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Statistics…. some vocabulary 

→ Doing statistics… for what ?

- descriptive statistics : describe the characteristics or features of a dataset (sample/population)
- distribution, skewness, outliers
- mean/median/mode
- variability (range/variance/standard deviation)
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Statistics…. some vocabulary 

→ Doing statistics… for what ?

- descriptive statistics : describe the characteristics or features of a dataset (sample/population)
- distribution, skewness, outliers
- mean/median/mode
- variability (range/variance/standard deviation)

- inferential statistics : draw meaningful conclusion about the dataset, and possibly generalize to 
a larger population 

- hypothesis testing
- modeling relationship (linear/logistic regression…)
- probability estimation
- confidence interval
- …
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Statistics…. some vocabulary 

→ Doing inferential statistics… considering what ?

- univariate statistics : analyze only one (‘uni’) variable at a time
→ for descriptive or inferential purposes

- multivariate statistics : analyze more than one (‘multi’) variables at a time

→ Latent dimension = one variable or a combination of variables
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Statistics…. some vocabulary 

→ Doing multivariate inferential statistics… on what ? …  on normalized data

- Normalization is a process designed to identify and correct “technical/experimental” biases without 
removing biological signal.
Sources of bias: batch effect (lab condition, platform…),  sequencing depth, sample quantity… 

- within-sample normalization : 
e.g. normalize expression of all genes within sample A

- between-sample normalization : 
e.g. normalize expression of all genes between samples
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Statistics…. some vocabulary 

→ Doing multivariate inferential statistics… on what ? …  on normalized data

- Normalization strategies : many exist, none of them is better than another, but 
guidelines/comparisons exist, some are omic dependant…

Misra BB. Data normalization strategies in 
metabolomics: Current challenges, approaches, 
and tools. European Journal of Mass 
Spectrometry. 2020;26(3):165-174. 
doi:10.1177/1469066720918446

https://doi.org/10.1177/1469066720918446
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Statistics…. some vocabulary 

→ Doing multivariate inferential statistics… on what ? …  on normalized data

- Normalization strategies : many exist, none of them is better than another, but 
guidelines/comparisons exist, some are omic dependant, and should not be used automatically!

Hicks, S.C., Irizarry, R.A. quantro: a 
data-driven approach to guide the 
choice of an appropriate normalization 
method. Genome Biol 16, 117 (2015). 
doi:10.1186/s13059-015-0679-0
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Statistics…. some vocabulary 

→ Doing multivariate inferential statistics on normalized data without missing values.

- missing values imputation is not mandatory, depends on downstream analysis and you can also remove 
corresponding samples/variables.

- if necessary, imputation strategy should be chosen carefully :

- missing completely at random (MCAR) : 
→ caused by external factor independent from observed data 

- missing at random (MAR)
→ caused by external fully known dependant factor, and so can be controlled

- not missing at random (NMAR) 
→ caused by external unknown dependant factor
→ due to the observed value (e.g. technical detection limits)
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Statistics…. some vocabulary 

→ Doing multivariate inferential statistics on normalized data without missing values.

- MCAR - MAR/NMAR - MAR/NMAR ?

observed values

imputed values
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Statistics…. some vocabulary 

- Unsupervised learning 
→ find hidden patterns, analyze and organize unlabelled samples
e.g. clustering, dimension reduction, density estimation

- Supervised learning 
→ use labelled samples and previous outputs to guess outcomes in advance 
(predictive model)
e.g. classification task (categorical/numerical), regression (numerical)

- Semi-supervised learning
→ only some labelled samples (not available, too expensive…) 
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Statistics…. some vocabulary 

- Matrix representation of data

p

n
n

p

→ e.g. value of gene i for sample j

Or transposed, a n✕p matrix instead of a p✕n matrix !
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Statistics…. some vocabulary 

- Variance: indicator of spread for one variable xi 

with

- Covariance: indicator of relationships for two variables x  and y 

- Correlation: standardized covariance between -1 and 1

with

x   value

x   x   

x   

y    y    

y    
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Curse of dimensionality

P : number of features 
(genes, proteins, genetic 
variants…)

N : number of observations 
(samples, cells, 
nucleotides…)
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Selection vs Extraction

- Feature selection
→ determine a smaller set of features minimizing (relevant) information loss 
e.g. filtering methods (correlation), recursive elimination, regularization…

- Feature extraction
→ combine the input features into another set of variables in a linear or 
non-linear way:  y1 = α1*x1 + α2*x2 + α3*x3 + ….
e.g. PCA, PCoA, ICA… 

+ regularization for sparse methods : sPCA, sNMF (i.e. some αi forced to 0)
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Dimensionality reduction : PCA

Problem: n samples, p quantitative variables (e.g. peptides, proteins, metabolites, mRNA, . . .)

