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Abstract

The biological carbon pump is the process by which CO2 is transformed to organic carbon via 
photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. 

While the intensity of the pump correlates with plankton community composition, the underlying 

ecosystem structure driving the process remains largely uncharacterised. Here we use 

environmental and metagenomic data gathered during the Tara Oceans expedition to improve our 

understanding of carbon export in the oligotrophic ocean. We show that specific plankton 

communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 

150 m and highlight unexpected taxa such as Radiolaria, alveolate parasites, as well as 

Synechococcus and their phages, as lineages most strongly associated with carbon export in the 

subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative 

abundance of just a few bacterial and viral genes can predict most of the variability in carbon 

export in these regions.
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Marine planktonic photosynthetic organisms are responsible for approximately fifty percent 

of Earth’s primary production and fuel the global ocean biological carbon pump1. The 

intensity of the pump is correlated to plankton community composition2,3, and controlled by 

the relative rates of primary production and carbon remineralisation4. About 10% of this 

newly produced organic carbon in the surface ocean is exported through gravitational 

sinking of particles. Finally, after multiple transformations, a fraction of the exported 

material reaches the deep ocean where it is sequestered over thousand-year timescales5.

Like most biological systems, marine ecosystems in the sunlit upper layer of the ocean 

(denoted the euphotic zone) are complex6,7, characterised by a wide range of biotic and 

abiotic interactions8-10 and in constant balance between carbon production, transfer to 

higher trophic levels, remineralisation, and export to the deep layers11. The marine 

ecosystem structure and its taxonomic and functional composition likely evolved to comply 

with this loss of energy by modifying organism turnover times and by the establishment of 

complex feedbacks between them6 and the substrates they can exploit for metabolism12. 

Decades of groundbreaking research have focused on identifying independently the key 

players involved in the biological carbon pump. Among autotrophs, diatoms are commonly 

attributed to being important in carbon flux because of their large size and fast sinking 

rates13-15 while small autotrophic picoplankton may contribute directly through subduction 

of surface water16 or indirectly by aggregating with larger settling particles or consumption 

by organisms at higher trophic levels17. Among heterotrophs, zooplankton such as 

crustaceans impact carbon flux via production of fast-sinking fecal pellets while migrating 

hundreds of meters in the water-column18,19. These observations, focusing on just a few 

components of the marine ecosystem, highlight that carbon export results from multiple 

biotic interactions and that a better understanding of the mechanisms involved in its 

regulation will require an analysis of the entire planktonic ecosystem.

Advanced sequencing technologies offer the opportunity to simultaneously survey whole 

planktonic communities and associated molecular functions in unprecedented detail. Such a 

holistic approach may allow the identification of community- or gene-based biomarkers that 

could be used to monitor and predict ecosystem functions, e.g., related to the 

biogeochemistry of the ocean20-22. Here, we leverage global-scale ocean genomics datasets 

from the euphotic zone10,23-25 and associated environmental data to assess the coupling 

between ecosystem structure, functional repertoire, and carbon export at 150 m.

Carbon export and plankton community composition

The Tara Oceans global circumnavigation crossed diverse ocean ecosystems and sampled 

plankton at an unprecedented scale20,26 (see Methods). Hydrographic data were measured in 
situ or in seawater samples at all stations, as well as nutrients, oxygen and photosynthetic 

pigments (see Methods). Net Primary Production (NPP) was derived from satellite 

measurements (see Methods). In addition, particle size distributions (100 μm to a few mm) 

and concentrations were measured using an Underwater Vision Profiler (UVP) from which 

carbon export, corresponding to the carbon flux (Fig. 1a) at 150 m, was calculated to range 

from 0.014 to 18.3 mg.m−2.d−1 using methods previously described (see Methods). One 
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should keep in mind that fluxes are calculated from images of particles. These estimates are 

derived from an approximation of Stokes’ law relating the equivalent spherical diameter of 

particles to carbon flux (see Methods). This exponential approximation is reasonable 

assuming similar particle composition across all sizes, as highlighted by the standard 

deviations of parameters in Eq. 5 (see Methods). Furthermore, because of instrument and 

method limitations, particles <250 μm were not used, which may underestimate total carbon 

fluxes. Finally, these fluxes are instantaneous because they do not integrate space and time 

as sediment traps would. However, the approach allowed us to assemble the largest 

homogeneous carbon export dataset during a single expedition, corresponding to more than 

600 profiles over 150 stations. This dataset is of similar magnitude to the body of historical 

data available in the literature that includes the 134 deep sediment trap-based carbon flux 

time-series27 from the JGOFS program and the 419 thorium-derived particulate organic 

carbon (POC) export measurements28.

From 68 globally distributed sites, a total of 7.2 Tb of metagenomics data, representing ~40 

million non-redundant genes, around 35,000 Operational Taxonomic Units (OTUs) of 

prokaryotes (Bacteria and Archaea) and numerous mainly uncharacterized viruses and 

picoeukaryotes, have been described recently23,25. In addition, a set of 2.3 million 

eukaryotic 18S rDNA ribotypes was generated from a subset of 47 sampling sites 

corresponding to approximately 130,000 OTUs24 (Fig. 1a). Finally, 5,476 viral 

“populations” were identified at 43 sites from viral metagenomic contigs, only 39 (<0.1%) 

of which had been previously observed25 (see Methods). These genomics data combined 

across all domains of life and viruses together with carbon export estimates and other 

environmental parameters were used to explore the relationships between marine 

biogeochemistry and euphotic plankton communities (see Methods) in the top 150 m of the 

oligotrophic open ocean. Our study did not include high latitude areas due to the current lack 

of available molecular data and results should not be extrapolated to deeper depths.

Using a method for regression-based modeling of high multidimensional data in biology 

(specifically a sparse Partial Least Square analysis - sPLS29, Extended data Fig. 1), we 

detected several plankton lineages for which relative sequence abundance correlated with 

carbon export and other environmental parameters, most notably with NPP, as expected (Fig. 

1b and see Supplementary Table 1). These included diatoms, dinoflagellates and metazoa 

(zooplankton), lineages classically identified as key contributors to carbon export.

Plankton community networks associated with carbon export

While the analysis presented in Fig. 1b supports previous findings about key organisms 

involved in carbon export from the euphotic zone14,15,17-19, it is not able to capture how the 

intrinsic structure of the planktonic community relates to this biogeochemical process. 

