Statistics.... introduction

Arnaud Gloaguen, Jimmy Vandel, Guillemette Marot

Swiss Institute of Bioinformatics

INSTITUT FRANCAIS DE BIOINFORMATIQUE

Statistics.... introduction

Arnaud Gloaguen, Jimmy Vandel, Guillemette Marot

inspired from Carl Herrmann (Heidelberg University), Delphine Potier (CIML, CNRS Marseille), Sébastien Déjean (IMT, Université de Toulouse) slides...

Statistics.... some vocabulary

\rightarrow Doing statistics... for what?

- descriptive statistics : describe the characteristics or features of a dataset (sample/population)
- distribution, skewness, outliers
- mean/median/mode
- variability (range/variance/standard deviation)

Statistics.... some vocabulary

\rightarrow Doing statistics... for what?

- descriptive statistics : describe the characteristics or features of a dataset (sample/population)
- distribution, skewness, outliers
- mean/median/mode
- variability (range/variance/standard deviation)
- inferential statistics : draw meaningful conclusion about the dataset, and possibly generalize to a larger population
- hypothesis testing

Statistics.... some vocabulary

\rightarrow Doing statistics... for what?

- descriptive statistics : describe the characteristics or features of a dataset (sample/population)
- distribution, skewness, outliers
- mean/median/mode
- variability (range/variance/standard deviation)
- inferential statistics : draw meaningful conclusion about the dataset, and possibly generalize to a larger population
- hypothesis testing
- modeling relationship (linear/logistic regression...)

Statistics.... some vocabulary

\rightarrow Doing statistics... for what?

- descriptive statistics : describe the characteristics or features of a dataset (sample/population)
- distribution, skewness, outliers
- mean/median/mode
- variability (range/variance/standard deviation)
- inferential statistics : draw meaningful conclusion about the dataset, and possibly generalize to a larger population
- hypothesis testing
- modeling relationship (linear/logistic regression...)
- probability estimation
- confidence interval
- ...

Statistics.... some vocabulary

\rightarrow Doing inferential statistics... considering what?

- univariate statistics : analyze only one ('uni') variable at a time
\rightarrow for descriptive or inferential purposes

- multivariate statistics : analyze more than one ('multi') variables at a time

Statistics.... some vocabulary

\rightarrow Doing multivariate inferential statistics... on what ? ... on normalized data

- Normalization is a process designed to identify and correct "technical/experimental" biases without removing biological signal.
Sources of bias: batch effect (lab condition, platform...), sequencing depth, sample quantity...
- within-sample normalization :
e.g. normalize expression of all genes within sample A

- between-sample normalization :
e.g. normalize expression of all genes between samples

Statistics.... some vocabulary

\rightarrow Doing multivariate inferential statistics... on what? \ldots on normalized data

- Normalization strategies : many exist, none of them is better than another, but guidelines/comparisons exist, some are omic dependant... metabolomics: Current challenges, approaches, and tools. European Journal of Mass Spectrometry. 2020;26(3):165-174. doi:10.1177/1469066720918446

Statistics.... some vocabulary

\rightarrow Doing multivariate inferential statistics... on what ? ... on normalized data

- Normalization strategies : many exist, none of them is better than another, but guidelines/comparisons exist, some are omic dependant, and should not be used automatically!

Statistics.... some vocabulary

\rightarrow Doing multivariate inferential statistics on normalized data without missing values.

- missing values imputation is not mandatory, depends on downstream analysis and you can also remove corresponding samples/variables.
- if necessary, imputation strategy should be chosen carefully :
- missing completely at random (MCAR) :
\rightarrow caused by external factor independent from observed data
- missing at random (MAR)
\rightarrow caused by external fully known dependant factor, and so can be controlled
- not missing at random (NMAR)
\rightarrow caused by external unknown dependant factor
\rightarrow due to the observed value (e.g. technical detection limits)

Statistics.... some vocabulary

\rightarrow Doing multivariate inferential statistics on normalized data without missing values.
a
b

- MAR/NMAR
c

- MAR/NMAR ? \mathbf{X}
observed values
imputed values

Statistics.... some vocabulary

- Unsupervised learning
\rightarrow find hidden patterns, analyze and organize unlabelled samples
e.g. clustering, dimension reduction, density estimation

- Supervised learning
\rightarrow use labelled samples and previous outputs to guess outcomes in advance (predictive model)
e.g. classification task (categorical/numerical), regression (numerical)
- Semi-supervised learning
\rightarrow only some labelled samples (not available, too expensive...)

Statistics.... some vocabulary

- Matrix representation of data

!. Or transposed, a $n \times p$ matrix instead of a $p \times n$ matrix!

Statistics.... some vocabulary

- Variance: indicator of spread for one variable x_{i}

$$
\operatorname{Var}(X)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \quad \text { with } \quad \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

High var.
Low var.