Visualize pairwise relations by scatter plots But when p is large ?

→ Need to reduce this large number of dimensions (p) to a smaller number of relevant variables, i.e 
variables which carry most of the information (or variance) of a dataset and without redundancy

p=2
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PCA - Principle

Principle: Find orthogonal axes (Principal Components) on which one can project sample to obtain a 
comprehensible space of reduced dimension.

x1    

x2    

x8    

PC1    

PC2    

PC3    

PC4    
x1    

x2    

Projection is a distorting operation ⇒ we begin by looking for an axis on which the cloud of points is 
distorting the less possible during the projection.

 PC1 = α1*x1 + α2*x2 + α3*x3 + ….
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PCA - Goal

Main goal : explore the structure of the dataset to better understand the proximity between samples and 
detect possible bias → often used as a quality control step

- synthetize information and visualize points in a reduced dimension space

- describe links between variables and which ones explain most variability

- highlight homogeneous subgroups linked to biological effect

- detect aberrant samples
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PCA - Computing

Computing PCA: 

- Standardize the range of continuous initial variables 
→ data homoscedasticity : the variance must be independent of the mean

- Compute the covariance matrix A

- Calculate the eigenvalues 𝝀 and eigenvectors for the covariance matrix

- Sort eigenvalues 𝝀 and their corresponding eigenvectors

- Recast the data along the principal component axes

|A-λ·I| =0→ solve

A
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PCA - Plots

- each dot is a sample

- new coordinate system (PC1, PC2…)

- red arrows = contribution of each initial 
variable (old coordinate system)

- several 2D (2 PCs) plots : PC1/PC2
     PC1/PC3
     PC2/PC3

…

PCA biplot 
score plot + loading plot
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PCA - Components

- contribution of each initial variable to the PCi :  ⍺, 𝜷, ɣ…are coefficients also called "loadings"

- some variables contribute in the same direction to some PCs (e.g. waist and height for PC1),
but opposite to others (PC5)

- PC are orthogonal: no information redundancy between PC →reduce the “useful” representation space 
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PCA - Biological interpretation

- PC plots can highlight new groups

- Example: PC3 seems very associated to gender

→ PC3 loadings indicate that a combination of height 
and cholesterol separates men / women

Be careful with visual proximity between 2 samples
→ depends on selected PC
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PCA - Variable correlations in loading plots

The correlation between two variables is represented as :

- an acute angle (cos(α) > 0) if it is positive

- an obtuse angle (cos(θ) < 0) if it is negative

- a right angle (cos(β)≈0) if it is near zero
= loadings
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PCA - Scree plot

- Each PC explains some part of the total variance of the dataset

- This amount is proportional to the corresponding eigenvalue

- PC are ordered by decreasing eigenvalue (hence explained variance)
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PCA - PCs number

- Several criteria to select the optimal subset of PC, without loosing too much information

- Proportion of total variance: keep PC such that the cumulative variance is above threshold

- Average eigenvalue criteria: keep PC which have eigenvalue larger than

- mean eigenvalue (Kaiser rule) or

- 70% of mean eigenvalue (Jottclife rule)



Statistics … introduction 28

Extraction + Selection

- Feature selection
→ determine a smaller set of features minimizing (relevant) information loss 
e.g. filtering methods (correlation), recursive elimination, regularization

- Feature extraction
→ combine the input features into another set of variables in a linear or 
non-linear way :  y1 = α1*x1 + α2*x2 + α3*x3 + ….
e.g. PCA, PCoA, ICA… 

+ regularization for sparse methods : sPCA, sNMF (i.e. some αi forced to 0)
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- Linear combination of two functions f1 and f2 for a vector w : 

→ adjusting the penalty     (regularization parameter) give more/less weight to the regularizer f2
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Sparse PCA : regularization