Conversely, although other recent holistic approaches10,30,31 used species co-occurrence 

networks to reveal potential biotic interactions, they do not provide a robust description of 

sub-communities driven by abiotic interactions. To overcome these issues, we applied a 

systems biology approach known as Weighted Gene Correlation Network Analysis 

(WGCNA32,33) to detect significant associations between the Tara Oceans genomics data 

and carbon export. This method delineates communities in the euphotic zone that are the 
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most associated with carbon export rather than predicting organisms associated with sinking 

particles.

In brief, the WGCNA approach builds a network in which nodes are features (in this case 

plankton lineages or gene functions) and links are evaluated by the robustness of co-

occurrence scores. WGCNA then clusters the network into modules (hereafter denoted 

subnetworks) that can be examined to find significant subnetwork-trait relationships. We 

then filtered each subnetwork using a Partial Least Square (PLS) analysis that emphasizes 

key nodes (based on the Variable Importance in Projection (VIP) scores; see Methods and 

Extended data Fig. 1). These particular nodes are mandatory to summarize a subnetwork (or 

community) related to carbon export. In particular, they are of interest for evaluating (i) 

subnetwork robustness and (ii) predictive power for a given trait (see Methods and Extended 

data Fig. 1).

We applied WGCNA to the relative abundance tables of eukaryotic, prokaryotic and viral 

lineages23-25 and identified unique subnetworks significantly associated with carbon export 

within each dataset (see Methods and Supplementary Tables 2, 3, 4). The eukaryotic 

subnetwork (subnetwork-trait relationship to carbon export, Pearson cor. = 0.81, p = 5e−15) 

contained 49 lineages (Extended data Fig. 2a and Supplementary Table 2) among which 

20% represented photosynthetic organisms (Fig. 2a and Supplementary Table 2). 

Surprisingly, this small subnetwork’s structure correlates very strongly to carbon export 

(Pearson cor. = 0.87, p = 5e−16, Extended data Fig. 2d) and it predicts as much as 69% 

(Leave-One-Out Cross-Validated (LOOCV), R2 = 0.69) of the variability in carbon export 

(Extended data Fig. 2g). Only ~6% of the subnetwork nodes correspond to diatoms and they 

show lower VIP scores than dinoflagellates (Supplementary Table 2). This is likely because 

our samples are not from silicate replete conditions where diatoms were blooming. 

Furthermore, our analysis did not incorporate data from high latitudes, where diatoms are 

known to be particularly important for carbon export, so this result suggests that 

dinoflagellates have a heretofore unrecognized role in carbon export processes in subtropical 

oligotrophic ‘type’ ecosystems. More precisely four of the five highest VIP scoring 

eukaryotic lineages that correlated with carbon export at 150 m were heterotrophs such as 

Metazoa (copepods), non-photosynthetic Dinophyceae, and Rhizaria (Fig. 2a and 

Supplementary Table 2). These results corroborate recent metagenomics analysis of 

microbial communities from sediment traps in the oligotrophic North Pacific subtropical 

gyre34. Consistently, in situ imaging surveys have revealed Rhizarian lineages, made up of 

large fragile organisms such as the Collodaria, to represent an until now under-appreciated 

component of global plankton biomass35, which here also appear to be of relevance for 

carbon export. Another 14% of lineages from the subnetwork correspond to parasitic 

organisms, a largely under-explored component of planktonic ecosystems when studying 

carbon export.

The prokaryotic subnetwork that associated most significantly with carbon export at 150 m 

(subnetwork-trait relationship to carbon export, Pearson cor. = 0.32, p = 9e−03) contained 

109 OTUs (Extended data Fig. 2b and Supplementary Table 3), its structure correlated well 

to carbon export (Pearson cor. = 0.47, p = 5e−06, Extended data Fig. 2e) and it could predict 

as much as 60% of the carbon export (LOOCV, R2 = 0.60) (Extended data Fig. 2h). By far 
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the highest VIP score within this community was assigned to Synechococcus, followed by 

Cobetia, Pseudoalteromonas and Idiomarina, as well as Vibrio and Arcobacter (Fig. 2b and 

Supplementary Table 3). Noteworthy, Prochlorococcus genera and SAR11 clade fall out of 

this community, while the significance of Synechococcus for carbon export could be 

validated using absolute cell counts estimated by flow cytometry (Pearson cor. = 0.64, p = 

4e−10, Extended data Fig. 2k). Moreover, Prochlorococcus cell counts did not correlate with 

carbon export (Pearson cor. = −0.13, p = 0.27, Extended data Fig. 2j) whereas the 

Synechococcus to Prochlorococcus cell count ratio correlated positively and significantly 

(Pearson cor. = 0.54, p = 4e−07, Extended data Fig. 2l), suggesting the relevance of 

Synechococcus, rather than Prochlorococcus, to carbon export. Interestingly, 

Pseudoalteromonas, Idiomarina, Vibrio and Arcobacter (of which several species are known 

to be associated with eukaryotes36) have also been observed in live and poisoned sediment 

traps34 and display very high VIP scores in the subnetwork associated with carbon export. 

Additional genera reported as being enriched in poisoned traps (also known as being 

associated with eukaryotes) include Enterovibrio and Campylobacter, and are present as well 

in the carbon export associated subnetwork.

Interestingly, the viral subnetwork (involving 277 populations) most related to carbon export 

at 150 m (Pearson cor. = 0.93, p = 2e−15, Extended data Fig. 2c) contained particularly high 

VIP scores for two Synechococcus phages (Fig. 2c and Supplementary Table 4), which 

represented a 16-fold enrichment (Fisher’s exact test p = 6.4e−09). Its structure also 

correlated with carbon export (Pearson cor. = 0.88, p = 6e−93, Extended data Fig. 2f) and 

could predict up to 89% of the variability of carbon export (LOOCV, R2 = 0.89) (Extended 

data Fig. 2i). The significance of these convergent results is reinforced by the fact that 

sequences from these datasets are derived from organisms collected on independent size 

filters (see Methods), and further implicates the importance of top-down processes in carbon 

export.

