
tutoriel

June 14, 2022

1 Introduction to code versioning with git
schedule: - introduction to files history - introduction to Git, a system of code versioning - the
Git cycle - branches

support: jupyter notebook running into the jupyter/minimal-notebook docker con-
tainer - docker run -it --rm -p 8888:8888 --user root -e NB_USER="tutoriel_git" -e
CHOWN_HOME=yes -v "${PWD}:/home/${NB_USER}" jupyter/minimal-notebook - in a browser,
open the last given URL http://127.0.0.1:8888/lab?token=xxx - copy the notebook
tutotiel_git.ipynb (and its cognate images repository) into the ${PWD}/tutotiel_git/ repos-
itory (or open a new python notebook)

note: - this notebook is runing with a Python kernel: use %%sh for shell (bash) in code
cells - the docker container binding need to use cd ${PWD}/xxx in each code cell to work into
another directory - at the end of the notebook, the tutoriel_git repository will look like:
��� FAIR_bioinfo_github � ��� README.md ��� first_git_example � ��� file1.txt � ���
file2.txt ��� tutoriel_git.ipynb

1.1 Really need of a files history?
Most researchers are primarily collaborating with themselves,” Tracy Teal explains. “So, we teach
it from the perspective of being helpful to a ‘future you’.”

1.2 Files history, a good practice for reproducible research
”Rule 4: Version Control All Custom Scripts”

1.3 Code control version
Definition: version control, revision control, source control, or source code management: class of
systems responsible for managing changes to files

Feature: each revision is associated with a timestamp and the person making the change. Revisions
can be compared, restored, and merged

Software: SVN, Git, Mercurial, GNU arch, etc

We choose Git.

1

1.4 Git vs. GitHub
- will track and version your files - enables you to collaborate with … yourself - open source license
GPL (GNU General Public License) - created in 2005 by Linus Torvalds for the development of the
Linux kernel

- stores online Git repositories - enables you to collaborate with others (and yourself!) - sources
belong to GtHub - first commit in 2007 by Chris Wanstrath

1.5 Git concepts, Git objects
working directory: a user private copy of a whole repository of interest

clone: a local copy of a repository (include all commits and branches), the original repository can
be local, or remote (http access)

commit: a git object, the snapshot of your entire repository compressed into a SHA; the command
the saves changes by creating the snapshot

HEAD: pointer representing your current working commit. Can be moved (git checkout) to
different branches, tags, or commits

branch: a lightweight movable pointer to a commit

merge: combines remote tracking branche into current local branch

Revision graph:

staging area: list of files of the working directory that will be considered for next commit (ie.
could be not all the modified files)

1.6 Git setup
Git configuration: check the configuration of your git user.name with:

[1]: %%sh
git config --list

if not yet done (nothing displayed), tell git our identity:

[2]: %%sh
git config --global user.name ’clairetn’
git config --global user.email ’claire.ctn@gmail.com’
git config --list

user.name=’clairetn’
user.email=’claire.ctn@gmail.com’

Git repository intitailisation: The initialisation (red arrow) is the creation of a .git repository:

Here are 3 ways to initialise a git repository: - git init: inside an existing folder (possibly
containing files) - git init myproject: create folder ”myproject” + initializes the .git subfolder
inside it - git clone /gitfolder/path /new/path: copy the existing git repository to a new one

Initalise a git repository:

2

[3]: %%sh
git init first_git_example

Initialized empty Git repository in
/home/jovyan/tutoriel_git/first_git_example/.git/

Observe the git folder:

[4]: %%sh
ls -lah first_git_example

total 12K
drwxr-xr-x 3 1001 1001 4.0K Jun 13 00:33 .
drwxrwxr-x 6 1001 1001 4.0K Jun 13 00:33 ..
drwxr-xr-x 7 1001 1001 4.0K Jun 13 00:33 .git

1.7 Git work cycle
A Git work cycle is composed of three steps: - create/delete/change files - place the files to follow
to a special space, the staged area with add myfiles
- keep the actual version of the files included in the staged area with commit -m "my reason of
change"

The status command explains the git step of each file of the folder:

[5]: %%sh
cd ${PWD}/first_git_example
git status

On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

Now, experiment one git cycle. Create 2 files:

[6]: %%sh
cd ${PWD}/first_git_example
for i in 1 2 ; do

echo "text of file "${i}"\n" > file${i}.txt ;
done
ls

file1.txt
file2.txt

[7]: %%sh
cd ${PWD}/first_git_example
git status

3

On branch master

No commits yet

Untracked files:
(use "git add <file>…" to include in what will be committed)

file1.txt
file2.txt

nothing added to commit but untracked files present (use "git add" to track)

Observe: the 2 new files are included in the list of untracked files.

Add file1.txt to the list of tracked files, the staged area:

[8]: %%sh
cd ${PWD}/first_git_example
git add file1.txt
git status

On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>…" to unstage)

new file: file1.txt

Untracked files:
(use "git add <file>…" to include in what will be committed)

file2.txt

file1.txt pass from untracked to staged (ie. to be committed).

Change again the content of file1.txt:

[14]: %%sh
cd ${PWD}/first_git_example
sed 's/text/text change /' file1.txt > tmp ; mv tmp file1.txt
git status

On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>…" to unstage)

new file: file1.txt
new file: file2.txt

4

Changes not staged for commit:
(use "git add <file>…" to update what will be committed)
(use "git restore <file>…" to discard changes in working directory)

modified: file1.txt

observe the 3 states. Note that file1.txt appears in “to be commited” and also in “not staged
for commit”.

