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Matrix multiplication, back to school
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Matrix factorization

Original Matrix Feature Matrix Coefficient
A W Matrix
H
m ~ m X k
n
n k

— approximate the large data matrix A using the product of 2 smaller matrices W and H

A=WxH+¢



Matrix factorization applications

Useful for dimensionality reduction (k features) and feature extraction (the H matrix)

Example: image processing with Non-Negative Matrix Factorization (W =0 and H = 0)
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— PCA can be formulated as an approximation of matrix factorization



Matrix factorization, PCA
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Matrix factorization, PCA pC1
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MOFA : PCA generalization

Samples.

Y™ =ZW™ + €™

m views for m omic sources
share the Z matrix between views

2 levels of sparsity on W™ :
- view and factor-wise
— active/inactive factors in a view
- feature-wise
— sparse biological phenomenon

Y™ and €™ can follow different models :
- Gaussian (continuous)
- Poisson (natural/count)
- Bernouilli (binary)




MOFA : How it works ?
Y™ =ZW™ 4 €™

e Parameter estimation through variational Bayesian inference
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MOFA : How it works ?
Y™ =ZW™ + €™

e Parameter estimation through variational Bayesian inference

e Evidence Lower Bound (ELBO)

- the true log marginal likelihood log p(Y') is lower bound by the ELBO £(X)

By / ¢(X) ( log pf((g) + log p(Y))dx

= logp(Y) — KL(¢(X)||p(X]Y))
< logp(Y)

- the objective is to optimise £(X) with respect to the distribution q(X)



MOFA : How it works ?
Y™ =ZW™ 4 ™

e Parameter estimation through variational Bayesian inference
e Evidence Lower Bound (ELBO)

e lterative estimation process similar to the Expectation-Maximization (EM) algorithm
- each unobserved variable is updated one by one considering the others
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MOFA : How it works ?
Y™ =ZW™ 4 ™

e Parameter estimation through variational Bayesian inference

e Evidence Lower Bound (ELBO)

e lterative estimation process similar to the Expectation-Maximization (EM) algorithm
e lteration stop when ELBO change is small enough

e Automatically drop factors with low variance explained...



MOFA results

Variance decomposition by factors
— percentage of variance explains by each factor across each data modality
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- Factor 1 captures a source of variability that is present mainly in the miRNA view

- Factor 2 captures variation that is present across all data modalities but mainly in mRNA.



MOFA results on W matrices

Feature weights by factor for each view/omic (ie a W™ column)
— weights provide a signed score (association measure) for each feature for a given factor (below
MRNA and miRNA for Factor 6, associated with Sample Group variable)
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Identified as significant in Component 1 of supervised RGCCA (the most associated to Sample_Group variable )



MOFA results on Z matrix

Factoré

Factor values regarding known groups of samples (ie a Z row)
— detect association between a factor and a specific variable/feature

o
0 0o®°

4 ® oo
Q,
A
14 ..‘ g

T
control

Factor6

VO = N

RNA expression

ENSG00000144655

p=13%e-10 °

[ee]
o °0% e
o L
o¥®e 6 ©°,
% 9 L3
OO \)J‘ o0

Factor values

Separation between control and MDD patients shows association with Factor 6

Expression of CSRNP1 gene (ENSG00000144655) is also associated with Factor 6 (and MDD status)
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@ control
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MOFA characteristics

e Choice of k (number of factors)
— inactive factors can be removed automatically during learning (or through a user defined explained
variance threshold)

e Random initialization : no guarantee of optimal solution during estimation
— run MOFA several times (~10 times) with different initialisations (solved in MOFA+)
— keep the model with the highest ELBO for downstream analysis

e Missing value
— no need for imputation, missing values are ignored in the model thanks to probabilistic modelling

e Data pre-processing
— no need as long as indicated distributions are respected (eg. Gaussian) — to check ++



MOFA limits

Differents views but on the same sample

Mainly linear relationships are captured

e Assumes independence between features

Unbalanced groups sensibility