With the aim of integrating eukaryotic, prokaryotic, and viral communities in the euphotic 

zone with carbon export at 150 m, we synthesized their respective subnetworks using a 

single global co-occurrence network established previously10. The resulting network focused 

on key lineages and their predicted co-occurrences (Fig. 3). Lineages with high VIP values 

(such as Synechococcus) are revealed as hubs of the co-occurrence network10, illustrating 

the potentially strategic key roles within the integrated network of lineages under-

appreciated by conventional methods to study carbon export. Associations between the hub 

lineages are mostly mutually exclusive which may explain the relatively weak correlation of 

some of these lineages with carbon export when using standard correlation analyses as 

shown in Fig. 1b.

Gene functions associated with carbon export

Given the potential importance of prokaryotic processes influencing the biological carbon 

pump22, we used the same analytical approaches to examine the prokaryotic genomic 

functions associated with carbon export at 150 m in the annotated Ocean Microbial 

Reference Gene Catalogue from Tara Oceans23. We built a global co-occurrence network for 

functions (i.e., Orthologous Groups of genes or OGs) from the euphotic zone and identified 
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two subnetworks of functions that are significantly associated with carbon export (light and 

dark green subnetworks; FNET1 and FNET2, respectively, see Extended data Fig. 3a, 3b and 

3c).

The majority of functions in FNET1 and FNET2 correlate well with carbon export (FNET1: 

mean Pearson cor. = 0.45, s.d. 0.09 and FNET2: mean Pearson cor. = 0.34, s.d. 0.10). 

Interestingly, FNET2 functions (n=220) encode mostly (83%) core functions (i.e., functions 

observed in all euphotic samples, see Methods) while the majority of FNET1 functions 

(n=441) are non-core (85%) (see Supplementary Tables 5, 6), highlighting both essential and 

adaptive ecological functions associated with carbon export. Top VIP scoring functions in 

the FNET1 subnetwork are membrane proteins such as ABC-type sugar transporters 

(Extended data Fig. 3c). This subnetwork also contains many functions specific to the 

Synechococcus accessory photosynthetic apparatus (e.g., relating to phycobilisomes, 

phycocyanin and phycoerythrin; see Supplementary Table 5), which is consistent with the 

major role of this genus for carbon export inferred from the prokaryotic subnetwork (Fig. 

2b). In addition, functions related to carbohydrates, inorganic ion transport and metabolism, 

as well as transcription, are also well represented (Fig. 4), suggesting overall a subnetwork 

of functions dedicated to photosynthesis and growth.

The FNET2 subnetwork contains several functions encoded by genes taxonomically 

assigned to Candidatus pelagibacter and Prochlorococcus, known as occupying similar 

oceanic regions as Synechococcus, but overall most of its relative abundance (74%) is 

taxonomically unclassified (Extended data Fig. 3e). Top VIP scoring functions in FNET2 are 

also membrane proteins and ABC-type sugar transporters, as well as functions involved in 

carbohydrate breakdown such as a chitinase (Extended data Fig. 3c). These features 

highlight the potential roles of bacteria in the formation and degradation of marine 

aggregates37. Strikingly, 77% and 58%, of OGs with a VIP score > 1 in FNET1 and FNET2, 

respectively, are functionally uncharacterized38,39 (Fig. 4), pointing to the strong need for 

future molecular work to explore these functions (see Supplementary Tables 5, 6).

The relevance of the identified bacterial functions to predict carbon export was also 

confirmed by PLS regression (Extended data Fig. 3d). As proposed for plankton 

communities, the functional subnetworks predict 41% and 48% of carbon export variability 

(LOOCV, R2 = 0.41 and 0.48 for FNET1 and FNET2, respectively) with a minimal number 

of functions (Fig. 4, 123 and 54 functions with a VIP score > 1 for FNET1 and FNET2, 

respectively). Finally, higher predictive power was obtained using subnetworks of viral 

protein clusters (Extended data Fig. 4a, 4b and 4c), predicting 55% and 89% of carbon 

export variability (LOOCV R2 = 0.55 and 0.89 for VNET1 and VNET2, respectively; 

Extended data Fig. 4d, Supplementary Tables 7, 8), suggesting the key role, of not only 

bacteria, but also their phages in processes sustaining carbon export at a global level.

Discussion

In this report we reveal the potential contribution of unexpected components of plankton 

communities, and confirm the importance of prokaryotes and viruses in the correlating with 

carbon export in the nutrient-depleted oligotrophic ocean. Carbon export at 150 m has been 
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estimated from particle size distribution in a global dataset, but should be taken with caution, 

as the estimates do not account for particle composition. In addition, these export estimates 

evaluate how much carbon leaves the euphotic zone, but they are not related and should not 

be extrapolated to sequestration, which occurs after remineralisation, deeper in the water 

column, and over longer timescales. Nonetheless, the use of the UVP was the only realistic 

method to evaluate carbon flux over the 3 years expedition because deployment of sediment 

traps at all stations would have been impossible. While our findings are consistent with the 

numerous previous studies that have highlighted the central role of copepods and diatoms in 

carbon export14,15,17-19, they place them in an ecosystem context and reveal hypothetical 

processes correlating with the intensity of export, such as parasitism and predation. For 

example, while viruses are commonly assumed to lyse cells and maintain fixed organic 

carbon in surface waters, thereby reducing the intensity of the biological carbon pump40, 

there are hints that viral lysis may increase carbon export through the production of colloidal 

particles and aggregate formation41. Our current study suggests that these latter roles may be 

more ubiquitous than currently appreciated. The importance of aggregation and cell 

stickiness as inferred from gene network analysis should be further explored mechanistically 

to investigate the biological significance of these findings.

The future evolution of the oceanic carbon sink remains uncertain because of poorly 

constrained processes, particularly those associated with the biological pump. With current 

trends in climate change, the size and biodiversity of phytoplankton are predicted to 

decrease globally42,43. Furthermore, in spite of the potential importance of viruses revealed 

in this study, they have largely been ignored because of limitations in sampling technologies. 

Consequently, as oligotrophic gyres expand and global mean NPP decreases44, the field is 

currently unable to predict the consequences for carbon export from the ocean’s euphotic 

zone. By pinpointing key lineages and key microbial functions that correlate with carbon 

export at 150 m in these areas, this study provides a framework to address this critical 

bottleneck. However, the associations presented do not necessarily suggest a causal effect on 

carbon export, which will require further investigation.

