MOFA
 Multi-Omic Factor Analysis

Multi-Omics Factor Analysis-a framework for

 unsupervised integration of multi-omics data setsRicard Argelaguet ©, Britta Velten © , Damien Arnol © , Sascha Dietrich © , Thorsten Zenz © ,

About the cover

Volume 14
Issue 6
1 June 2018
IN THIS ISSUE

Matrix multiplication, back to school

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \times\left[\begin{array}{ll}
10 & 11 \\
20 & 21 \\
30 & 31
\end{array}\right] } \\
= & {\left[\begin{array}{ll}
1 \times 10+2 \times 20+3 \times 30 & 1 \times 11+2 \times 21+3 \times 31 \\
4 \times 10+5 \times 20+6 \times 30 & 4 \times 11+5 \times 21+6 \times 31
\end{array}\right] } \\
= & {\left[\begin{array}{ll}
10+40+90 & 11+42+93 \\
40+100+180 & 44+105+186
\end{array}\right]=\left[\begin{array}{rr}
140 & 146 \\
320 & 335
\end{array}\right] }
\end{aligned}
$$

$$
\left.\begin{array}{c}
c_{11}=a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31}+a_{14} b_{41} \\
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array} a_{24}\right.}
\end{array}\right] \times\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33} \\
b_{41} & b_{42} & b_{43}
\end{array}\right]=\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23}
\end{array}\right] .
$$

Matrix dimensions: $2 \times 4 \cdots \cdots \cdots \cdots \cdots 3 \times 3 \times 3$

$$
\begin{gathered}
c_{22}=a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32}+a_{24} b_{42} \\
{\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24}
\end{array}\right]\left[\begin{array}{ll|l|l}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33} \\
b_{41} & b_{42} & b_{43}
\end{array}\right]=\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23}
\end{array}\right]}
\end{gathered}
$$

Matrix factorization

\rightarrow approximate the large data matrix A using the product of 2 smaller matrices W and H

$$
A=W \times H+\varepsilon
$$

Matrix factorization applications

Useful for dimensionality reduction (k features) and feature extraction (the H matrix)

Example: image processing with Non-Negative Matrix Factorization ($\mathrm{W} \geq 0$ and $\mathrm{H} \geq 0$)

\rightarrow PCA can be formulated as an approximation of matrix factorization

Matrix factorization, PCA

Matrix factorization, PCA

MOFA : PCA generalization

$$
\mathbf{Y}^{m}=\mathbf{Z} \mathbf{W}^{m T}+\boldsymbol{\epsilon}^{m}
$$

- $\quad m$ views for m omic sources
- share the Z matrix between views
- 2 levels of sparsity on W^{m} :
- view and factor-wise
\rightarrow active/inactive factors in a view
- feature-wise
\rightarrow sparse biological phenomenon
- $\quad Y^{m}$ and ε^{m} can follow different models :
- Gaussian (continuous)
- Poisson (natural/count)
- Bernouilli (binary)

MOFA : How it works ?

$$
\mathbf{Y}^{m}=\mathbf{Z} \mathbf{W}^{m T}+\boldsymbol{\epsilon}^{m}
$$

- Parameter estimation through variational Bayesian inference

$$
\begin{aligned}
p(\mathbf{Y}, \hat{\mathbf{W}}, \mathbf{S}, \mathbf{Z}, \boldsymbol{\Theta}, \boldsymbol{\alpha}, \boldsymbol{\tau})= & \prod_{m=1}^{M} \prod_{n=1}^{N} \prod_{d=1}^{D_{m}} \mathcal{N}\left(y_{n d}^{m} \mid \sum_{k=1}^{K} s_{d k}^{m} \hat{w}_{d k}^{m} z_{n k}, 1 / \tau_{d}\right) \\
& \prod_{m=1}^{M} \prod_{d=1}^{D_{m}} \prod_{k=1}^{K} \mathcal{N}\left(\hat{w}_{d k}^{m} \mid 0,1 / \alpha_{k}^{m}\right) \operatorname{Ber}\left(s_{d, k}^{m} \mid \theta_{k}^{m}\right) \\
& \prod_{n=1}^{N} \prod_{k=1}^{K} \mathcal{N}\left(z_{n k} \mid 0,1\right) \\
& \prod_{m=1}^{M} \prod_{k=1}^{K} \operatorname{Beta}\left(\theta_{k}^{m} \mid a_{0}^{\theta}, b_{0}^{\theta}\right) \\
& \prod_{m=1}^{M} \prod_{k=1}^{K} \mathcal{G}\left(\alpha_{k}^{m} \mid a_{0}^{\alpha}, b_{0}^{\alpha}\right) \\
& \prod_{m=1}^{M} \prod_{d=1}^{D_{m}} \mathcal{G}\left(\tau_{d}^{m} \mid a_{0}^{\tau}, b_{0}^{\tau}\right) .
\end{aligned}
$$

posterior distribution of unobserved data $\mathrm{X}, \mathrm{P}(\mathrm{X} / \mathrm{Y})$, is approximated by $q(\mathbf{X})=\prod_{i} q\left(\mathbf{X}_{i}\right)$

$$
q(\mathbf{Z}, \mathbf{S}, \hat{\mathbf{W}}, \boldsymbol{\alpha}, \boldsymbol{\tau}, \boldsymbol{\theta})=q(\mathbf{Z}) q(\boldsymbol{\alpha}) q(\boldsymbol{\theta}) q(\boldsymbol{\tau}) q(\mathbf{S}, \hat{\mathbf{W}})
$$

