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Statistics.... some vocabulary

— Doing statistics... for what ?

- descriptive statistics : describe the characteristics or features of a dataset (sample/population)
- distribution, skewness, outliers
- mean/median/mode

- variability (range/variance/standard deviation) “
y normal y uniform "
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Statistics.... some vocabulary

— Doing statistics... for what ?

- descriptive statistics : describe the characteristics or features of a dataset (sample/population)
- distribution, skewness, outliers
- mean/median/mode
- variability (range/variance/standard deviation)

- inferential statistics : draw meaningful conclusion about the dataset, and possibly generalize to
a larger population
- hypothesis testing
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Statistics.... some vocabulary

— Doing statistics... for what ?

- descriptive statistics : describe the characteristics or features of a dataset (sample/population)
- distribution, skewness, outliers
- mean/median/mode
- variability (range/variance/standard deviation)

- inferential statistics : draw meaningful conclusion about the dataset, and possibly generalize to
a larger population
- hypothesis testing
- modeling relationship (linear/logistic regression...)
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Statistics.... some vocabulary

— Doing statistics... for what ?

- descriptive statistics : describe the characteristics or features of a dataset (sample/population)
- distribution, skewness, outliers
- mean/median/mode
- variability (range/variance/standard deviation)

- inferential statistics : draw meaningful conclusion about the dataset, and possibly generalize to
a larger population
- hypothesis testing —
modeling relationship (linear/logistic regression...) “ /
probability estimation
confidence interval

-------------
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Statistics.... some vocabulary

— Doing inferential statistics... considering what ?

- univariate statistics : analyze only one (‘uni’) variable at a time
— for descriptive or inferential purposes expression

BCL6

- multivariate statistics : analyze more than one (‘multi’) variables at a time

Latent dimension 2

Latent dimension 1 — Latent dimension = one variable or a combination of variables

Patient rank
by BCL6 expression
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Statistics.... some vocabulary

— Doing multivariate inferential statistics... on what ? ... on normalized data

- Normalization is a process designed to identify and correct “technical/experimental” biases without

removing biological signal.
Sources of bias: batch effect (lab condition, platform...), sequencing depth, sample quantity...

Sample A Reads
- within-sample normalization : - n - .

. . e Ty ettt |7~ T -
e.g. normalize expression of all genes within sample A .?_ff_.!_;i‘j:jjj}_ﬁ'_{.‘:‘._‘?&':fffff}};.
C O O— S +—1

-.lllﬂll g

. g o L

- between-sample normalization : e S

e.g. hormalize expression of all genes between samples

l||l|,||,||"'mlI'II.Iﬂ'nIlnl'I|I|IIIII*'I'II"|'|IH||'||II||I||I > .
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Statistics.... some vocabulary

— Doing multivariate inferential statistics... on what ? ...

on normalized data

- Normalization strategies : many exist, none of them is better than another, but
guidelines/comparisons exist, some are omic dependant...

Misra BB. Data normalization strategies in
metabolomics: Current challenges, approaches,
and tools. European Journal of Mass
Spectrometry. 2020;26(3):165-174.
doi:10.1177/1469066720918446

Normalization Approaches

!

Sample-Based

+ Intrinsic factors * Internal Standard

- Ploidy/ DNA - Isotopologues
- RNA - Stable-isotope labelled
- Protein cells/ extracts
- Metabolite(s) - Spike-in standards
- Retention index
Cell- based markers.
Count
Volume
Markers *+  QC-based
- Pooled QCs
Weight-based - SRM -based QCs
FW - Chemical mixture
DW based QCs
* Others
- Specific gravity
- Osmolality
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Data-Based

Statistical Methods
Log

Median

Average/ mean
Standard

VSN

RUV-R

SVR

EigenMS
Quantile

PQN

Cubic spline

For Batch effects
LOESS

ComBat

® %

T L e C L

Analytical Platform- based
TIC

Sum of Peak Area

mTIC

Software Tools
MetabR
MetaboDrift
NormalizeMets
NormalyzerDE
NOREVA
MetaboGroupS
PseudoQC
SERRF
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Statistics.... some vocabulary

— Doing multivariate inferential statistics... on what ? ... on normalized data

- Normalization strategies : many exist, none of them is better than another, but
guidelines/comparisons exist, some are omic dependant, and should not be used automatically!