One of the grand challenges in the life sciences is to link genes to ecosystems45, based on 

the posit that genes can have predictable ecological footprints at community and ecosystem 

levels46-48. The Tara Oceans data sets have allowed us to predict as much as 89% of the 

variability in carbon export from the oligotrophic surface ocean with just a small number of 

genes, largely with unknown functions, encoded by prokaryotes and viruses. These findings 

can be used as a basis to include biological complexity and guide experimental work 

designed to inform climate modeling of the global carbon cycle. Such statistical analyses, 

scaling from gene-to-ecosystems, may open the way to the development of a new conceptual 

and methodological framework to better understand the mechanisms underpinning key 

ecological processes.

Methods

Environmental data collection

From 2009-2013, environmental data (Supplementary Table 9) were collected across all 

major oceanic provinces in the context of the Tara Oceans expeditions20. Sampling stations 
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were selected to represent distinct marine ecosystems at a global scale49. Note that Southern 

Ocean stations were not examined herein because they were ranked as outliers due to their 

exceptional environmental characteristics and biota23,24. Environmental data were obtained 

from vertical profiles of a sampling package50,51. It consisted of conductivity and 

temperature sensors, chlorophyll and CDOM fluorometers, light transmissometer (Wetlabs 

C-star 25cm), a backscatter sensor (WetLabs ECO BB), a nitrate sensor (SATLANTIC 

ISUS) and a Hydroptic Underwater Vision Profiler (UVP; Hydroptics52. Nitrate and 

fluorescence to chlorophyll concentrations as well as salinity were calibrated from water 

samples collected with Niskin bottle50. Net Primary Production (NPP) data were extracted 

from 8 day composites of the Vertically Generalized Production Model (VGPM53) at the 

week of sampling54. Carbon fluxes and carbon export, corresponding to the carbon flux at 

150 m, were estimated based on particle concentration and size distributions obtained from 

the UVP51 and details are presented below.

From particle size distribution to carbon export estimation

Previous research has shown that the distribution of particle size follows a power law over 

the μm to the mm size range3,55,56. This Junge-type distribution translates into the following 

mathematical equation, whose parameters can be retrieved from UVP images:

(eq. 1)

where d is the particle diameter, and exponent k is defined as the slope of the number 

spectrum when equation (2) is log transformed. This slope is commonly used as a descriptor 

of the shape of the aggregate size distribution.

The carbon-based particle size approach relies on the assumption that the total carbon flux 

of particles (F) corresponds to the flux spectrum integrated over all particle sizes:

(eq. 2)

where n(d) is the particle size spectrum, i.e., equation (1), and m(d) is the mass (here carbon 

content) of a spherical particle described as:

(eq. 3)

where α = πρ/6, ρ is the average density of the particle, and w(d) is the settling rate 

calculated using Stokes Law:

(eq. 4)

where β =g(ρ – ρ0)(18νρ0)−1, g is the gravitational acceleration, ρ0 the fluid density, and ν 
the kinematic viscosity.
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In addition, mass and settling rates of particles, m(d) and w(d), respectively, are often 

described as power law functions of their diameter obtained by fitting observed data, m(d). 

w(d) = AdB. The particles carbon flux can then be estimated using an approximation of Eq. 

2 over a finite number (x) of small logarithmic intervals for diameter d spanning from 250 

μm to 1.5 mm (particles <250 μm and >1.5 mm are not considered, consistent with the 

method presented by Guidi et al., [2008]57) such as

(eq. 5)

where A=12.5±3.40 and B=3.81 ± 0.70 have been estimated using a global dataset that 

compared particle fluxes in sediment traps and particle size distributions from the UVP 

images.

Genomic data collection

For the sake of consistency between all available datasets from the Tara Oceans expeditions, 

we considered subsets of the data recently published in Science23-25. In brief, one sample 

corresponds to data collected at one depth (surface (SRF) or Deep Cholorophyll Maximum 

(DCM) determined from the profile of chlorophyll fluorometer) and at one station. To study 

the eukaryotic community in our current manuscript, we selected stations at which we had 

environmental data and carbon export estimated at 150 m with the UVP and all size 

fractions. Consequently a subset of 33 stations (corresponding to 56 samples) has been 

created compared to the 47 stations analyzed in de Vargas et al. [2015]. A similar procedure 

has been applied to the prokaryotic and viral datasets, reducing the Sunagawa et al. [2015] 

prokaryotic dataset to a subset of 104 samples from 62 stations and the Brum et al. [2015] 

viral dataset into a subset of 37 samples from 22 stations (See Supplementary Table 10). In 

addition a detailed table is provided summarizing which samples (depth and station) are 

available for each domain (Supplementary Table 11).

Eukaryotic taxa profiling

Photic-zone eukaryotic plankton diversity has been investigated through millions of 

environmental Illumina reads. Sequences of the 18S ribosomal RNA gene V9 region were 

obtained by PCR amplification and a stringent quality-check pipeline has been applied to 

remove potential chimera or rare sequences (details on data cleaning in de Vargas et al. 
[2015]24). For 47 stations, and if possible at two depths (SRF and DCM), eukaryotic 

communities were sampled in the piconano- (0.8-5 μm), micro- (20-180 μm) and meso-

plankton (180-2000 μm) fractions (a detailed list of these samples is given in Supplementary 

Table 12). In the framework of the carbon export study, sequences from all size fractions 

were pooled in order to get the most accurate and statistically reliable dataset of the 

eukaryotic community. The 2.3 million eukaryotic ribotypes were assigned to known 

eukaryotic taxonomic entities by global alignment to a curated database24. To get the most 

accurate vision of the eukaryotic community, sequences showing less than 97% identity with 

reference sequences were excluded. The final eukaryotic relative abundance matrix used in 

our analyses included 1,750 lineages (taxonomic assignation has been performed using a last 
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common ancestor methodology, and had thus been performed down to species level when 

possible) in 56 samples from 33 stations. Pooled abundance (number of V9 sequences) of 

each lineage has been normalized by the total sum of sequences in each sample.

Prokaryotic taxa profiling

To investigate the prokaryotic lineages, communities were sampled in the pico-plankton. 