- Covariance: indicator of relationships for two variables x and y

$$
\operatorname{Cov}(X, Y)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n}
$$

- Correlation: standardized covariance between -1 and 1

$$
\operatorname{Cor}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} \quad \text { with } \quad \sigma_{X}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}}
$$

Curse of dimensionality

OMIC1

OMIC2

OMIC3

$\left.\begin{array}{|cccc}\hline 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1\end{array}\right) \quad$ Metabolomics $\quad\left(\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1\end{array}\right) \quad$ Proteomics $\quad \mathrm{N} \approx \mathrm{P}$
P : number of features (genes, proteins, genetic variants...)

N : number of observations (samples, cells, nucleotides...)

Selection vs Extraction

- Feature selection

\rightarrow determine a smaller set of features minimizing (relevant) information loss e.g. filtering methods (correlation), recursive elimination, regularization...

- Feature extraction

\rightarrow combine the input features into another set of variables in a linear or non-linear way: $y_{1}=\alpha_{1}{ }^{*} x_{1}+\alpha_{2}{ }^{*} x_{2}+\alpha_{3}{ }^{*} x_{3}+\ldots$.
e.g. PCA, PCoA, ICA...

+ regularization for sparse methods : sPCA, sNMF (i.e. some α_{i} forced to 0)

Dimensionality reduction : PCA

Problem: \boldsymbol{n} samples, \boldsymbol{p} quantitative variables (e.g. peptides, proteins, metabolites, mRNA, ...)

Visualize pairwise relations by scatter plots

But when \boldsymbol{p} is large ?

\rightarrow Need to reduce this large number of dimensions (\boldsymbol{p}) to a smaller number of relevant variables, i.e variables which carry most of the information (or variance) of a dataset and without redundancy

PCA - Principle

Principle: Find orthogonal axes (Principal Components) on which one can project sample to obtain a comprehensible space of reduced dimension.

$$
P C_{1}=\alpha_{1}{ }^{*} x_{1}+\alpha_{2}{ }^{*} x_{2}+\alpha_{3}{ }^{*} x_{3}+\ldots .
$$

Projection is a distorting operation \Rightarrow we begin by looking for an axis on which the cloud of points is distorting the less possible during the projection.

PCA - Goal

Main goal : explore the structure of the dataset to better understand the proximity between samples and detect possible bias \rightarrow often used as a quality control step

- synthetize information and visualize points in a reduced dimension space
- describe links between variables and which ones explain most variability
- highlight homogeneous subgroups linked to biological effect
- detect aberrant samples

PCA - Computing

Computing PCA:

- Standardize the range of continuous initial variables \rightarrow data homoscedasticity : the variance must be independent of the mean

$$
z=\frac{x-\mu}{\sigma}
$$

- Compute the covariance matrix \mathbf{A}
$\boldsymbol{A}\left[\begin{array}{ccc}\operatorname{var}(x) & \operatorname{cov}(x, y) & \operatorname{cov}(x, z) \\ \operatorname{cov}(x, y) & \operatorname{var}(y) & \operatorname{cov}(y, z) \\ \operatorname{cov}(x, z) & \operatorname{cov}(y, z) & \operatorname{var}(z)\end{array}\right]$
- Calculate the eigenvalues λ and eigenvectors for the covariance matrix \rightarrow solve $|\mathrm{A}-\mathrm{\lambda} \cdot \mathrm{I}|=0$
- Sort eigenvalues λ and their corresponding eigenvectors
- Recast the data along the principal component axes

PCA - Plots

- each dot is a sample
- new coordinate system ($\left.\mathrm{PC}_{1}, \mathrm{PC}_{2} \ldots\right)$
- red arrows = contribution of each initial variable (old coordinate system)
- several 2D (2 PCs) plots: $\mathrm{PC}_{1} / \mathrm{PC}_{2}$ $\mathrm{PC}_{1} / \mathrm{PC}_{3}$
$\mathrm{PC}_{2} / \mathrm{PC}_{3}$

PCA biplot
score plot + loading plot

PCA - Components

- contribution of each initial variable to the $P C_{i}: \alpha, \beta, \gamma \ldots$ are coefficients also called "loadings"
- some variables contribute in the same direction to some PCs (e.g. waist and height for PC_{1}), but opposite to others $\left(\mathrm{PC}_{5}\right)$
- PC are orthogonal: no information redundancy between PC \rightarrow reduce the "useful" representation space

$$
P C_{i}=\alpha_{i} \cdot \text { age }+\beta_{i} \cdot \text { chol }+\gamma_{i} \cdot \text { height }+\delta_{i} \cdot \text { waist }+\epsilon_{i} \cdot \text { weight }
$$

