from HVG Cluster labels

+

Sub-spot resolution

SERD (~300) Top PCs from ALL GENES Spatially Embedded 

Latent Representation

Spot deconvolution RAW ST DATA +

Annotated sc-RNAseq reference

Cell type proportion

(alternative latent representation)

Deep data fusion RAW ST + Histological Image Super-resolved gene expression 

maps



THE END

Thanks for your attention!
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