Both filter sizes have been used along the Tara Oceans transect: up to station #52, 

prokaryotic fractions correspond to a 0.22-1.6 μm size fraction, and from station #56, 

prokaryotic fractions correspond to a 0.22-3 μm size fraction. Prokaryotic taxonomic 

profiling was performed using 16S rRNA gene tags directly identified in Illumina-sequenced 

metagenomes (mitags) as described in Logares et al., [2014]58. 16S mitags were mapped to 

cluster centroids of taxonomically annotated 16S reference sequences from the SILVA 

database59 (release 115: SSU Ref NR 99) that had been clustered at 97% sequence identity 

using USEARCH v6.0.30760. 16S mitag counts were normalized by the total reads count in 

each sample (further details in Sunagawa et al. [2015]23). The photic-zone prokaryotic 

relative abundance matrix used in our analyses included 3,253,962 mitags corresponding to 

1,328 genera in 104 samples from 62 stations.

Prokaryotic functional profiling

For each prokaryotic sample, gene relative abundance profiles were generated by mapping 

reads to the OM-RGC using the MOCAT pipeline61. The relative abundance of each 

reference gene was calculated as gene length-normalized base counts. And functional 

abundances were calculated as the sum of the relative abundances of these reference genes, 

annotated to OG functional groups. In our analyses, we used the subset of the OM-RGC that 

was annotated to Bacteria or Archaea (24.4 M genes). Using a rarefied (to 33 M inserts) 

gene count table, an OG was considered to be part of the ocean microbial core if at least one 

insert from each sample was mapped to a gene annotated to that OG. For further details on 

the prokaryotic profiling please refer to Sunagawa et al. [2015]23. The final prokaryotic 

functional relative abundance matrix used in our analyses included 37,832 OGs or functions 

in 104 samples from 62 stations. Genes from functions of FNET1 and FNET2 subnetworks 

were taxonomically annotated using a modified dual BLAST-based last common ancestor 

(2bLCA) approach62. We used RAPsearch263 rather than BLAST to efficiently process the 

large data volume and a database of non-redundant protein sequences from UniProt (version: 

UniRef_2013_07) and eukaryotic transcriptome data not represented in UniRef (see 

Supplementary Table 5, 6, for full annotations).

Enumeration of prokaryotes by flow cytometry

For prokaryote enumeration by flow cytometry, three aliquots of 1 ml of seawater (pre-

filtered by 200-μm mesh) were collected from both SRF and DCM. The samples were fixed 

immediately using cold 25% glutaraldehyde (final concentration 0.125%), left in the dark for 

10 min at room temperature, flash-frozen and kept in liquid nitrogen on board and then 

stored at −80°C on land. Two subsamples were taken to separate counts of heterotrophic 

prokaryotes (not shown herein) and phototrophic picoplankton. For heterotrophic prokaryote 

determination, 400 μl of sample was added to a diluted SYTO-13 (Molecular Probes Inc., 

Eugene, OR, USA) stock (10:1) at 2.5 μmol l−1 final concentration, left for about 10 min in 
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the dark to complete the staining and run in the flow cytometer. We used a FacsCalibur 

(Becton & Dickinson) flow cytometer equipped with a 15 mW Argon-ion laser (488 nm 

emission). At least 30,000 events were acquired for each subsample (usually 100,000 

events). Fluorescent beads (1 μm, Fluoresbrite carboxylate microspheres, Polysciences Inc., 

Warrington, PA) were added at a known density as internal standards. The bead standard 

concentration was determined by epifluorescence microscopy. For phototrophic 

picoplankton, we used the same procedure as for heterotrophic prokaryote, but without 

addition of SYTO-13. Data analysis was performed with FlowJo software (Tree Star, Inc.).

Profiling of viral populations

In order to associate viruses to carbon export we used viral populations as defined in Brum 
et al. [2015]25 using a set of 43 Tara Oceans viromes. Briefly, viral populations were defined 

as large contigs (>10 predicted genes and >10 kb) identified as most likely originating from 

bacterial or archaeal viruses. These 6,322 contigs remained and were then clustered into 

populations if they shared more than 80% of their genes at >95% nucleotide identity. This 

resulted in 5,477 ‘populations’ from the 6,322 contigs, where as many as 12 contigs were 

included per population. For each population, the longest contig was chosen as the ‘seed’ 

representative sequence. The relative abundance of each population was computed by 

mapping all quality-controlled reads to the set of 5,477 non-redundant populations 

(considering only mapping quality scores greater than 1) with Bowtie264 and if more than 

75% of the reference sequence was covered by virome reads. The relative abundance of a 

population in a sample was computed as the number of base pairs recruited to the contig 

normalized to the total number of base pairs available in the virome and the contig length if 

more than 75% of the reference sequence was covered by virome reads, and set to 0 

otherwise (see Brum et al. [2015]25 for further details). The final viral population abundance 

matrix used in our analyses included 5,291 viral population contigs in 37 samples from 22 

stations.

Viral host predictions

The longest contig in a population was defined as the seed sequence and considered the best 

estimate of that population’s origin. These seed sequences were used to assess taxonomic 

affiliation of each viral population. Cases where >50% of the genes were affiliated to a 

specific reference genome from RefSeq Virus (based on a BLASTp comparison with 

thresholds of 50 for bit score and 10−5 for e-value) with an identity percentage of at least 

75% (at the protein sequence level) were considered as confident affiliations to the 

corresponding reference virus. The viral population host group was then estimated based on 

these confident affiliations (see Supplementary Table 13 for host affiliation of viral 

population contigs associated to carbon export).

Viral protein clusters

Viral protein clusters (PCs) correspond to ORFs initially mapped to existing clusters (POV, 

GOS and phage genomes). The remaining, unmapped ORFs were self-clustered, using cd-hit 

as described in Brum et al. [2015]25. Only PCs with more than two ORFs were considered 

bona fide and were used for subsequent analyses. To compute PC relative abundance for 

statistical analyses, reads were mapped back to predicted ORFs in the contigs dataset using 
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Mosaik as described in Brum et al. [2015]25. Read counts to PCs were normalized by 

sequencing depth of each virome. Importantly, we restricted our analyses to 4,294 PCs 

associated to the 277 viral population contigs significantly associated to carbon export in 37 

samples from 22 stations.

Sparse Partial Least Squares analysis

In order to directly associate eukaryotic lineages to carbon export and other environmental 

traits (Fig. 1b), we used sparse Partial Least Square (sPLS65 as implemented in the R 

package mixOmics29. We applied the sPLS in regression mode, which will model a causal 

relationship between the lineages and the environmental traits, i.e. PLS will predict 

environmental traits (e.g. carbon export) from lineage abundances. This approach enabled us 

to identify high correlations (see Supplementary Table 1) between certain lineages and 

carbon export but without taking into account the global structure of the planktonic 

community.