PCA - Biological interpretation

- PC plots can highlight new groups
- Example: PC_{3} seems very associated to gender
$\rightarrow \mathrm{PC}_{3}$ loadings indicate that a combination of height and cholesterol separates men / women

PCA - Variable correlations in loading plots

The correlation between two variables is represented as :

- an acute angle $(\cos (\alpha)>0)$ if it is positive
- an obtuse angle $(\cos (\theta)<0)$ if it is negative
- a right angle $(\cos (\beta) \approx 0)$ if it is near zero

PCA - Scree plot

- Each PC explains some part of the total variance of the dataset
- This amount is proportional to the corresponding eigenvalue

- PC are ordered by decreasing eigenvalue (hence explained variance)

Considering PC1 \& PC2 explains 63% of the total vairance

PCA - PCs number

- Several criteria to select the optimal subset of PC, without loosing too much information
- Proportion of total variance: keep PC such that the cumulative variance is above threshold
- Average eigenvalue criteria: keep PC which have eigenvalue larger than
- mean eigenvalue (Kaiser rule) or
- 70% of mean eigenvalue (Jottclife rule)

Extraction + Selection

- Feature selection
\rightarrow determine a smaller set of features minimizing (relevant) information loss
e.g. filtering methods (correlation), recursive elimination, regularization

- Feature extraction

\rightarrow combine the input features into another set of variables in a linear or non-linear way: $y_{1}=\alpha_{1}{ }^{*} x_{1}+\alpha_{2}{ }^{*} x_{2}+\alpha_{3}{ }^{*} x_{3}+\ldots$.
e.g. PCA, PCoA, ICA...

+ regularization for sparse methods : sPCA, sNMF (i.e. some α_{i} forced to 0)

Sparse PCA : regularization

- To learn a more "simpler"/"comprehensive" model and avoid overfitting or inconsistency situations
- Linear combination of two functions f_{1} and f_{2} for a vector $w: \quad f(\mathbf{w})=f_{1}(\mathbf{w})+\lambda f_{2}(\mathbf{w})$ \rightarrow adjusting the penalty λ (regularization parameter) give more/less weight to the regularizer f_{2}
- The simplest regularizer \boldsymbol{f}_{2} is the L0-norm $\quad f(\mathbf{w})=g(\mathbf{w})+\lambda\|\mathbf{w}\|_{0}$ with $g(w)$ the objective/loss function to minimize and $\|\mathbf{w}\|_{0}=$ number of non-zero entries of \mathbf{w} \rightarrow to minimize $f(w) \rightarrow$ minimize $g(w)$ and limit the cost of the regularizer (ie limit w_{0})

$$
y=\mathrm{w}_{1}{ }^{*} \mathrm{x}_{1}+\mathrm{w}_{2}^{*} \mathrm{x}_{2}+\mathrm{w}_{3}{ }^{*} \mathrm{x}_{3}+\mathrm{w}_{4}{ }^{*} \mathrm{x}_{4}+\mathrm{w}_{5}{ }^{*} \mathrm{x}_{5} \quad \square \mathrm{y}=0^{*} \mathrm{x}_{1}+\mathrm{w}_{2}{ }^{*} \mathrm{x}_{2}+0^{*} \mathrm{x}_{3}+0^{*} \mathrm{x}_{4}+\mathrm{w}_{5}{ }^{*} \mathrm{x}_{5}
$$

- Alternative regularizer f_{2} is the L1-norm $f(\mathbf{w})=g(\mathbf{w})+\lambda\|\mathbf{w}\|_{1} \quad$ with $\|\mathbf{w}\|_{1}=\sum_{n=0}^{N}\left|w_{n}\right|$
- Common regularization strategies : Lasso (L1), Ridge (L2) and Elastic Net (L1+L2)

Sparse PCA principle

- Objective to PCA: find linear combinations to maximize variability of projected data

$$
\mathrm{PC}_{1}: y_{1}=\mathrm{w}_{1}{ }^{*} \mathrm{x}_{1}+\mathrm{w}_{2}{ }^{*} \mathrm{x}_{2}+\mathrm{w}_{3}{ }^{*} \mathrm{x}_{3}+\ldots .
$$

PC

$$
\underset{w_{i}:\left\|w_{i}\right\|_{2}^{2}=1}{\arg \max } \operatorname{Var}\left(X w_{i}\right) \quad \square \underbrace{\underset{\mathbf{W}, \mathbf{P}}{\operatorname{argmin}}\left\|\mathbf{X}-\mathbf{X} \mathbf{W} \mathbf{P}^{\top}\right\|_{F}^{2}}_{\mathrm{g}(\mathrm{w}) \text { function to minimize }}
$$