Targeted changes Targeted changes Global changes
Small variability within groups, Large variability within groups, Small variability within groups,
a Small variability across groups b smal variability across groups C Large variability across groups
8 ] prEs——
e ° ] Nasarnkar et o e (55621336, ne1d)
.2 « | - —— Liver (GSE29721, n=10)
- 2 | o = Liver (GSE 14668, n=20)
8 s q Liver (GSE39841, nw10)
= 3
> & £o
3 o 3
3 i3 i I?
z 3
a 8 3
r-] < o
(=}
- . g S e
-5 o 5 10 15 6 8 10 12 14 16
rlogTransformation counts logz PM values
Raw data alone cannot
E l detect difference
§ Small technical variability; Large technical .val_'iability or Gl_ob:::l_technlca! Global biological
I3 no global changes batch effects within groups; variability or batch variability across
no global changes effects across groups groups
Hicks, S.C., Irizarry, R.A. quantro: a S l l l l
data-driven approach to guide the P Use quantile Use quantile Use quantile Do not use quantile
. . i ) & normalization normalization normalization normalization
choice of an approprlate normalization ] (but not necessary)
H quantro will detect global differences due to both

method. Genome Biol 16, 117 (2015).
doi:10.1186/s13059-015-0679-0

technical and biological variation

Statistics ... introduction 10



Statistics.... some vocabulary

— Doing multivariate inferential statistics on normalized data without missing values.

- missing values imputation is not mandatory, depends on downstream analysis and you can also remove
corresponding samples/variables.
- if necessary, imputation strategy should be chosen carefully :

*® o
® o
o
=
LY}
. g

- missing completely at random (MCAR) :
— caused by external factor independent from observed data

- missing at random (MAR)
— caused by external fully known dependant factor, and so can be controlled

- not missing at random (NMAR)
— caused by external unknown dependant factor
— due to the observed value (e.g. technical detection limits)
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Statistics.... some vocabulary

— Doing multivariate inferential statistics on normalized data without missing values.

[ observed values

imputed values

Counts
Counts
Counts

4 -2 0 2 B -2 0
Sample 1 Sample 1

- MAR/NMAR @ - MAR/NMAR ? X

2 -
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Statistics.... some vocabulary

Unsupervised learning

- Unsupervised learning t clusstars
— find hidden patterns, analyze and organize unlabelled samples 0
. . . . . . . X2
e.g. clustering, dimension reduction, density estimation
X4
- Supervised learning Sistvised eaneg

— use labelled samples and previous outputs to guess outcomes in advance
(predictive model)

e.g. classification task (categorical/numerical), regression (numerical)

- Semi-supervised learning

— only some labelled samples (not available, too expensive...) X4

Statistics ... introduction 13



Statistics.... some vocabulary

- Matrix representation of data

N Samples

IR

Il

= Gene expression
matrix

Lo ]
Genes
|

/\ Or transposed, a nX p matrix instead of a pXn matrix !

n
X1l s+ Xin
X ‘5 X
X — 21 2n p
-Xpl .« o . Xpn-

xjj : value of variable i
for individual j.
— e.g. value of gene i for sample j
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Statistics.... some vocabulary

- Variance: indicator of spread for one variable x. ghuap THEE ¥ B B 6
1 n 5 1 n Low var. e
Var(X) = — Z(x,' —X) with x= — in X value 3
7 = n
l—l l:l
- Covariance: indicator of relationships for two variables x and y 4 %  TRT:
| ++ |+ 7
n T YA ++ +
C X.Y)= i:l(xl_x)(yl_y) y + y -+
OV( ) ) — | +F  Positively Negatively + o
n related | related
. . . l X s X o
- Correlation: standardized covariance between -1 and 1 A
+ .+
- Lt
Cov(X,Y) . Y72 i(x—x)2 y F++
Cor(X,Y) = ——2~ with oy = | T Notrelated
Ox Oy n ++

l -
X
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Curse of dimensionality
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P : number of features
(genes, proteins, genetic
variants...)

N : number of observations

(samples, cells,
nucleotides...)
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Selection vs Extraction

Feature selection

— determine a smaller set of features minimizing (relevant) information loss

e.g. filtering methods (correlation), recursive elimination, regularization...

Feature extraction

— combine the input features into another set of variables in a linear or
non-linear way: y, = a,*x, + 0,"X, + 0,"X, + ...

e.g. PCA, PCoA, ICA...
+ regularization for sparse methods : sSPCA, sNMF (i.e. some a. forced to 0)

Statistics ... introduction 17



Dimensionality reduction : PCA

Problem: n samples, p quantitative variables (e.g. peptides, proteins, metabolites, mRNA, . . .)