MOFA : How it works ?

$$
\mathbf{Y}^{m}=\mathbf{Z} \mathbf{W}^{m T}+\boldsymbol{\epsilon}^{m}
$$

- Parameter estimation through variational Bayesian inference
- Evidence Lower Bound (ELBO)
- the true log marginal likelihood $\log p(\mathbf{Y})$ is lower bound by the ELBO $\mathcal{L}(\mathbf{X})$

$$
\begin{aligned}
\mathcal{L}(\mathbf{X}) & =\int q(\mathbf{X})\left(\log \frac{p(\mathbf{X} \mid \mathbf{Y})}{q(\mathbf{X})}+\log p(\mathbf{Y})\right) d \mathbf{X} \\
& =\log p(\mathbf{Y})-\operatorname{KL}(q(\mathbf{X}) \| p(\mathbf{X} \mid \mathbf{Y})) \\
& \leq \log p(\mathbf{Y})
\end{aligned}
$$

- the objective is to optimise $\mathcal{L}(\mathbf{X})$ with respect to the distribution $q(X)$

MOFA : How it works?

$$
\mathbf{Y}^{m}=\mathbf{Z} \mathbf{W}^{m T}+\boldsymbol{\epsilon}^{m}
$$

- Parameter estimation through variational Bayesian inference
- Evidence Lower Bound (ELBO)
- Iterative estimation process similar to the Expectation-Maximization (EM) algorithm
- each unobserved variable is updated one by one considering the others

$$
\begin{aligned}
& q(\mathbf{Z})=\prod_{k=1}^{K} \prod_{n=1}^{N} q\left(z_{n k}\right)=\prod_{k=1}^{K} \prod_{n=1}^{N} \mathcal{N}\left(z_{n k} \mid \mu_{z_{n k}}, \sigma_{z_{n k}}\right) \\
& q(\hat{\mathbf{W}}, \mathbf{S})=\prod_{m=1}^{M} \prod_{d=1}^{D_{m}} \prod_{k=1}^{K} q\left(\hat{w}_{d k}^{m}, s_{d k}^{m}\right)=\prod_{m=1}^{M} \prod_{d=1}^{D_{m}} \prod_{k=1}^{K} q\left(\hat{w}_{d k}^{m} \mid s_{d k}^{m}\right) q\left(s_{d k}^{m}\right)
\end{aligned}
$$

MOFA : How it works?

$$
\mathbf{Y}^{m}=\mathbf{Z} \mathbf{W}^{m T}+\boldsymbol{\epsilon}^{m}
$$

- Parameter estimation through variational Bayesian inference
- Evidence Lower Bound (ELBO)
- Iterative estimation process similar to the Expectation-Maximization (EM) algorithm
- Iteration stop when ELBO change is small enough
- Automatically drop factors with low variance explained...

MOFA results

Variance decomposition by factors
\rightarrow percentage of variance explains by each factor across each data modality

- Factor 1 captures a source of variability that is present mainly in the miRNA view
- Factor 2 captures variation that is present across all data modalities but mainly in mRNA.

MOFA results on W matrices

Feature weights by factor for each view/omic (ie a W^{m} column)
\rightarrow weights provide a signed score (association measure) for each feature for a given factor (below mRNA and miRNA for Factor 6, associated with Sample_Group variable)

MOFA results on Z matrix

Factor values regarding known groups of samples (ie a Z row)
\rightarrow detect association between a factor and a specific variable/feature

- Separation between control and MDD patients shows association with Factor 6
- Expression of CSRNP1 gene (ENSG00000144655) is also associated with Factor 6 (and MDD status)

MOFA characteristics

- Choice of \mathbf{k} (number of factors)
\rightarrow inactive factors can be removed automatically during learning (or through a user defined explained variance threshold)
- Random initialization : no guarantee of optimal solution during estimation
\rightarrow run MOFA several times (~ 10 times) with different initialisations (solved in MOFA+)
\rightarrow keep the model with the highest ELBO for downstream analysis
- Missing value
\rightarrow no need for imputation, missing values are ignored in the model thanks to probabilistic modelling
- Data pre-processing
\rightarrow no need as long as indicated distributions are respected (eg. Gaussian) \rightarrow to check ++

MOFA limits

- Differents views but on the same sample
- Mainly linear relationships are captured
- Assumes independence between features
- Unbalanced groups sensibility