Sparse PCA $\quad \underset{\mathbf{W}, \mathbf{P}}{\operatorname{argmin}}\left\|\mathbf{X}-\mathbf{X} \mathbf{W} \mathbf{P}^{\top}\right\|_{F}^{2}+\underbrace{\sum_{k=1}^{K} \lambda\left\|\mathbf{w}_{k}\right\|^{2}+\sum_{k=1}^{K} \lambda_{1, k}\left\|\mathbf{w}_{k}\right\|_{1}}$
regularizes (L2 + L1)

$$
P C_{1}=0^{*} x_{1}+w_{2}{ }^{*} x_{2}+0^{*} x_{3}+0^{*} x_{4}+w_{5}^{*} x_{5}
$$

(Elastic-Net as proposed by You et al. (2006))

If PCA formulation are equivalents, sparse PCA formulations are not.
Guerra-Urzola, R. et al. A Guide for Sparse PCA: Model Comparison and Applications. Psychometrika (2021).

Statistics.... some vocabulary

- Unsupervised learning
\rightarrow find hidden patterns, analyze and organize unlabelled samples
e.g. clustering, dimension reduction, density estimation

- Supervised learning
\rightarrow use labelled samples and previous outputs to guess outcomes in advance (predictive model)
e.g. classification task (categorical/numerical), regression (numerical)
- Semi-supervised learning
\rightarrow only some labelled samples (not available, too expensive...)
Supervised learning

Differential analysis - Principle

Principle: Compare 2 or more sample groups (experimental conditions, treatment, time...) e.g. healthy VS sick, old VS young...

Objective: detect differentially expressed (DE) genes/proteins/... between groups
\rightarrow analysis based on statistical tests (t-test...)
\rightarrow a gene/protein/... is "DE" if the difference is statistically significant between 2 groups, ie greater than any natural random variation

Specificities of omics:

- few individuals
- many variables \rightarrow many tests
- overdispersion problem (high variance)
- numerous possible bias
- omic specific data distribution

Differential analysis - Volcano Plot

"A gene/protein/... is declared differentially expressed if the observed difference between two conditions is statistically significant at $\underline{5 \%}$ and the fold change is higher than $\underline{\underline{2}}$

Overfitting, Cross-Validation \& Regularization

Overfitting, Cross-Validation \& Regularization

	x_{1}	x_{2}	x_{3}		x_{4}
	Intercept	Age	Nb_sisters	Neighbor'weight (kg)	Subject's Height (cm)
Subj1	1	5	1	1	90
Subj2	1	10	2	50	125
Subj3	1	15	1	80	160
Subj4	1	20	2	90	180

Overfitting, Cross-Validation \& Regularization

Overfitting, Cross-Validation \& Regularization

		X_{1}	X_{2}	X_{3}	X_{4}	y
		Intercept	Age	Nb_sisters	Neighbor'weight (kg)	Subject's Height (cm)
TEST	Subj1	1	5	1	1	90
TRAIN	Subj2	1	10	2	50	125
	Subj3	1	15	1	80	160
	Subj4	1	20	2	90	180

We are looking for $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4} that minimizes $J_{T R A I N}=\sum_{i=2}^{4}\left(y_{i}-\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\beta_{4} x_{i 4}\right)^{2}$.

Overfitting, Cross-Validation \& Regularization

		X_{1}	X_{2}	X_{3}	X_{4}	y
		Intercept	Age	Nb_sisters	Neighbor'weight (kg)	Subject's Height (cm)
TEST	Subj1	1	5	1	1	90
	Subj2	1	10	2	50	125
TRAIN	Subj3	1	15	1	80	160
	Subj4	1	20	2	90	180

We are looking for $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4} that minimizes $J_{T R A I N}=\sum_{i=2}^{4}\left(y_{i}-\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\beta_{4} x_{i 4}\right)^{2}$.
Similarly, we can define $J_{T E S T}=\left(y_{1}-\beta_{1} x_{11}+\beta_{2} x_{12}+\beta_{3} x_{13}+\beta_{4} x_{14}\right)^{2}$.

Overfitting, Cross-Validation \& Regularization

We are looking for $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4} that minimizes $J_{T R A I N}=\sum_{i=2}^{4}\left(y_{i}-\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\beta_{4} x_{i 4}\right)^{2}$.
Similarly, we can define $J_{T E S T}=\left(y_{1}-\beta_{1} x_{11}+\beta_{2} x_{12}+\beta_{3} x_{13}+\beta_{4} x_{14}\right)^{2}$.
Here, we are in "high-dimension" as $n<p$. The problem is ill-posed (more unknown parameters than equations).

