Briefings in Bioinformatics, 19(6), 2018, 1356-1369

doi: 10.1093/bib/bbx060
Advance Access Publication Date: 3 July 2017
Paper

A strategy for multimodal data integration: application
to biomarkers identification in spinocerebellar ataxia

Imene Garali, Isaac M. Adanyeguh,” Farid Ichou,* Vincent Perlbarg,
Alexandre Seyer, Benoit Colsch, Ivan Moszer, Vincent Guillemot,
Alexandra Durr, Fanny Mochel* and Arthur Tenenhaus®

* These authors contributed equally to this work.
Corresponding author: Arthur Tenenhaus, Laboratoire des Signaux et Systémes at CentraleSupelec Gif-sur-Yvette, France. Tel.: +33 (0)169851422; E-mail:
arthur.tenenhaus@centralesupelec.fr

Abstract

The growing number of modalities (e.g. multi-omics, imaging and clinical data) characterizing a given disease provides
physicians and statisticians with complementary facets reflecting the disease process but emphasizes the need for novel
statistical methods of data analysis able to unify these views. Such data sets are indeed intrinsically structured in blocks,
where each block represents a set of variables observed on a group of individuals. Therefore, classical statistical tools can-
not be applied without altering their organization, with the risk of information loss. Regularized generalized canonical cor-
relation analysis (RGCCA) and its sparse generalized canonical correlation analysis (SGCCA) counterpart are component-
based methods for exploratory analyses of data sets structured in blocks of variables. Rather than operating sequentially on
parts of the measurements, the RGCCA/SGCCA-based integrative analysis method aims at summarizing the relevant infor-
mation between and within the blocks. It processes a priori information defining which blocks are supposed to be linked to
one another, thus reflecting hypotheses about the biology underlying the data blocks. It also requires the setting of extra
parameters that need to be carefully adjusted.
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Here, we provide practical guidelines for the use of RGCCA/SGCCA. We also illustrate the flexibility and usefulness of
RGCCA/SGCCA on a unique cohort of patients with four genetic subtypes of spinocerebellar ataxia, in which we obtained
multiple data sets from brain volumetry and magnetic resonance spectroscopy, and metabolomic and lipidomic analyses.
As a first step toward the extraction of multimodal biomarkers, and through the reduction to a few meaningful components
and the visualization of relevant variables, we identified possible markers of disease progression.
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Introduction

The growing number of modalities (e.g. multi-omics, imaging
and clinical data) characterizing a given disease provides phys-
icians and statisticians with complementary facets of the dis-
ease process. However, novel statistical methods of data
analysis are needed to unify these views. This data set is indeed
intrinsically structured in blocks, where each block represents a
set of variables observed on a group of individuals. The number
and the nature of the variables can differ from one block to an-
other. Therefore, classical statistical tools cannot be applied
without altering the structure of the multiblock data set. The in-
tegration and visualization of these multivariate data sets is
also challenging, explaining the need of dedicated modeling al-
gorithms able to cope with the inherent properties of these
structured data sets.

In this article, we present the principles of regularized gener-
alized canonical correlation analysis (RGCCA) [1, 2], and its
sparse generalized canonical correlation analysis (SGCCA) coun-
terpart [3], a component-based framework for the integrative
exploration of multimodal and high-dimensional data sets. We
apply it to an original multiblock data set generated from a
unique, considering the rarity of these diseases, cohort of pa-
tients with spinocerebellar ataxia (SCA) and controls. We show
how the obtained results are useful, as SGCCA allows both the
extraction of biomarkers and the reduction of the multiblock
data sets into a few meaningful components that can be easily
described as a set of graphical representations. The main object-
ives of the article are thus to provide users with practical guide-
lines for the application of RGCCA and SGCCA, and to illustrate
their versatility and relevance on the SCA data set.

This article is organized as follows. In ‘Multiblock compo-
nent methods’ section, the RGCCA and SGCCA optimization
problems are briefly presented, and a synthetic overview of
methods, which are special cases of RGCCA/SGCCA, is given. In
‘Practical guidelines for using RGCCA and SGCCA’ section, prac-
tical guidelines defining how to use RGCCA/SGCCA are pro-
vided. ‘Case study: the SCA data set’ section illustrates on a real
and challenging multiblock data set, the usefulness of RGCCA/
SGCCA for data integration.