[]: Stage all files:

[10]: %%sh
cd ${PWD}/first_git_example
git add file?.txt
git status

On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>…" to unstage)

new file: file1.txt
new file: file2.txt

And commit:

[15]: %%sh
cd ${PWD}/first_git_example
git commit -m "commit with all files"
git status

[master (root-commit) 6cd964d] commit with all files
2 files changed, 4 insertions(+)
create mode 100644 file1.txt
create mode 100644 file2.txt
On branch master
Changes not staged for commit:

(use "git add <file>…" to update what will be committed)
(use "git restore <file>…" to discard changes in working directory)

modified: file1.txt

no changes added to commit (use "git add" and/or "git commit -a")

So far, you have initiated a new project whose code is versioned by git. You have created files and
all their successives changes were tracked.

To avoid bad changes of code, it is a good practice to test a new code version before use it, and so

5

separate development code from production code. With the Git branch concept, you may manage
this separation: develope code from an initial copy of the master code.

1.8 Use branches
We will now create a 2nd project by copying an already existing one (from an online git project
site, e.g. github):

[]: %%sh
git clone https://github.com/clairetn/FAIR_bioinfo_github.git
ls -lah FAIR_bioinfo_github/

Observe the result: - a new folder has been created - its name is directly deduced from the URL -
it contains a .git repository and a README.md file: it is a minimal project!

To developpe a new functionality, add a branch with branch:

[20]: %%sh
cd ${PWD}/FAIR_bioinfo_github
git branch branch_myfn # create a branch
git branch # list all branches

fatal: A branch named 'branch_myfn' already exists.

branch_myfn
* master

The default branch is nammed master. The star denotes the working branch.

Move to the new branch with checkout:

[21]: %%sh
cd ${PWD}/FAIR_bioinfo_github
git checkout branch_myfn
git branch

Switched to branch 'branch_myfn'

* branch_myfn
master

Explore the branch (ls, git status):

[22]: %%sh
cd ${PWD}/FAIR_bioinfo_github
ls -lah
git status

total 16K
drwxrwxr-x 3 1001 1001 4.0K Jun 13 00:57 .
drwxrwxr-x 7 1001 1001 4.0K Jun 13 01:01 ..
drwxrwxr-x 8 1001 1001 4.0K Jun 13 01:01 .git

6

-rw-rw-r-- 1 1001 1001 150 Jun 13 00:57 README.md
On branch branch_myfn
nothing to commit, working tree clean

The branch branch_myfn looks at a strict copie of the origin, the master branch.

Realise a git cycle: i) change the README.md file by adding your firstname to the authors list, ii)
add the file to the staged area, and iii) commit:

[25]: %%sh
cd ${PWD}/FAIR_bioinfo_github
echo "- my firstname " >> fn.txt ; cat < fn.txt >> README.md ; rm fn.txt # add␣

↪fisrtname
more README.md ; echo "----------" # check adding
git status # check status

::::::::::::::
README.md
::::::::::::::
FAIR_Bioinfo_github
This file is associated to the FAIR_Bioinfo courses.

Authors list:
- Claire
- kchennen
- toto
- Paulette Lieby
- Clémence
- my firstname
- my firstname

On branch branch_myfn
Changes not staged for commit:

(use "git add <file>…" to update what will be committed)
(use "git restore <file>…" to discard changes in working directory)

modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

[27]: %%sh
cd ${PWD}/FAIR_bioinfo_github
git add README.md
git status
echo "-------------"
git commit -m "add firstname"
git status

On branch branch_myfn
nothing to commit, working tree clean

7

On branch branch_myfn
nothing to commit, working tree clean
On branch branch_myfn
nothing to commit, working tree clean

Once you have check that the changes are corretcs, back to the master branch. Check the version
of README.md file:

[28]: %%sh
cd ${PWD}/FAIR_bioinfo_github
git checkout master
more README.md

Switched to branch 'master'

Your branch is up to date with 'origin/master'.
::::::::::::::
README.md
::::::::::::::
FAIR_Bioinfo_github
This file is associated to the FAIR_Bioinfo courses.

Authors list:
- Claire
- kchennen
- toto
- Paulette Lieby
- Clémence

It is the version before the change in the branch_myfn branch.

merge and delete the branch_myfn:

[29]: %%sh
cd ${PWD}/FAIR_bioinfo_github
git merge branch_myfn
echo "------------"
more README.md
echo "------------"
git branch -d branch_myfn # -d = delete
git branch

Updating f93bb12..93de33f
Fast-forward
README.md | 2 ++
1 file changed, 2 insertions(+)

::::::::::::::
README.md

8

::::::::::::::
FAIR_Bioinfo_github
This file is associated to the FAIR_Bioinfo courses.

Authors list:
- Claire
- kchennen
- toto
- Paulette Lieby
- Clémence
- my firstname
- my firstname

Deleted branch branch_myfn (was 93de33f).
* master

You make change in a protected area to test it and merge your work when it is ok.

1.9 References
• version control, wikipedia
• git quick guide, tutorial point
• git getting started

9

https://en.wikipedia.org/wiki/Version_control
https://www.tutorialspoint.com/git/git_quick_guide.htm
https://www.powershellmagazine.com/2015/07/13/git-for-it-professionals-getting-started-2/

	Introduction to code versioning with git
	Really need of a files history?
	Files history, a good practice for reproducible research
	Code control version
	Git vs. GitHub
	Git concepts, Git objects
	Git setup
	Git work cycle
	Use branches
	References