- Common regularization strategies  : Lasso (L1), Ridge (L2) and Elastic Net (L1+L2) 

- The simplest regularizer f2 is the L0-norm         

with g(w) the objective/loss function to minimize and

- Alternative regularizer f2 is the L1-norm       with         

- To learn a more “simpler”/”comprehensive” model and avoid overfitting or inconsistency situations

→ to minimize f(w) → minimize g(w) and limit the cost of the regularizer (ie limit w0 )

y = w1*x1 + w2*x2 + w3*x3 + w4*x4 + w5*x5                  y = 0*x1 + w2*x2 + 0*x3 + 0*x4 + w5*x5
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Sparse PCA principle

PC1 : y1 = w1*x1 + w2*x2 + w3*x3 + ….
- Objective to PCA: find linear combinations to maximize variability of projected data

g(w) function to minimize

regularizer (L2 + L1)
(Elastic-Net as proposed by Zou et al. (2006))

PCA

Sparse PCA

PC1 = 0*x1 + w2*x2 + 0*x3 + 0*x4 + w5*x5

If PCA formulation are equivalents, sparse PCA formulations are not.
Guerra-Urzola, R. et al. A Guide for Sparse PCA: Model Comparison and Applications. Psychometrika (2021).
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Statistics…. some vocabulary 

- Unsupervised learning 
→ find hidden patterns, analyze and organize unlabelled samples
e.g. clustering, dimension reduction, density estimation

- Supervised learning 
→ use labelled samples and previous outputs to guess outcomes in advance 
(predictive model)
e.g. classification task (categorical/numerical), regression (numerical)

- Semi-supervised learning
→ only some labelled samples (not available, too expensive…) 
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Differential analysis - Principle

Principle: Compare 2 or more sample groups (experimental conditions, treatment, time…)
e.g. healthy VS sick, old VS young…

Objective: detect differentially expressed (DE) genes/proteins/… between groups
→ analysis based on statistical tests (t-test…)
→ a gene/protein/… is “DE” if the difference is statistically significant between 2 groups, ie 
greater than any natural random variation

Specificities of omics:
- few individuals
- many variables → many tests
- overdispersion problem (high variance)
- numerous possible bias
- omic specific data distribution

→ such analysis approaches exist for each omic
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Differential analysis - Volcano Plot

”A gene/protein/… is declared differentially expressed if the observed difference between two conditions is 
statistically significant at 5% and the fold change is higher than 2”

Statistical significance
-log10(p-value)

Biological significance
log2FC

up-regulateddown-regulated

log2FC = 1 → FC=2
log2FC = -1 → FC=0.5

p-valueBH=0.05
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Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not. 

A lot of sampling possibilities are available to perform Cross-Validation (CV). The most well-known is K-fold CV:
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One way to avoid overfitting is by preforming regularization.

Regularization consists in adding more constraints to the model in order to reduce the space of solutions.

Multiple regularizations are available such as Ridge or LASSO regularizations. 

Here, we choose to regularize the model by forcing it to have a low number of variables.

https://towardsdatascience.com/cross-validation-k-fold-vs-monte-carlo-e54df2fc179b
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OVERFITTING

CV was also used here so set an hyper-parameter: «the number of variables to keep in the model».

Here apparently, keeping only 2 variables leads to the best model with the variable «Age», which was expected.

Best model
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Overfitting can be handled with regularization.

Cross-Validation can both help to:
1. realize if the model overfits or not 
2. tune the hyper-parameters (associated with the regularization).

Classical mistake to avoid with Cross-Validation: «Double Dipping».

 The whole point of Cross-Validation is to keep the train and the test sets independant from each other.

This is no longer the case when for example: 
1. Normalization accross subjects is performed on the whole data-set.
2. Variable selection is performed on the whole data-set (ex: differentially expressed genes)

Figure taken from https://typeset.io/resources/top-reasons-for-research-paper-rejection/

https://typeset.io/resources/top-reasons-for-research-paper-rejection/
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“Multi-omics” citations

https://app.dimensions.ai/discover/publication (8th Jan. 2023 : 132,863,611 referenced publications)

Rise in popularity

https://app.dimensions.ai/discover/publication
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Rise in popularity

“Multi-omics” citations

https://app.dimensions.ai/discover/publication (23th Aug. 2023 : 138,395,868 referenced publications)

“Single-cell” citations

https://app.dimensions.ai/discover/publication
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Omics… which ones ?