Overfitting, Cross-Validation \& Regularization

		X_{1}	X_{2}	X_{3}	X_{4}	y
		Intercept	Age	Nb_sisters	Neighbor'weight (kg)	Subject's Height (cm)
TEST	Subj1	1	5	1	1	90
	Subj2	1	10	2	50	125
TRAIN	Subj3	1	15	1	80	160
	Subj4	1	20	2	90	180

We are looking for $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4} that minimizes $J_{T R A I N}=\sum_{i=2}^{4}\left(y_{i}-\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\beta_{4} x_{i 4}\right)^{2}$.
Similarly, we can define $J_{T E S T}=\left(y_{1}-\beta_{1} x_{11}+\beta_{2} x_{12}+\beta_{3} x_{13}+\beta_{4} x_{14}\right)^{2}$.
Here, we are in "high-dimension" as $n<p$. The problem is ill-posed (more unknown parameters than equations).
\rightarrow It is possible to find an infinite number of solutions:

Overfitting, Cross-Validation \& Regularization

We are looking for $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4} that minimizes $J_{\text {TRAIN }}=\sum_{i=2}^{4}\left(y_{i}-\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\beta_{4} x_{i 4}\right)^{2}$.
Similarly, we can define $J_{T E S T}=\left(y_{1}-\beta_{1} x_{11}+\beta_{2} x_{12}+\beta_{3} x_{13}+\beta_{4} x_{14}\right)^{2}$.
Here, we are in "high-dimension" as $n<p$. The problem is ill-posed (more unknown parameters than equations).
\rightarrow It is possible to find an infinite number of solutions:

	$\boldsymbol{\beta}_{1}$	$\boldsymbol{\beta}_{2}$	$\boldsymbol{\beta}_{3}$	$\boldsymbol{\beta}_{4}$	$J_{\text {train }}$	$J_{\text {test }}$
Solution 1	43.75	0	1.375	6.25	$8.4 \mathrm{e}-22$	1491.891
Solution 2	-7456.25	-1000	251.375	2506.25	$1.1 \mathrm{e}-19$	95817179
\vdots						

Overfitting, Cross-Validation \& Regularization

We are looking for $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4} that minimizes $J_{\text {TRAIN }}=\sum_{i=2}^{4}\left(y_{i}-\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\beta_{4} x_{i 4}\right)^{2}$.
Similarly, we can define $J_{T E S T}=\left(y_{1}-\beta_{1} x_{11}+\beta_{2} x_{12}+\beta_{3} x_{13}+\beta_{4} x_{14}\right)^{2}$.
Here, we are in "high-dimension" as $n<p$. The problem is ill-posed (more unknown parameters than equations).
\rightarrow It is possible to find an infinite number of solutions:

Go against the idea that age is the best explanatory variable.

| $\boldsymbol{\beta}_{1}$ | $\boldsymbol{\beta}_{2}$ | $\boldsymbol{\beta}_{3}$ | $\boldsymbol{\beta}_{4}$ | $\boldsymbol{J}_{\text {train }}$ | $\boldsymbol{J}_{\text {test }}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Solution 1 | 43.75 | 0 | 1.375 | 6.25 | $8.4 \mathrm{e}-22$ | 1491.891 |
| Solution 2 | -7456.25 | -1000 | 251.375 | 2506.25 | $1.1 \mathrm{e}-19$ | 95817179 |
| | | | | | | |

Overfitting, Cross-Validation \& Regularization

		X_{1}	X_{2}	X_{3}	X_{4}	y
		Intercept	Age	Nb_sisters	Neighbor'weight (kg)	Subject's Height (cm)
TEST	Subj1	1	5	1	1	90
	Subj2	1	10	2	50	125
TRAIN	Subj3	1	15	1	80	160
	Subj4	1	20	2	90	180

We are looking for $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4} that minimizes $J_{T R A I N}=\sum_{i=2}^{4}\left(y_{i}-\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\beta_{4} x_{i 4}\right)^{2}$.
Similarly, we can define $J_{T E S T}=\left(y_{1}-\beta_{1} x_{11}+\beta_{2} x_{12}+\beta_{3} x_{13}+\beta_{4} x_{14}\right)^{2}$.
OVERFITTING
Here, we are in "high-dimension" as $n<p$. The problem is ill-posed (more unknown parameters than equations).
\rightarrow It is possible to find an infinite number of solutions:

Go against the idea that age is the best explanatory variable.

Overfitting, Cross-Validation \& Regularization

Overfitting, Cross-Validation \& Regularization

Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.

Overfitting, Cross-Validation \& Regularization

Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.
A lot of sampling possibilities are available to perform Cross-Validation (CV). The most well-known is K-fold CV:

Overfitting, Cross-Validation \& Regularization

Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.
A lot of sampling possibilities are available to perform Cross-Validation (CV). The most well-known is K-fold CV:

Overfitting, Cross-Validation \& Regularization

Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.
A lot of sampling possibilities are available to perform Cross-Validation (CV). The most well-known is K-fold CV:

One way to avoid overfitting is by preforming regularization.