Multiblock component methods

The following section describes a general framework for multi-
block component methods, RGCCA and variations, that was pre-
viously published [1-3] and assessed [4-6]. For the sake of
comprehension of the use of these methods, their theoretical
bases will be briefly described in the next subsections. In short,
RGCCA is a rich technique that encompasses several important
multivariate analysis methods (see Table 1 for the overview).
The objective of RGCCA is to find, for each block, a weighted
composite of variables (called block component) summarizing
the relevant information between and within the blocks. The

block components are obtained such that (i) block components
explain well their own block and/or (ii) block components that
are assumed to be connected are highly correlated. Indeed,
RGCCA can process a priori information defining which blocks
are supposed to be linked to one another, thus reflecting
hypotheses about the biology underlying the data blocks. In
addition, RGCCA integrates a variable selection procedure,
called SGCCA, allowing the identification of the most relevant
features. Finally, as a component-based method, RGCCA/SGCCA
can provide users with graphical representations to visualize
the sources of variability within blocks and the amount of cor-
relation between blocks.

Regularized generalized canonical correlation analysis

We consider ] data matrices Xy, ..., X;, ..., Xj. Eachn x p; data
matrix X = [le, . ,x]-pj] is called a block and represents a set

of p; variables observed on n individuals. The number and the
nature of the variables may differ from one block to another,
but the individuals must be the same across blocks. We as-
sume that all variables are centered. The objective of multi-
block component methods is to find block components
y; =Xjwj, j=1,..., J (where w; is a column vector with p;
elements) summarizing the relevant information between and
within the blocks. The second-generation RGCCA [2] subsumes
50years of multiblock component methods (see [2] for a com-
plete review). It provides important improvements to the ini-
tial version of RGCCA [1] and is defined as the following
optimization problem:

J
MmaXw, . w, chkg(cov(xjwj, X W)
jk=1 s (1)

st (1-gvarXw) +glwil3=1, j=1, ..., J

where:

® The scheme function g is any continuous convex function and
allows to consider different optimization criteria. Typical choices
of g are the identity (leading to maximizing the sum of covari-
ances between block components), the absolute value (yielding
maximization of the sum of the absolute values of the covari-
ances) or the square function (thereby maximizing the sum of
squared covariances).
The design matrix C = {c;} is a symmetric ] xJ matrix of non-
negative elements describing the network of connections be-
tween blocks that the user wants to take into account. Usually,
Gk = 1 for two connected blocks and 0 otherwise.
® The 7; are called shrinkage parameters ranging from 0 to 1.
Setting the 7; to 0 will force the block components to unit vari-
ance (var(Xjw;) =1), in which case the covariance criterion
boils down to the correlation. The correlation criterion is better
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Table 1. Continued

Method

Design matrix (C)

)

Shrinkage constants (zj,j = 1,.

Scheme function g(x)

G=1j=1,...,

X

SUMCOV-2. SUMCOV-2 is the ‘one component per block’ version of MAXDIFF [22]
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SSQCOV-2. SSQCOV-2 is the ‘one component per block’ version of MAXDIFF B [23]

>
/N'
S

T

||

PLS path modeling—Mode B [25]

(Gjk), Gk = 1 for two connected

block and cj, = 0 otherwise

C=

.., X;is called superblock and is defined as the concatenation of the J blocks. (J + 1)th block defined as a superblock, the concatenation of the J blocks.

Note: X;,1 =Xy, .

A strategy for multimodal data integration | 1359

in explaining the correlated structure across data sets, thus dis-
carding the variance within each individual data set. Setting 1
to 1 will normalize the block weight vectors (ijw,- = 1), which
applies the covariance criterion. A value between 0 and 1 will
lead to a compromise between the two first options and corres-
pond to the following constraint w;’ (1]-1 +(1- rj)(l/n)X}-TXj)w)- =1
in Equation (1). The choices 7 =1, ;; =0 and 0 < 7; < 1 are, re-
spectively, referred as Modes A, B and Ridge.

From optimization problem in Equation (1), the term ‘gener-
alized’ in the acronym of RGCCA embraces at least three no-
tions. The first one relates to the generalization of two-block
methods—including Canonical Correlation Analysis [8],
Interbattery Factor Analysis [9] and Redundancy Analysis [10]—
to three or more sets of variables. The second one relates to the
ability of taking into account some hypotheses on between-
block connections: the user decides which blocks are connected
and which ones are not. The third one relies on the choices of
the shrinkage parameters allowing to capture both correlation
or covariance-based criteria.

Variable selection in RGCCA: SGCCA

The quality and interpretability of the RGCCA block compo-
nents y; = Xjwj, j=1,...,J are likely affected by the usefulness
and relevance of the variables of each block. Accordingly, it is
an important issue to identify within each block a subset of
significant variables that are active in the relationships be-
tween blocks. SGCCA extends RGCCA to address this issue of
variable selection. Specifically, RGCCA with all ¢, j=1, ..., ]
equal to 1 is combined with an L1 penalty that gives rise to
SGCCA [3]. The SGCCA optimization problem is defined as
follows:

max E} Cirg | cov(Xiw, Xw)) s.t Iwll, =1 j=1 J
Wa,o Jkg( jWij, AWk -t HW)‘||1§S}‘7}_ y s )y

=
)

where s; is a user-defined positive constant that determines
the amount of sparsity for wj, j=1, ...,J . The smaller the s,
the larger the degree of sparsity for w;.