Visualize pairwise relations by scatter plots But when p is large ?

p=2

variable 2

© \“'f/
il o (

variable 1

~

— Need to reduce this large number of dimensions (p) to a smaller number of relevant variables, i.e
variables which carry most of the information (or variance) of a dataset and without redundancy

Statistics ... introduction 18



PCA - Principle

Principle: Find orthogonal axes (Principal Components) on which one can project sample to obtain a
comprehensible space of reduced dimension.

PC1

= * + * + * +
PC1 a X, + 0%, + O X, +

Projection is a distorting operation = we begin by looking for an axis on which the cloud of points is
distorting the less possible during the projection.

Statistics ... introduction 19



PCA - Goal

Main goal : explore the structure of the dataset to better understand the proximity between samples and

detect possible bias — often used as a quality control step

- synthetize information and visualize points in a reduced dimension space

- describe links between variables and which ones explain most variability

- highlight homogeneous subgroups linked to biological effect

- detect aberrant samples

Scree plot Variables - PCA

6.6

-

Eigenvalue
Dim2 (18.4%)

|
00
Dim1 (41.2%)

PC2 (9.8%)
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PCA - Computing

Computing PCA:

- Standardize the range of continuous initial variables A o
— data homoscedasticity : the variance must be independent of the mean o

var(z) cov(z,y) cov(z,2)

- Compute the covariance matrix A A |cov(z,y) wvar(y) cov(y, 2)
cov(z, z) cou(y,z) war(z)

- Calculate the eigenvalues 4 and eigenvectors for the covariance matrix — solve |A-\1| =0

- Sort eigenvalues 4 and their corresponding eigenvectors

- Recast the data along the principal component axes
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PCA - Plots

o PCA biplot

- each dot is a sample score plot + loading plot

- new coordinate system (PC,, PC,...)

- red arrows = contribution of each initial
variable (old coordinate system)

- several 2D (2 PCs) plots : PC./PC,

standardized PC2 (26.2% explained var.’

PC,/PC, 2 0 5
|:>C2/|:>C3 standardized PC1 (38.3% explained var.)
PC1
height helght _— weight
pPC2 height \
weight weight \\ PC3

: waisf et Statistics ... introduction 22
waist PC2



PCA - Components

- contribution of each initial variable to the PC.: a, 3, y...are coefficients also called "loadings"

- some variables contribute in the same direction to some PCs (e.g. waist and height for PC,),
but opposite to others (PC,)

- PC are orthogonal: no information redundancy between PC —reduce the “useful” representation space

PC; = a; - age + f; - chol + y; - height + §; - waist + ¢; - weight

s
®©
> 2- g
3 . PC1 PC2 PC3 PC4 PC5
£
L 1-
a
3
. var
\o g 05-
g o M
N = I II . chol
-
13 2 0o-ull .l i - L B reignt
% FiI¥ 9 n-
© waist
O .2~
% . weight
g 0.5
c -3-
8 ' . '
7 5 o B B SRR R

standardized PC1 (38.3% explained var.) Statistics ... introduction 23



PCA - Biological interpretation

- PC plots can highlight new groups . groups

¢ female

© * male

- Example: PC, seems very associated to gender

standardized PC3 (18.0% explained var.)

— PC, loadings indicate that a combination of height
and cholesterol separates men / women e

2 0 2
standardized PC1 (38.4% explained var.)

PC3

var

. age

B o
/\ Be careful with visual proximity between 2 samples I g
— depends on selected PC I weight
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PCA - Variable correlations in loading plots

Dim2 (18.4%)

Variables - PCA
1
1.0- :
Pole.vault 1

XU500m

Javeline

%@.jump

10 05 0.0 05 10
Dim1 (41.2%)

The correlation between two variables is represented as :

cos2 = loadings

' 0V7

- 0.6

5

0.
i 0.4

an acute angle (cos(a) > 0) if it is positive

an obtuse angle (cos(8) < 0) if it is negative

a right angle (cos(B)=0) if it is near zero

Dimension 2

05

00

10

1.0 05 0.0 0.5 1.0

Dimension 1
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PCA - Scree plot

(26.2% explained var.'