Overfitting, Cross-Validation \& Regularization

Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.
A lot of sampling possibilities are available to perform Cross-Validation (CV). The most well-known is K-fold CV:

One way to avoid overfitting is by preforming regularization.

Regularization consists in adding more constraints to the model in order to reduce the space of solutions.

Overfitting, Cross-Validation \& Regularization

Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.
A lot of sampling possibilities are available to perform Cross-Validation (CV). The most well-known is K-fold CV:

One way to avoid overfitting is by preforming regularization.
Regularization consists in adding more constraints to the model in order to reduce the space of solutions.
Multiple regularizations are available such as Ridge or LASSO regularizations.

Overfitting, Cross-Validation \& Regularization

Cross-Validation allows to evaluate the generalization power of a model and realize if the model overfits or not.
A lot of sampling possibilities are available to perform Cross-Validation (CV). The most well-known is K-fold CV:

One way to avoid overfitting is by preforming regularization.
Regularization consists in adding more constraints to the model in order to reduce the space of solutions.
Multiple regularizations are available such as Ridge or LASSO regularizations.
Here, we choose to regularize the model by forcing it to have a low number of variables.

Overfitting, Cross-Validation \& Regularization

Overfitting, Cross-Validation \& Regularization

So let us consider all models with either 2 or 3 variables (with at least the intercept each time).

Overfitting, Cross-Validation \& Regularization

So let us consider all models with either 2 or 3 variables (with at least the intercept each time).
By doing so, we add respectively 2 (ex: $\beta_{2}=0$ and $\beta_{4}=0$) or 1 constraint (idem).

Overfitting, Cross-Validation \& Regularization

So let us consider all models with either 2 or 3 variables (with at least the intercept each time).
By doing so, we add respectively 2 (ex: $\beta_{2}=0$ and $\beta_{4}=0$) or 1 constraint (idem).
For all these possible models, let us compute $J_{T R A I N}$ and $J_{T E S T}$:

Overfitting, Cross-Validation \& Regularization

So let us consider all models with either 2 or 3 variables (with at least the intercept each time).
By doing so, we add respectively 2 (ex: $\beta_{2}=0$ and $\beta_{4}=0$) or 1 constraint (idem).
For all these possible models, let us compute $J_{T R A I N}$ and $J_{T E S T}$:

Variables considered	$J_{\text {TRAIN }}$	$J_{\text {TEST }}$
$\left(x_{1}, x_{2}\right)$	$3.750000 \mathrm{e}+01$	100
$\left(x_{1}, x_{3}\right)$	$2.403846 \mathrm{e}+01$	959.8081
$\left(x_{1}, x_{4}\right)$	$1.512500 \mathrm{e}+03$	4900
$\left(x_{1}, x_{2}, x_{3}\right)$	$1.831567 \mathrm{e}-22$	203.0625
$\left(x_{1}, x_{2}, x_{4}\right)$	$6.464166 \mathrm{e}-24$	225
$\left(x_{1}, x_{3}, x_{4}\right)$	$8.664767 \mathrm{e}-22$	1491.8906

Overfitting, Cross-Validation \& Regularization

So let us consider all models with either 2 or 3 variables (with at least the intercept each time).
By doing so, we add respectively 2 (ex: $\beta_{2}=0$ and $\beta_{4}=0$) or 1 constraint (idem).
For all these possible models, let us compute $J_{T R A I N}$ and $J_{T E S T}$:

Variables considered	$J_{\text {TRAIN }}$	$J_{\text {TEST }}$
OVERFITTING		
	$3.750000 \mathrm{e}+01$	100
$\left(x_{1}, x_{3}\right)$	$2.403846 \mathrm{e}+01$	959.8081
$\left(x_{1}, x_{4}\right)$	$1512500 \mathrm{e}+03$	4900
$\left(x_{1}, x_{2}, x_{3}\right)$	$1.831567 \mathrm{e}-22$	203.0625
$\left(x_{1}, x_{2}, x_{4}\right)$	$6.464166 \mathrm{e}-24$	225
$\left(x_{1}, x_{3}, x_{4}\right)$	$8.664767 \mathrm{e}-22$	1491.8906

Overfitting, Cross-Validation \& Regularization

So let us consider all models with either 2 or 3 variables (with at least the intercept each time).
By doing so, we add respectively 2 (ex: $\beta_{2}=0$ and $\beta_{4}=0$) or 1 constraint (idem).
Best model
For all these possible models, let us compute $J_{T R A I N}$ and $J_{T E S T}$:

Variables considered	$J_{\text {TRAIN }}$	$J_{\text {TEST }}$
$\left(x_{1}, x_{2}\right)$	$3.750000 \mathrm{e}+01$	100
$\left(x_{1}, x_{3}\right)$	$2.403846 \mathrm{e}+01$	959.8081
$\left(x_{1}, x_{4}\right)$	$1512500 \mathrm{e}+03$	4900
$\left(x_{1}, x_{2}, x_{3}\right)$	$1.831567 \mathrm{e}-22$	203.0625
$\left(x_{1}, x_{2}, x_{4}\right)$	$6.464166 \mathrm{e}-24$	225
$\left(x_{1}, x_{3}, x_{4}\right)$	$8.664767 \mathrm{e}-22$	1491.8906

Overfitting, Cross-Validation \& Regularization

So let us consider all models with either 2 or 3 variables (with at least the intercept each time).
By doing so, we add respectively 2 (ex: $\beta_{2}=0$ and $\beta_{4}=0$) or 1 constraint (idem).
Best model
For all these possible models, let us compute $J_{T R A I N}$ and $J_{T E S T}$:

CV was also used here so set an hyper-parameter: «the number of variables to keep in the model».

Overfitting, Cross-Validation \& Regularization

So let us consider all models with either 2 or 3 variables (with at least the intercept each time).
By doing so, we add respectively 2 (ex: $\beta_{2}=0$ and $\beta_{4}=0$) or 1 constraint (idem).
For all these possible models, let us compute $J_{T R A I N}$ and $J_{T E S T}$:

CV was also used here so set an hyper-parameter: «the number of variables to keep in the model».

Here apparently, keeping only 2 variables leads to the best model with the variable «Age», which was expected.

Overfitting, Cross-Validation \& Regularization

Overfitting, Cross-Validation \& Regularization

Overfitting can be handled with regularization.

Overfitting, Cross-Validation \& Regularization

Overfitting can be handled with regularization.
Cross-Validation can both help to:

Overfitting, Cross-Validation \& Regularization

Overfitting can be handled with regularization.
Cross-Validation can both help to:

1. realize if the model overfits or not

Overfitting, Cross-Validation \& Regularization

Overfitting can be handled with regularization.
Cross-Validation can both help to:

1. realize if the model overfits or not
2. tune the hyper-parameters (associated with the regularization).

Overfitting, Cross-Validation \& Regularization

Overfitting can be handled with regularization.
Cross-Validation can both help to:

1. realize if the model overfits or not
2. tune the hyper-parameters (associated with the regularization).

Overfitting, Cross-Validation \& Regularization

Overfitting can be handled with regularization.
Cross-Validation can both help to:

1. realize if the model overfits or not
2. tune the hyper-parameters (associated with the regularization).

Classical mistake to avoid with Cross-Validation: «Double Dipping».

Overfitting, Cross-Validation \& Regularization

Overfitting can be handled with regularization.
Cross-Validation can both help to:

1. realize if the model overfits or not
2. tune the hyper-parameters (associated with the regularization).

Classical mistake to avoid with Cross-Validation: «Double Dipping».
\rightarrow The whole point of Cross-Validation is to keep the train and the test sets independant from each other.

Overfitting, Cross-Validation \& Regularization

Overfitting can be handled with regularization.
Cross-Validation can both help to:

1. realize if the model overfits or not
2. tune the hyper-parameters (associated with the regularization).

Classical mistake to avoid with Cross-Validation: «Double Dipping».
\rightarrow The whole point of Cross-Validation is to keep the train and the test sets independant from each other.
This is no longer the case when for example:

Overfitting, Cross-Validation \& Regularization

Overfitting can be handled with regularization.
Cross-Validation can both help to:

1. realize if the model overfits or not
2. tune the hyper-parameters (associated with the regularization).

Classical mistake to avoid with Cross-Validation: «Double Dipping».
\rightarrow The whole point of Cross-Validation is to keep the train and the test sets independant from each other.
This is no longer the case when for example:

1. Normalization accross subjects is performed on the whole data-set.

Overfitting, Cross-Validation \& Regularization

Overfitting can be handled with regularization.
Cross-Validation can both help to:

1. realize if the model overfits or not
2. tune the hyper-parameters (associated with the regularization).

Classical mistake to avoid with Cross-Validation: «Double Dipping».
\rightarrow The whole point of Cross-Validation is to keep the train and the test sets independant from each other.
This is no longer the case when for example:

1. Normalization accross subjects is performed on the whole data-set.
2. Variable selection is performed on the whole data-set (ex: differentially expressed genes)

Omics integration

General aspects

Cnrs
INRAC

Rise in popularity

"Multi-OMics" citations
Citations
$\mathbf{2 0 8} \mathbf{K}$

Rise in popularity

https://app.dimensions.ai/discover/publication (23th Aug. 2023 : 138,395,868 referenced publications)

Omics... which ones ?

Ritchie, M., Holzinger, E., Li, R. et al. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet 16, 85-97 (2015).