Co-occurrence network model analysis

Weighted correlation network analysis (WGCNA) was performed to delineate feature 

(lineages, viral populations, PCs or functions) subnetworks based on their relative 

abundance66,67. A signed adjacency measure for each pair of features was calculated by 

raising the absolute value of their Pearson correlation coefficient to the power of a parameter 

p. The default value p=6 was used for each global network, except for the Prokaryotic 

functional network where p had to be lowered to 4 in order to optimize the scale-free 

topology network fit. Indeed, this power allows the weighted correlation network to show a 

scale free topology where key nodes are highly connected with others. The obtained 

adjacency matrix was then used to calculate the topological overlap measure (TOM), which 

for each pair of features, taking into account their weighted pairwise correlation (direct 

relationships) and their weighted correlations with other features in the network (indirect 

relationships). For identifying subnetworks a hierarchical clustering was performed using a 

distance based on the TOM measure. This resulted in the definition of several subnetworks, 

each represented by its first principal component.

These characteristic components play a key role in weighted correlation network analysis. 

On the one hand, the closeness of each feature to its cluster, referred to as the subnetwork 

membership, is measured by correlating its relative abundance with the first principal 

component of the subnetwork. On the other hand, association between the subnetworks and 

a given trait is measured by the pairwise Pearson correlation coefficients between the 

considered environmental trait and their respective principal components. A similar protocol 

has been performed on the eukaryotic relative abundance matrix, the prokaryotic relative 

abundance matrix, the prokaryotic functions relative abundance matrix and the viral 

population and PC relative abundance matrices. All procedures were applied on Hellinger-

transformed log-scaled abundances. Noteworthy, the protocol is not sensitive to copy 

number variation as observed across different eukaryotic species, because the association 

between two species relies on a correlation score between relative abundance measurements. 

Computations were carried out using the R package WGCNA33.
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Given the nature of the eukaryotic dataset (three distinct size fractions), the sampling 

process may lead to the loss of size fractions. In particular, samples #1, #3, #17, #37, #39, 

#43, #48, #53, #54, #55, #66 are eventually biases by such a loss (Supplementary Table 12). 

A complementary WGCNA analysis was performed with addition of these samples to 

evaluate the robustness of our protocol to missing size fractions. The composition of the 

eukaryotic subnetwork built with an extended dataset (i.e., 67 samples from 37 stations for 

which size fractions were missing in 11 samples) was compared to the subnetwork as 

presented above (i.e., 56 samples from 33 stations). Both subnetworks shown an overlap of 

75% of lineage, whereas four of the top five VIP lineages with the extended dataset (see 

Extended data Fig. 5 for details) can be found in the top six VIP lineages of the above 

subnetwork (Supplementary Table 2), emphasizing highly similar results and a small 

sensitivity to size fraction loss.

Extraction of subnetworks related to carbon export

For each subnetwork (called modules within WGCNA) extracted from each global network, 

pairwise Pearson correlation coefficients between the subnetwork principal components and 

the carbon export estimation was computed, as well as corresponding p-values corrected for 

multiple testing using the Benjamini & Hochberg FDR procedure. The subnetworks showing 

the highest correlation scores are of interest and were investigated. One subnetwork (49 

nodes) was significant within the eukaryotic network; one subnetwork (109 nodes) was 

significant for the prokaryotic network; one subnetwork (277 nodes) was significant within 

the virus network; two subnetworks (441 and 220 nodes) were significant within the 

prokaryotic functional network, and two subnetworks (1,879 and 2,147 nodes) were 

significant within the viral PCs network.

Partial Least Squares regression

In addition to the network analyses, we asked whether the identified subnetworks can be 

used as predictors for the carbon export estimations. To answer this question, we used Partial 

least squares (PLS) regression, which is a dimensionality-reduction method that aims at 

determining predictor combinations with maximum covariance with the response variable. 

The identified combinations, called latent variables, are used to predict the response 

variable. The predictive power of the model is assessed by correlating the predicted vector 

with the measured values. The significance of the prediction power was evaluated by 

permuting the data 10,000 times. For each permutation, a PLS model was built to predict the 

randomized response variable and a Pearson correlation was calculated between the 

permuted response variable and in Leave-One-Out Cross-Validation (LOOCV) predicted 

values. The 10,000 random correlations are compared to the performance of the PLS model 

that were used to predict the true response variable. In addition, the predictors were ranked 

according to their value importance in projection (VIP)68. The VIP measure of a predictor 

estimates its contribution in the PLS regression. The predictors having high VIP values are 

assumed important for the PLS prediction of the response variable. The VIP values of the 

prokaryotic functional subnetworks are provided in Supplementary Tables 5, 6. For the sake 

of illustration, only lineages or functions with VIP > 168 are discussed and pictured in Figure 

2 and 4. Our computations were carried out using the R package pls69. All programs are 

available under GPL Licence.
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Subnetwork representations

Nodes of the subnetworks represent either lineages (eukaryotic, prokaryotic or viral) or 

functions (prokaryotic or viral). Subnetworks related to the carbon export have been 

represented in two distinct formats. Scatter plots represent each nodes based on their 

Pearson correlation to the carbon export and their respective node centrality within the 

subnetwork. The latter has been recomputed using significant Spearman correlations above 

0.3 (>0.9 for viral PCs) as edges, this is done for visualization purposes since WGCNA 

subnetworks (based on the Topology Overlap Measure (TOM) between nodes) are hyper-

connected. Size representation of nodes are proportional to the VIP score after PLS. The 

hiveplots depict the same subnetworks by focusing on two main features: x-axis and y-axis 

depict nodes of subnetworks ranked by their VIP scores and Pearson correlation to the 

carbon export, respectively.
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Extended Data

Extended Data Figure 1: 
Overview of analytical methods used in the manuscript. a, Depiction of a standard pairwise 

analysis that considers a sequence relative abundance matrix for s samples (s × OTUs 

(Operational Taxonomic Units)) and its corresponding environmental matrix (s × p 

(parameters)). sPLS results emphasize OTU(s) that are the most correlated to environmental 

parameters. b, Depiction of a graph-based approach. Using only a relative abundance matrix 