- Each PC explains some part of the total variance of the dataset
- This amount is proportional to the corresponding eigenvalue

- PC are ordered by decreasing eigenvalue (hence explained vz

oportion of variance

20

Eigenvalues 03-
- 8
c
©
=
€ 02-
|
€
< 3
| | .
01-
0.5
. - _
8 ' ‘ ' ' eigenvalue
eigenval_1 eigenval_2 eigenval 3 eigenval_4 eigenval §
eigenvalue

Considering PC1 & PC2 explains

63% of the total vairance o
Statistics

... introduction 26



PCA - PCs number

- Several criteria to select the optimal subset of PC, without loosing too much information

- Proportion of total variance: keep PC such that the cumulative variance is above threshold

- Average eigenvalue criteria: keep PC which have eigenvalue larger than

mean eigenvalue (Kaiser rule) or

70% of mean eigenvalue (Jottclife rule)

Scree plot
6.6

Eigenvalue

1 2 3 4 5 6 78 9 10
Dimensions
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Extraction + Selection

Feature selection

— determine a smaller set of features minimizing (relevant) information loss

e.g. filtering methods (correlation), recursive elimination, regularization

Feature extraction

— combine the input features into another set of variables in a linear or
non-linear way : y, = a *x, + a,", + a,*x, + ...

e.g. PCA, PCoA, ICA...
+ regularization for sparse methods : sPCA, sNMF (i.e. some a. forced to 0)

Statistics ... introduction 28



Sparse PCA : regularization

- To learn a more “simpler’/’comprehensive” model and avoid overfitting or inconsistency situations

- Linear combination of two functions f, and f, for a vector w : f(w) = fi(w) + A fa(w)

— adjusting the penalty A\ (regularization parameter) give more/less weight to the regularizer f,

- The simplest regularizer f, is the LO-norm  f(w) = g(w) + Al|w||,
with g(w) the objective/loss function to minimize and ||w||, = number of non-zero entries of w
— to minimize f(w) — minimize g(w) and limit the cost of the regularizer (ie limit w )
Y= WK F WX, F WK WK, W Ty = 0+ WL+ 0% + 0FX, + WX
N
- Alternative regularizer f, is the L1-norm f(w) = g(w) + Af|w|; with [w], = ) Jwa

n=0

- Common regularization strategies : Lasso (L1), Ridge (L2) and Elastic Net (L1+L2)
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Sparse PCA principle

- Objective to PCA: find linear combinations to maximize variability of projected data

. = * + * + * +
PC, 1y, =W, ™, + W™, + W™, + ...

_ 2
PCA arg max Var(Xw;) |:> ar‘%}%m”X — XWP' HF

w;: | [w;][3=1 e J
Y
g(w) function to minimize

K K
2 12
Sparse PCA ) ar‘;gvnrl,mHX —XWP' | + Z A|we|® + Z AWl
3 k=1 k=1
N J
Y
regularizer (L2 + L1) PC, = 0%, + w,™x, + 0%, + 07, + W™

(Elastic-Net as proposed by Zou et al. (2006))

/\ If PCA formulation are equivalents, sparse PCA formulations are not.

Guerra-Urzola, R. et al. A Guide for Sparse PCA: Model Comparison and Applications. Psychometrika (2021).
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Statistics.... some vocabulary

Unsupervised learning

- Unsupervised learning t et
— find hidden patterns, analyze and organize unlabelled samples 0
e.g. clustering, dimension reduction, density estimation " OoO
o
, —
- Supervised learning Stietvisad g

— use labelled samples and previous outputs to guess outcomes in advance
(predictive model)

e.g. classification task (categorical/numerical), regression (numerical)

Loeendary

- Semi-supervised learning

— only some labelled samples (not available, too expensive...) X4
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Differential analysis - Principle

Principle: Compare 2 or more sample groups (experimental conditions, treatment, time...)
e.g. healthy VS sick, old VS young...

Objective: detect differentially expressed (DE) genes/proteins/... between groups
— analysis based on statistical tests (t-test...)
— a gene/protein/... is “DE” if the difference is statistically significant between 2 groups, ie
greater than any natural random variation

Specificities of omics:
- few individuals
- many variables — many tests
- overdispersion problem (high variance)
- numerous possible bias
- omic specific data distribution

— such analysis approaches exist for each omic Statistics .. introduction 32



Differential analysis - Volcano Plot

"A gene/protein/... is declared differentially expressed if the observed difference between two conditions is

statistically significant at 5% and the fold change is higher than 2”
up-regulated

15

Statistical significance
-log, ,(p-value)

-log10(Pvalue)

p-valueg, =0.05

down-regulated

®  Down
Not Sig
e Up

10 5 |°gFCO 5
Biological significance log,FC =1— FC=2 Statistics
log,FC log,FC = -1— FC=0.5
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Overfitting, Cross-Validation & Regularization

I T Y T T

Intercept Age Nb_sisters Neighbor’weight (kg) Subject’s Height (cm)

Subj1 1 5 1 1 90
Subj2 1 10 2 50 125
Subj3 1 15 1 80 160
Subj4 1 20 2 90 180
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I T Y T T
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Overfitting, Cross-Validation & Regularization
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Here, we are in “high-dimension” as n < p. The problem is ill-posed (more unknown parameters than equations).