Ritchie, M., Holzinger, E., Li, R. et al. Methods of integrating data to uncover genotype–phenotype interactions. Nat Rev Genet 16, 85–97 (2015).
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But also ?

Other data ? 

- clinical data
- imaging data (full data or extracted characteristics)
- new omics fields :  fluxomics, ionomics, microbiomics, glycomics…
- biological knowledge : DNA/protein, protein/protein interactions

→ a priori in model definition/construction

https://www.statcan.gc.ca/en/data-science/network/image-segmentation
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Integration: why ?

- Disease subtyping and classification

- Biomarkers prediction : diagnostic, disease drivers

- Deep insights into disease biology

Vasileios et al (2018). Drug and disease signature integration identifies synergistic combinations in glioblastoma. Nature Communications. 9.
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Integration: how ?
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Integration: how ?
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Integration with semantic web

Life science: 1600+ reference databases
→ integrating heterogeneous data 
and knowledge is (badly) needed!

Semantic Web = framework for:
-  integrating data and knowledge
-  querying
-  reasoning
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Integration with semantic web



Omics integration - General aspects 44

Integration strategies

Picard M. et al. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 2021.
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Integration strategies

Picard M. et al. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 2021.

Concatenate every omics datasets into a single large matrix.

Pros :
- conceptually simple
- easy implementation
- directly uncovers interactions between omics

Cons : 
- technically complicated (noisy and high dimensional concatenated matrix)
- requires to have omics on the same samples or same variables
- imbalanced omics datasets
- ignores the specific data distribution of each omics
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Integration strategies

Picard M. et al. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 2021.

Transform independently each omics dataset into a simpler representation 
before integration.

Pros :
- new representation is less dimensional and less noisy 
- less heterogeneity between omics
- classical approaches can be used on combined representation

Cons : 
- choice of the transformation method is not trivial 
- requires correspondence between variables in the new representation 
- information loss during transformation
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Integration strategies

Jointly integrate the multi-omics datasets without prior transformation.

Pros :
- reduce information loss
- discover the joint inter-omics structure
- highlight the complementary information in each omics

Cons : 
- could require robust pre-processing step to reduce heterogeneity
- common latent space assumption

Picard M. et al. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 2021.



Omics integration - General aspects 48

Integration strategies

Picard M. et al. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 2021.

Apply machine learning models separately on each omics dataset and then 
combine results.

Pros :
- avoid (numerous) challenges of direct omics integration
- use tools designed specifically for each omics
- classical approaches can be used to combine results

Cons : 
- cannot capture inter-omics interactions
- complementarity information between omics is not exploited
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Integration strategies

Picard M. et al. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 2021.

Include prior knowledge of omics relationships.

Pros :
- reduced complexity (sequential integration)
- integrate external knowledge

Cons : 
- less generic than previous strategies
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Integration approaches

Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics Data Integration, Interpretation, and Its Application. Bioinform Biol Insights. 2020

Semantic web
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Limits of integration approaches

Integration approaches are not magic!

You will still need to:

- carefully check design and confounding factors
- perform specific data pre-processing for each omic
- impute missing values* (different meaning → different strategy)
- choose your integration strategy based on your objective and your data (ex. matching between 

omics) → still no standard pipelines
- some omics bring more noise than answers
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Web-applications

PaintOmics (T. Liu et al. PaintOmics 4: new tools for the integrative analysis of multi-omics 
datasets supported by multiple pathway databases, Nucleic Acids Research, Volume 50, Issue W1, 
2022.)

3Omics (K. Tien-Chueh et al. 3Omics: A web-based systems biology tool for analysis, integration 
and visualization of human transcriptomic, proteomic and metabolomic data. BMC systems biology. 7. 64, 
2013)

XCMSOnline (EM. Forsberg et al. Data processing, multi-omic pathway mapping, and 
metabolite activity analysis using XCMS Online. Nat Protoc. 13(4):633-651, 2018)

Galaxy-P project (Galaxy-P Project. galaxyp.org.)

OmicsNet (G. Zhou et al., OmicsNet 2.0: a web-based platform for multi-omics integration and 
network visual analytics, Nucleic Acids Research, Volume 50, Issue W1, 5 , 2022.)

…

http://galaxyp.org/
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