Higher stage block components

It is possible to obtain more than one block component per
block for RGCCA and SGCCA. Higher stage block components
can be obtained using a deflation strategy [1]. This strategy
forces all the block components within a block to be uncorre-
lated. This deflation procedure can be iterated in a flexible way.
It is not necessary to keep all the blocks in the procedure at all
stages: the number of components summarizing a block can
vary from one block to another [2].

Implementation

The function rgcca () of the RGCCA package [26] implements a
monotonically convergent algorithm for the optimization prob-
lem in Equation (1), i.e. the bounded criterion to be maximized
increases at each step of the iterative procedure, which hits at
convergence a stationary point of Equation (1). Two numerically
equivalent approaches for solving the RGCCA optimization
problem are available. A primal formulation described in [1] re-
quires the handling of matrices of dimension p; x p;. A dual for-
mulation described in [27] requires the handling of matrices of
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dimension n x n. Therefore, the primal formulation of the RGCCA
algorithm will be used when n > p;, and the dual form will be pre-
ferred whenn < p;. The rgcca () function of the RGCCA package
implements these two formulations and selects automatically
the best one. The SGCCA algorithm is similar to the RGCCA algo-
rithm and keeps the same convergence properties. The algorithm
associated with the optimization problem in Equation (2) is avail-
able through the function sgcca () of the RGCCA package.

Moreover, multiblock data faces two types of missing data
structure: (i) if an observation i has missing values on a whole
block j and (ii) if an observation i has some missing values on a
block j (but not all). For these two situations, it is possible to ex-
ploit the algorithmic solution proposed for partial least squares
(PLS) regression path modeling to deal with missing data ([28],
p- 171). Work is in progress to implement this missing data solu-
tion within the RGCCA package.

Special cases of RGCCA

Many different multiblock methods were published for 50 years.
The choice of the ‘best’ multiblock method must be in line with
the nature of the data set and the objective of the analysis. The
introduction of the design matrix C, the shrinkage parameters
78’ and the scheme function g makes RGCCA highly versatile. A
practical guideline for appropriately specifying these extra par-
ameters is proposed in the next two sections. From a statistical
data analysis perspective, RGCCA subsumes a remarkably large
number of well-known methods as particular cases—including
principal component analysis (PCA) [7], generalized Canonical
Correlation Analysis (GCCA) [12], PLS regression [10], consensus
PCA (CPCA) [16], hierarchical PCA (HPCA) [14], multiple co-
inertia analysis (MCOA) [15], etc. For an exhaustive list of meth-
ods, see[2]. All the methods cited above (and many others) are
recovered with RGCCA by appropriately defining the triplet
(G, 1j, g). Table 1 gives the correspondence between the triplet
(G, 7, g) and the associated methods. SGCCA offers a sparse
counterpart to all the covariance-based methods of RGCCA.
RGCCA/SGCCA provides a framework for exploratory data ana-
lysis of multiblock data sets that has immediate practical conse-
quences for a unified statistical analysis and implementation
strategy. It is noteworthy that a complete review on dimension re-
duction approaches for simultaneous exploratory analyses of mul-
tiple data sets, and especially multi-omics data sets, has been
recently published [5]. In that review, RGCCA/SGCCA is discussed
and appears to occupy a key position as many of the single-block,
two-block and multiblock component methods—referred as PCA
(Principal Component Anlaysis), SPCA (sparse Principal Component
Anlaysis), CCA (Canonical Correlation Analysis), RDA (Redundancy
analysis), rTCCA (Regularized canonical correlation), SCCA (sparse
Regularized canonical correlation), PLS (Partial Least Squares), sPLS
(sparse Partial Least Squares), sSPLSDA (sparse Partial Least Squares
- dicriminant analysis), cPCA (consensus PCA), CIA (Co-Inertia
Analysis), multiple factor analysis (MFA), MCIA (Multiple Co-Inertia
Analysis) and GCCA (Generalized Canonical Correlation Analysis)—
are special cases of RGCCA/SGCCA.

In the next section, we provide some guidelines to choose
the triplet (C, tj, g) according to the objectives of the user and
the nature of the data.