=>» It is possible to find an infinite number of solutions:

Solution 1 43.75
Solution 2 -7456.25

s | Joan | Jest

6.25 8.4e-22  1491.891
Go against the idea that age is the 1000 [251.375 2506.25 1.1e-19 95817179

best explanatory variable.

—




Overfitting, Cross-Validation & Regularization

I T Y T T

Intercept Age Nb_sisters Neighbor’weight (kg) Subject’s Height (cm)

TEST T subj1 1 5 1 1 90
~ sz 1 10 2 s 125
TRAIN Subj3 1 15 1 80 160

| Subjs 1 20 2 90 180

. .. 2
We are looking for By, B2, B3 and B, that minimizes Jrpaiy = Xieo(Vi — B1Xi1 + BaXiz + BaXiz + PaXia) -

Similarly, we can define Jrgsr = (y1 — Bix11 + Box1p + B3xiz + Baxq1s)?.
OVERFITTING

Here, we are in “high-dimension” as n < p. The problem is ill-posed (more unknown parameters than equations).

=>» It is possible to find an infinite number of solutions:

Solution 1 43.75
Solution 2 -7456.25

] train

8.4e-22
1e-19

1491.891
Go against the idea that age is the 95817179

best explanatory variable.

—

-1000 /251.375 2506.25
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Figure extracted from https://towardsdatascience.com/cross-validation-k-fold-vs-monte-carlo-e54df2fc179b
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Overfitting, Cross-Validation & Regularization

Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.

Figure extracted from https://towardsdatascience.com/cross-validation-k-fold-vs-monte-carlo-e54df2fc179b
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Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.

A lot of sampling possibilities are available to perform Cross-Validation (CV). The most well-known is K-fold CV:
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Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.

A lot of sampling possibilities are available to perform Cross-Validation (CV). The most well-known is K-fold CV:
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One way to avoid overfitting is by preforming regularization.
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One way to avoid overfitting is by preforming regularization.

Regularization consists in adding more constraints to the model in order to reduce the space of solutions.

Figure extracted from https://towardsdatascience.com/cross-validation-k-fold-vs-monte-carlo-e54df2fc179b
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Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.

A lot of sampling possibilities are available to perform Cross-Validation (CV). The most well-known is K-fold CV:
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One way to avoid overfitting is by preforming regularization.
Regularization consists in adding more constraints to the model in order to reduce the space of solutions.

Multiple regularizations are available such as Ridge or LASSO regularizations.
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Overfitting, Cross-Validation & Regularization

Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.

A lot of sampling possibilities are available to perform Cross-Validation (CV). The most well-known is K-fold CV:

Training Sets Test Set

|

Iteration 1 I » Erron

Iteration 2 > Error,

Iteration 3 - » Errory | Error

v =
’\TMU’!
ot

Error;

Iteration 4 | » Error,

Iteration 5 | » Errors

One way to avoid overfitting is by preforming regularization.
Regularization consists in adding more constraints to the model in order to reduce the space of solutions.
Multiple regularizations are available such as Ridge or LASSO regularizations.

Here, we choose to regularize the model by forcing it to have a low number of variables.

Figure extracted from https://towardsdatascience.com/cross-validation-k-fold-vs-monte-carlo-e54df2fc179b
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Overfitting, Cross-Validation & Regularization
So let us consider all models with either 2 or 3 variables (with at least the intercept each time).
By doing so, we add respectively 2 (ex: f, = 0 and 5, = 0) or 1 constraint (idem).

For all these possible models, let us compute Jrrainy 2nd Jrest:

Variables considered JTRAIN JTEST

(x1,%5) 3.750000e+01 100

(x1,X3) 2.403846e+01 959.8081

(x1,%4) 1.512500e+03 4900
(x1,%5,%x3) 1.831567e-22 203.0625
(x1,%5,%4) 6.464166e-24 225

(x1,%3,%4) 8.664767e-22  1491.8906
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So let us consider all models with either 2 or 3 variables (with at least the intercept each time).
By doing so, we add respectively 2 (ex: f, = 0 and 5, = 0) or 1 constraint (idem).