But also?

Other data?

- clinical data
- imaging data (full data or extracted characteristics)
- new omics fields : fluxomics, ionomics, microbiomics, glycomics...
- biological knowledge : DNA/protein, protein/protein interactions
\rightarrow a priori in model definition/construction

(a) Axial slice

(b) Tissue segmentation

Integration: why?

- Disease subtyping and classification
- Biomarkers prediction : diagnostic, disease drivers
- Deep insights into disease biology

Integration: how ?

L'IA comme domaine de recherche

Integration: how ?

L'IA comme domaine de recherche

Integration with semantic web Astronomy
 Big Data: Astronomical or Genomical?
 Zachary D. Stephens ${ }^{1}$, Skylar Y. Lee ${ }^{1}$, Faraz Faghri², Roy H. Campbell ${ }^{2}$, Chengxiang Zhai ${ }^{3}$ Miles J. Efron ${ }^{4}$, Ravishankar Iyer ${ }^{1}$, Michael C. Schatz ${ }^{5 *}$, Saurabh Sinha ${ }^{3 *}$, Gene E. Robinson ${ }^{6 *}$

Life science: 1600+ reference databases
\rightarrow integrating heterogeneous data and knowledge is (badly) needed!

Editorial > Nucleic Acids Res. 2022 Jan 7;50(D1):D1-D10. doi: 10.1093/nar/gkab1195.
The 2022 Nucleic Acids Research database issue and the online molecular biology database collection

Semantic Web = framework for:

- integrating data and knowledge
- querying
- reasoning

Integration with semantic web

Integration strategies

Picard M. et al. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 2021.

Integration strategies

Concatenate every omics datasets into a single large matrix.
Pros:

- conceptually simple
- easy implementation
- directly uncovers interactions between omics

Cons:

- technically complicated (noisy and high dimensional concatenated matrix)
- requires to have omics on the same samples or same variables
- imbalanced omics datasets
- ignores the specific data distribution of each omics

Integration strategies

Transform independently each omics dataset into a simpler representation before integration.

Pros:

- new representation is less dimensional and less noisy
- less heterogeneity between omics
- classical approaches can be used on combined representation

Cons:

- choice of the transformation method is not trivial
- requires correspondence between variables in the new representation
- information loss during transformation

Integration strategies

Jointly integrate the multi-omics datasets without prior transformation.
Pros:

- reduce information loss
- discover the joint inter-omics structure
- highlight the complementary information in each omics

Cons:

- could require robust pre-processing step to reduce heterogeneity
- common latent space assumption

Integration strategies

D. Late

block 2
Apply machine learning models separately on each omics dataset and then combine results.

Pros

- avoid (numerous) challenges of direct omics integration
- use tools designed specifically for each omics
- classical approaches can be used to combine results

Cons:

- cannot capture inter-omics interactions
- complementarity information between omics is not exploited

Integration strategies

Include prior knowledge of omics relationships.

Pros:

- reduced complexity (sequential integration)
- integrate external knowledge

Cons:

- less generic than previous strategies

Integration approaches

Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics Data Integration, Interpretation, and Its Application. Bioinform Biol Insights. 2020

Limits of integration approaches

Integration approaches are not magic!

You will still need to:

- carefully check design and confounding factors
- perform specific data pre-processing for each omic
- impute missing values* (different meaning \rightarrow different strategy)
- choose your integration strategy based on your objective and your data (ex. matching between omics) \rightarrow still no standard pipelines
- some omics bring more noise than answers

Web-applications

PaintOmics (T. Liu et al. PaintOmics 4: new tools for the integrative analysis of multi-omics datasets supported by multiple pathway databases, Nucleic Acids Research, Volume 50, Issue W1, 2022.)

Omics integration - General aspects 52

References

Misra BB, Langefeld CD, Olivier M, Cox LA. Integrated Omics: Tools, Advances, and Future Approaches. J Mol Endocrinol, 2018.
Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics Data Integration, Interpretation, and Its Application. Bioinform Biol Insights, 2020.

Picard M, Scott-Boyer MP, Bodein A, Périn O, Droit A. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J., 2021.

Benfeitas R, Viklund J, Ash706, Robinson J, Manoharan L, Fasterius E, Oskolkov N, Francis R, Anton M. (2020).
NBISweden/workshop_omics_integration: Lund, 2020/10/05 (Version course2010). Zenodo. https://doi.org/10.5281/zenodo.4084627
Bersanelli M, Mosca E, Remondini D, Giampieri E, Sala C, Castellani G, Milanesi L. Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinformatics, 17 Suppl 2(Suppl 2):15, 2016.

Ritchie, M., Holzinger, E., Li, R. et al. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet 16, 85-97, 2015.

\rightarrow Publications (total)
Omics integration - General aspects 53