(s × OTUs), WGCNA builds a graph where nodes are OTUs and edges represent significant 
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co-occurrence. Co-occurrence scores between nodes are weights allocated to corresponding 

edges. These weights are magnified by a power-law function until the graph becomes scale-

free. The graph is then decomposed within subnetworks (groups of OTUs) that are analyzed 

separately. One subnetwork (group of OTUs) is considered of interest when its topology is 

related to the trait of interest; in the current case carbon export. For each subnetwork (for 

instance the subnetwork related to carbon export), each OTU is spread within a feature space 

that plots each OTU based on its membership to the subnetwork (x-axis) and its correlation 

to the environmental trait of interest (i.e., carbon export). A good regression of all OTUs 

emphasizes the putative relation of the subnetwork topology and the carbon export trait (i.e. 
the more a given OTU defines the subnetwork topology, the more it is correlated to carbon 

export). c, Depiction of the machine learning (PLS) approach that was applied following 

subnetwork identification and selection. Greater VIP scores (i.e. larger circles) emphasized 

most important OTUs. VIP refers to Variable Importance in Projection and reflects the 

relative predictive power of a given OTU. OTUs with VIP score greater than 1 are 

considered as important in the predictive model and their selection do not alter the overall 

predictive power.
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Extended Data Figure 2: 
Lineage ecological subnetworks associated to environmental parameters and their structures 

correlating to carbon export. a,b,c, Global ecological networks were built using the 

WGCNA methodology (see methods) and correlated to classical oceanographic parameters 

as well as carbon export (estimated at 150 m from particles size distribution and abundance). 

Each domain-specific global network is decomposed into smaller coherent subnetworks 

(depicted by distinct colours on the y-axis) and their eigen vector is correlated to all 

environmental parameters. Similar to a correlation at the network scale, this approach 
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directly links subnetworks to environmental parameters (i.e. the more the taxa contribute to 

the subnetwork structure, the more their abundance are correlated to the parameter). a, A 

single eukaryotic subnetwork (n=58, N=1′870) is strongly associated to carbon export 

(Pearson cor. 0.81, p = 5e−15). b, A single prokaryotic subnetwork (n=109, N=1′527) is 

moderately associated to carbon export (Pearson cor. 0.32, p = 9e−03). c, A single viral 

subnetwork (n=277, N=5′476) is strongly associated to carbon export (Pearson cor. 0.93, p 
= 2e−15). d,e,f, The WGCNA approach directly links subnetworks to environmental 

parameters, i.e. the more the features contribute to the subnetwork structure (topology), the 

more their abundance are correlated to the parameter. This measure allows to identify 

subnetworks for which the overall structure, summarized as the eigen vector of the 

subnetwork, is related to the carbon export. d, The eukaryotic subnetwork structure 

correlates to carbon export (Pearson cor. = 0.87, p = 5e−16). e, The prokaryotic subnetwork 

structure correlates to carbon export (Pearson cor. = 0.47, p = 5e−06). f, The viral population 

subnetwork structure correlates to carbon export (Pearson cor. = 0.88, p = 6e−93). g,h,i, 
Lineage subnetworks predict carbon export. PLS regression was used to predict carbon 

export using lineage abundances in selected subnetworks. LOOCV was performed and VIP 

scores computed for each lineage. g, The eukaryotic subnetwork predicts carbon export with 

a R2 of 0.69. h, The prokaryotic subnetwork predicts carbon export with a R2 of 0.60. i, The 

viral population subnetwork predicts carbon export with a R2 of 0.89. j, k, l, Synechococcus 
(rather than Prochlorococcus) absolute cell counts correlate well to carbon export. j, 
Prochlorococcus cell counts estimated by flow cytometry do not correlate to carbon export 

(mean carbon flux at 150m, Pearson cor. = −0.13, p = 0.27). k, Synechococcus cell counts 

estimated by flow cytometry correlate significantly to carbon export (Pearson cor. = 0.64, p 
= 4.0e−10). l, Synechococcus / Prochlorococcus cell counts ratio correlates significantly to 

carbon export (Pearson cor. = 0.54, p = 4.0e−07).
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Extended Data Figure 3: 
Prokaryotic function subnetworks associated to environmental parameters and their structure 

correlate to carbon export. a,b,c Global ecological networks were built for the prokaryotic 

functions using the WGCNA methodology (see methods) and correlated to classical 

oceanographic parameters as well as carbon export. a, Two bacterial functional subnetworks 

(n=441 and n=220 N=37′832) are associated to carbon export (Pearson cor. 0.54, p = 1e−07 

and 0.42, p = 1e−04). b, The WGCNA approach directly links subnetworks to environmental 

parameters, i.e. the more the features contribute to the subnetwork structure (topology), the 
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more their abundance are correlated to the parameter. This measure allows to identify 

subnetworks for which the overall structure, summarized as the eigen vector of the 

subnetwork, is related to the carbon export. The bacterial function subnetwork structures 

correlate to carbon export (FNET1 Pearson cor. = 0.68, p = 3e−61, and FNET2 Pearson cor. 

= 0.47, p = 6e−13). c, Two functional subnetworks (light and dark green, FNET1 (n=220) 

and FNET2 (n=441), respectively) are significantly associated with carbon export (FNET1: 

Pearson cor. 0.42, p = 4e−09 and FNET2: 0.54, p = 7e−06). The highest VIP score functions 

from top to bottom correspond to red dots from right to left. d, PLS regression was used to 

predict carbon export using abundances of functions (OGs) in selected subnetworks. 

LOOCV was performed and VIP scores computed for each function. Light green 

subnetwork (FNET1) functions predict carbon export with a R2 of 0.41. Dark green 

subnetwork (FNET2) functions predict carbon export with a R2 of 0.48. e, Cumulative 

abundance of genus-level taxonomic annotations of genes encoding functions from FNET1 

and FNET2 subnetworks and Bacterial function subnetworks predict carbon export. Genes 

contributing to the relative abundance of FNET1 and FNET2 subnetwork functions were 

taxonomically annotated by homology searches against a non-redundant gene reference 

database using a last common ancestor (LCA) approach (see methods).
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Extended Data Figure 4: 
Viral protein cluster networks reveal potential marker genes for carbon export prediction at 

global scale. a, A viral protein cluster (PC) network was built using abundances of PCs 

predicted from viral population contigs associated to carbon export (Fig. 2c) using the 

WGCNA methodology (see methods) and correlated to classical oceanographic parameters. 