For all these possible models, let us compute Jrrainy 2nd Jrest:

Variables considered JTRAIN JTEST

(1, x7) 3.750000e+01 100 OVERFITTING
(1, %3) 2.403846e+01 959.8081
(x1,%4) 1 512500e+03

1.831567e-22
6.464166e-24
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Overfitting, Cross-Validation & Regularization

So let us consider all models with either 2 or 3 variables (with at least the intercept each time).

By doing so, we add respectively 2 (ex: f, = 0 and 5, = 0) or 1 constraint (idem).

For all these possible models, let us compute Jrrainy 2nd Jrest:

Variables considered

(x1; xZ)
(x4, %3)

(%1, %4)

Best model

3.750000e+01 OVERFITTING

2.403846e+01 959.8081
1.512500e+03

1.831567e-22
6.464166e-24
8.664767e-22

CV was also used here so set an hyper-parameter: «the number of variables to keep in the model».

Here apparently, keeping only 2 variables leads to the best model with the variable «Age», which was expected.
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Figure taken from https://typeset.io/resources/top-reasons-for-research-paper-rejection/
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Overfitting can be handled with regularization.

Figure taken from https://typeset.io/resources/top-reasons-for-research-paper-rejection/
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Cross-Validation can both help to:
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Overfitting can be handled with regularization.

Cross-Validation can both help to:
1. realize if the model overfits or not

Figure taken from https://typeset.io/resources/top-reasons-for-research-paper-rejection/
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Overfitting, Cross-Validation & Regularization

Overfitting can be handled with regularization.

Cross-Validation can both help to:
1. realize if the model overfits or not
2. tune the hyper-parameters (associated with the regularization).

Figure taken from https://typeset.io/resources/top-reasons-for-research-paper-rejection/
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Overfitting, Cross-Validation & Regularization

Overfitting can be handled with regularization.

Cross-Validation can both help to:
1. realize if the model overfits or not
2. tune the hyper-parameters (associated with the regularization).

Figure taken from https://typeset.io/resources/top-reasons-for-research-paper-rejection/
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Overfitting, Cross-Validation & Regularization

Overfitting can be handled with regularization.

Cross-Validation can both help to:
1. realize if the model overfits or not
2. tune the hyper-parameters (associated with the regularization).

Classical mistake to avoid with Cross-Validation: «Double Dipping».

Figure taken from https://typeset.io/resources/top-reasons-for-research-paper-rejection/
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Overfitting, Cross-Validation & Regularization

Overfitting can be handled with regularization.

Cross-Validation can both help to:
1. realize if the model overfits or not
2. tune the hyper-parameters (associated with the regularization).

Classical mistake to avoid with Cross-Validation: «Double Dipping».

=» The whole point of Cross-Validation is to keep the train and the test sets independant from each other.

Figure taken from https://typeset.io/resources/top-reasons-for-research-paper-rejection/
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Overfitting, Cross-Validation & Regularization

Overfitting can be handled with regularization.

Cross-Validation can both help to:
1. realize if the model overfits or not
2. tune the hyper-parameters (associated with the regularization).

Classical mistake to avoid with Cross-Validation: «Double Dipping».

=» The whole point of Cross-Validation is to keep the train and the test sets independant from each other.

This is no longer the case when for example:

Figure taken from https://typeset.io/resources/top-reasons-for-research-paper-rejection/
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Overfitting, Cross-Validation & Regularization

Overfitting can be handled with regularization.

Cross-Validation can both help to:
1. realize if the model overfits or not
2. tune the hyper-parameters (associated with the regularization).

Classical mistake to avoid with Cross-Validation: «Double Dipping».

=>» The whole point of Cross-Validation is to keep the train and the test sets independant from each other.

This is no longer the case when for example:
1. Normalization accross subjects is performed on the whole data-set.

Figure taken from https://typeset.io/resources/top-reasons-for-research-paper-rejection/
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Overfitting, Cross-Validation & Regularization

Overfitting can be handled with regularization.

Cross-Validation can both help to:
1. realize if the model overfits or not
2. tune the hyper-parameters (associated with the regularization).

Classical mistake to avoid with Cross-Validation: «Double Dipping».

=>» The whole point of Cross-Validation is to keep the train and the test sets independant from each other.

This is no longer the case when for example:
1. Normalization accross subjects is performed on the whole data-set.

2. Variable selection is performed on the whole data-set (ex: differentially expressed genes)

Figure taken from https://typeset.io/resources/top-reasons-for-research-paper-rejection/
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Rise in popularity

“Multi-omics” citations

Citations Citations (Mean)
208K 13.90
5,000
i
2,500
0
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

-8~ Publications (total)

@ RESEARCH CATEGORIES

31 Biological Sciences

32 Biomedical and Clinical Sciences

3102 Bioinformatics and Computational Biology
3105 Genetics

3211 Oncology and Carcinogenesis

https://app.dimensions.ai/discover/publication (8th Jan. 2023

: 132,863,611 referenced publications)
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“Multi-omics” citations

Citations Citations (Mean)
208K 13.90
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-8~ Publications (total)

@ RESEARCH CATEGORIES

31 Biological Sciences
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2022 2023

“Single-cell” citations

Citations Citations (Mean)
287 M 35.29
60,000
40,000 .
®
20,000

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

-8~ Publications (total)

@ RESEARCH CATEGORIES ~

32 Biomedical and Clinical Sciences
31 Biological Sciences 2
3101 Biochemistry and Cell Biology

3211 Oncology and Carcinogenesis

40 Engineering

https://app.dimensions.ai/discover/publication (23th Aug. 2023 : 138,395,868 referenced publications)
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Omics... which ones ?

* SNP
* CNV
* LOH

* Genomic
rearrangement

* Rare variant

* DNA methylation

* Histone modification

* Chromatin
accessibility

* TF binding

* Gene expression
e Alternative splicing
* Long non-coding

RNA
* Small RNA

* Protein
expresssion

* Post-translational
modification

¢ Cytokine array

* Metabolite
profiling in
serum, plasma,
urine, CSF, etc.

v

* miRNA

v

v
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Phenome

¢ Cancer

* Metabolic
syndrome

* Psychiatric
disease

Ritchie, M., Holzinger, E., Li, R. et al. Methods of integrating data to uncover genotype—phenotype interactions. Nat Rev Genet 16, 85-97 (2015).
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But also ?

Other data ?

- clinical data
- imaging data (full data or extracted characteristics)

- new omics fields : fluxomics, ionomics, microbiomics, glycomics...
- biological knowledge : DNA/protein, protein/protein interactions @STR' NG

BioGRID

) 3 v o) i j ¥ { u i
2 3
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) Axial slice ) Tissue segmentation

— a priori in model definition/construction
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il John Smith
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Integration: why ? Lo

20
Cancer
type
® BRCA ¢
@ coaDp .
- Disease subtyping and classification ® hnso | e
® Re o e ® | TR——
Lap C ——— —
ouwsc , @, a BeELN 2
_ H P - Al H H H ® READ ‘g‘s ; =
Biomarkers prediction : diagnostic, disease drivers g '.,,,,, ’ — & E 3
® ov -20 - £ \; %
“' L ﬂi | jo R ’
-20 0 20 40 TCGA tumor samples

- Deep insights into disease biology

Vasileios et al (2018). Drug and disease signature integration identifies synergistic combinations in glioblastoma. Nature Communications. 9.
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Integration: how ?

L'IA comme domaine de recherche

gk tural language q
plpocessing (NLP) SRS

constraint ontologies

5 reasoning search
learning et satisfaction MCTS

odels l . logic knOWledge Intelligence Machine Deep
ptanning representation artificielle Learning Learning

R games

deep learning multiagent semantic web

robotics & systems data
perception

IA dérivable IA Symbolique
IA numérique Good old fashioned Al

ining
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Integration with semantic web

A

»

Life science

Complexity

Quantity=
Big Data: Astronomical or Genomical?
Zachary D. Stephens’, Skylar Y. Lee', Faraz Faghri?, Roy H. Campbell?, Chengxiang Zhai®,

Miles J. Efron®, Ravishankar lyer', Michael C. Schatz®*, Saurabh Sinha®*, Gene
E. Robinson®*

PLOS Biology | DOI:10.1371/journal.pbio.1002195  July 7,2015

Life science: 1600+ reference databases

— integrating heterogeneous data
and knowledge is (badly) needed!

Editorial > Nucleic Acids Res. 2022 Jan 7;50(D1):D1-D10. doi: 10.1093/nar/gkab1195.