Two viral PC subnetworks (n=1′879 and n=2′147, N=4′678, light and dark orange, VNET1 

and VNET2, left and right panel respectively) are strongly associated to carbon export 

(VNET1: Pearson cor. 0.75, p = 3e−07 and VNET2: 0.91, p = 3e−14). b, The viral PC 
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subnetwork structures correlate to carbon export (VNET1 Pearson cor. = 0.91, p < 1e−200, 

and VNET2 Pearson cor. = 0.96, p < 1e−200). c, Size of dots is proportional to the VIP score 

computed for the PLS regression. d, Viral PC subnetworks predict carbon export. PLS 

regression was used to predict carbon export using abundances of viral protein clusters (PCs) 

in selected subnetworks. LOOCV was performed and VIP scores computed for each PC. 

Light orange subnetwork (VNET1, left panel) PCs predict carbon export with a R2 of 0.55. 

Dark orange subnetwork (VNET2, right panel) PCs predict carbon export with a R2 of 0.89.

Extended Data Figure 5: 
WGCNA and PLS regression analyses for the full Eukaryotic dataset. a, A single eukaryotic 

subnetwork (n=58, is strongly associated to carbon export (Pearson cor. 0.79, p = 3e−14). b, 
The eukaryotic subnetwork structure correlates to carbon export (Pearson cor. = 0.94, p = 

4e−27). c, The eukaryotic subnetwork predicts carbon export with a R2 of 0.76. d, Lineages 

with the highest VIP score (dots size is proportional to the VIP score in the scatter plot) in 

the PLS are depicted as red dots corresponding to two rhizaria (Collodaria), one copepod 

(Euchaeta), and three dinophyceae (Noctiluca scintillans, Gonyaulax polygramma and 
Gonyaulax sp. (clade 4)).
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Figure 1. Global view of carbon fluxes along the Tara Oceans circumnavigation route and 
associated eukaryotic lineages
a, Carbon flux in mg.m−2.d−1 and carbon export at 150 m estimated from particles size 

distribution and abundance measured with the Underwater Vision Profiler 5 (UVP5). 

Stations at which environmental data are available (Supplementary Table 9) are depicted by 

white dots. Stations at which eukaryotic samples are available are colored in red 

(Supplementary Tables 10 and 12). b, Eukaryotic lineages associated to carbon export as 

revealed by standard methods for regression-based modeling (sPLS analysis). Correlations 

between lineages and environmental parameters are depicted as a clustered heatmap and 

lineages with a correlation to carbon export higher than 0.2 are highlighted (detailed results 

in Supplementary Table 1).
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Figure 2. Ecological networks reveal key lineages associated with carbon export at 150 m at 
global scale
The relative abundances of taxa in selected subnetworks were used to estimate carbon export 

and to identify key lineages associated with the process. a, The selected eukaryotic 

subnetwork (n=49, see Supplementary Table 2) can predict carbon export with high accuracy 

(PLS regression, LOOCV, R2=0.69, see Extended data Fig. 2g). Lineages with the highest 

VIP score (dots size is proportional to the VIP score in the scatter plot) in the PLS are 

depicted as red dots corresponding to three Rhizaria (Collodaria, Collozoum inerme and 
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Sticholonche sp.), one copepod (Oithona sp.), one siphonophore (Lilyopsis), three 

Dinophyceae and one ciliate (Spirotontonia turbinata). b, The selected prokaryotic 

subnetwork (n=109, see Supplementary Table 3) can predict carbon export with good 

accuracy (PLS regression, LOOCV, R2=0.60, see Extended data Fig. 2h). c, The selected 

viral population subnetwork (n=277, see Supplementary Table 4) can predict carbon export 

with high accuracy (PLS regression, LOOCV, R2=0.89, see Extended data Fig. 2i). Two viral 

populations with a high VIP score (red dots) are predicted as Synechococcus phages (see 

Supplementary Table 4).
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Figure 3. Integrated plankton community network built from eukaryotic, prokaryotic and viral 
subnetworks related to carbon export at 150 m
Major lineages were selected within the three subnetworks (VIP > 1) (Supplementary Tables 

2, 3 and 4). Co-occurrences between all lineages of interest were extracted, if present, from a 

previously established global co-occurrence network (see methods). Only lineages discussed 

within the study are pinpointed. The resulting graph is composed of 329 nodes, 467 edges, 

with a diameter of 7, and average weighted degree of 4.6.
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Figure 4. Key bacterial functional categories associated with carbon export at 150 m at global 
scale
A bacterial functional network was built based on Orthologous Group/Gene (OG) relative 

abundances using the WGCNA methodology (see Methods) and correlated to classical 

oceanographic parameters. Two functional subnetworks (FNET1 (n=220) and FNET2 

(n=441), respectively, Extended data Fig. 3a) are significantly associated with carbon export 

(FNET1: Pearson cor. 0.42, p = 4e−09 and FNET2: 0.54, p = 7e−06, see Extended data Fig. 

3b). Higher functional categories are depicted for functions with a VIP score >1 (PLS 

regression, LOOCV, FNET1 R2=0.41 and FNET2 R2=0.48, see Extended data Fig. 3d) in 

both subnetworks.

Guidi et al. Page 32

Nature. Author manuscript; available in PMC 2016 September 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Carbon export and plankton community composition
	Plankton community networks associated with carbon export
	Gene functions associated with carbon export
	Discussion
	Methods
	Environmental data collection
	From particle size distribution to carbon export estimation
	Genomic data collection
	Eukaryotic taxa profiling
	Prokaryotic taxa profiling
	Prokaryotic functional profiling
	Enumeration of prokaryotes by flow cytometry
	Profiling of viral populations
	Viral host predictions
	Viral protein clusters
	Sparse Partial Least Squares analysis
	Co-occurrence network model analysis
	Extraction of subnetworks related to carbon export
	Partial Least Squares regression
	Subnetwork representations

	Extended Data
	Extended Data Figure 1:
	Extended Data Figure 2:
	Extended Data Figure 3:
	Extended Data Figure 4:
	Extended Data Figure 5:
	Author Contributions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