The 2022 Nucleic Acids Research database issue and
the online molecular biology database collection
Daniel J Rigden 1, Xosé M Fernéndez 2

Affiliations + expand
PMID: 34986604 PMCID: PMC8728296 DOI: 10.1093/nar/gkab1195

Semantic Web = framework for:

- integrating data and knowledge
- querying
- reasoning
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Integration with semantic web

biopax3:Catalysis

biopax3:Protein

uniprot:P35558 rdf:type
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blocks
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Common representation
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| E. Hierarchical

databases
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Sample classification
Disease subtyping

Biomarker discovery
Systemic knowledge

Picard M. et al. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 2021.
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Integration strategies

A. Ea

rly

block 1

block 2

data

concatenated

|

|1 !

Concatenate every omics datasets into a single large matrix.

Pros :
- conceptually simple
easy implementation
- directly uncovers interactions between omics

Cons :
- technically complicated (noisy and high dimensional concatenated matrix)
- requires to have omics on the same samples or same variables
- imbalanced omics datasets
- ignores the specific data distribution of each omics

Picard M. et al. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 2021.
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Integration strategies

B. Mixed

block 1 block 2

v +
| S 8
=

Transform independently each omics dataset into a simpler representation
before integration.

Pros :
- new representation is less dimensional and less noisy
- less heterogeneity between omics
- classical approaches can be used on combined representation

Cons :
- choice of the transformation method is not trivial

- requires correspondence between variables in the new representation
- information loss during transformation

Picard M. et al. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 2021.
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Integration strategies

C. Intermediate

block 1

block 2

—

X

X

Commeon representation

l

Jointly integrate the multi-omics datasets without prior transformation.

Pros :
- reduce information loss
- discover the joint inter-omics structure
- highlight the complementary information in each omics

Cons :
- could require robust pre-processing step to reduce heterogeneity
- common latent space assumption

Picard M. et al. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 2021.
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Integration strategies

D. Late

block 1 block 2

Apply machine learning models separately on each omics dataset and then
combine results.

Pros :

- avoid (numerous) challenges of direct omics integration
- use tools designed specifically for each omics
- classical approaches can be used to combine results

Cons :
- cannot capture inter-omics interactions
- complementarity information between omics is not exploited

Picard M. et al. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 2021.
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Integration strategies

E. Hierarchical _ _ ) .
Include prior knowledge of omics relationships.
block 1
Pros :
,_,,L,“\ - reduced complexity (sequential integration)
‘;;a;s;q - integrate external knowledge
ES Cons :
block 2 - less generic than previous strategies
!
Yol

Picard M. et al. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 2021.
Omics integration - General aspects 49



Integration approaches

PINSplus .

m Correlation

PARADIGM

——

Semantic web

Joint Bayesian factor

|IEEFEEE

PARADIGM

iClusterPlus

Similarity

Bayesian

Legend
Disease Subtyping
Disease Insights

Biomarker Prediction

-

Network }——[ Tools/Methods

Multivariate

Fusion

Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics Data Integration, Interpretation, and Its Application. Bioinform Biol Insights. 2020
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Limits of integration approaches

Integration approaches are not magic!

You will still need to:

- carefully check design and confounding factors

- perform specific data pre-processing for each omic

- impute missing values* (different meaning — different strategy)

- choose your integration strategy based on your objective and your data (ex. matching between
omics) — still no standard pipelines

- some omics bring more noise than answers
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Web-applications T i
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PaintOmMICS (7. Liu et al. Paintomics 4: new tools for the integrative analysis of muiti-omics e o e = g al_
datasets supported by multiple pathway databases, Nucleic Acids Research, Volume 50, Issue W1, . w“'j.,:"" "R R -

2022.) e

30mics (K. Tien-Chueh et al. 30mics: A web-based systems biology tool for analysis, integration | - . -
and visualization of human transcriptomic, proteomic and metabolomic data. BMC systems biology. 7. 64, \ = o ——
2013) ; =~

XCMSOnline (EM. Forsberg et al. Data processing, multi-omic pathway mapping, and : — DT
metabolite activity analysis using XCMS Online. Nat Protoc. 13(4):633-651, 2018) 3 <

Escherichia coli

Gal axy- P p I'Oj ect (Galaxy-P Project. galaxyp.org.)

OmicsNet (G. Zhou et al., OmicsNet 2.0: a web-based platform for multi-omics integration and
network visual analytics, Nucleic Acids Research, Volume 50, Issue W1, 5, 2022.)
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