Practical guidelines for using RGCCA
and SGCCA

There are eight steps, discussed hereafter, that need to be
applied: (i) construction of the multiblock data set, (ii)

preprocessing, (iii) definition of the between-block connections,
(iv) determination of the shrinkage or sparsity parameters, (v)
choice of the scheme function, (vi) determination of the number
of components per block, (vii) visualization of the results and
(viii) assessment of the reliability of parameter estimates.

Construction of the multiblock data set

The variables that compose each block have to be defined care-
fully: not only according to their nature (e.g. one block that con-
tains all the voxels of an image, one block for all the
metabolites, etc.) but also according to external information.
Nowadays, a huge amount of external information is available
and can be used to define each block. For example, a block that
contains all the metabolites can be divided into several data
blocks; hence, metabolites belonging to one pathway are gath-
ered within the same block. A block that contains all the voxels
of an image can be grouped by regions: voxels belonging to one
specific region are then gathered within the same block. This
grouping strategy makes more interpretable blocks and facili-
tates the interpretation of the RGCCA/SGCCA model. RGCCA/
SGCCA can be viewed as a ‘divide and conquer’ strategy that
allows incorporating prior information when defining the
blocks.

Preprocessing

In general, and especially for the covariance-based criterion, the
data might be preprocessed to ensure comparability between
variables and blocks. To make variables comparable, standard-
ization is applied (zero mean and unit variance). To make blocks
comparable, a strategy is to divide each block by the square root
of its number of variables [16]. This two-step procedure leads to
trace X;X,-) =n for each block (i.e. the sum of the eigenvalues
of the covariance matrix of X; is equal to 1 whatever the block).
Such a preprocessing will be implicitly used throughout this
article.

Another way to make blocks more comparable is to divide
each block X; by the square root of the first eigenvalue of
1X/X;. This is exactly the normalization procedure used for
MFA [18]. The rationale of this normalization is the same as in
PCA where variables are standardized to have the same influ-
ence in the analysis; here, it can be seen as an extension to
blocks of variables where the first singular value plays the
role of the standard deviation. This second strategy may be
preferred in a situation where the numbers of uninformative
and noisy variables are unbalanced between blocks. General
guidelines for centering and scaling in component analysis
are available in [29]. Several normalization strategies used in
the context of simultaneous component analysis are dis-
cussed in [30].

Definition of the design matrix C

The between-block connections are encoded through the design
matrix C = (cj); usually cj = 1 for two connected blocks and 0
otherwise. The customization of the design matrix can be
defined according to biological assumptions reflecting the biol-
ogy underlying the data blocks. For instance, multi-omics data
(transcriptomics, metabolomics, etc...) and other modalities
such as neuroimaging, electrophysiological data and scores of
disease severity are routinely acquired to study the complexity
of the neurodegenerative cascades. It can be roughly considered
that the path between omics data and behavioral data is medi-
ated by neuroimaging data (i.e. no direct relationship between
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omics and behavioral data is imposed). The prior information
on the between-block connections can be injected in the design
matrix.

Furthermore, from a statistical viewpoint, the design ma-
trix is a flexible way to reach one of the methods listed in
Table 1.

Determination of the shrinkage parameters

0<7j<1, j=1, ..., J and the sparsity parameter

Sj, j=1, O |

The RGCCA model introduces some extra parameters, particu-
larly a shrinkage parameter. The shrinkage parameters 0 <
< 1, j=1, ..., ] interpolate smoothly between maximizing the
covariance (all 7; = 1) and maximizing the correlation (all ¢; = 0).
More precisely, we can define the choice of the shrinkage par-
ameters by providing interpretations on the properties of the re-
sulting block components:

® 7; =1 yields the maximization of a covariance-based criterion. It
is recommended when the user wants a stable component (large
variance) while simultaneously taking into account the correl-
ations between blocks. The user must, however, be aware that
variance dominates over correlation.

7j = 0 yields the maximization of a correlation-based criterion. It
is recommended when the user wants to maximize correlations
between connected components. This option can yield unstable
solutions in case of multicollinearity and cannot be used when a
data block is rank deficient (e.g. n < pj).

0 < 77 < 11is a good compromise between variance and correl-
ation: the block components are simultaneously stable and as
well correlated as possible with their connected block compo-
nents. This setting can be used when the data block is rank defi-
cient. Ledoit and Wolf [31] consider Mj = 51+ (1 — r)-)(l/n)X)-TXI- as
a shrinkage estimate of the true covariance matrix Xj related to
block j. In case of multicollinearity within blocks or when the
number of observations is smaller than the number of variables
(Pj>n), the sample covariance matrix ('l/n)XjT X; is a poor
estimation of the true covariance matrix. The usual strategy for
finding a better estimation is to consider the class of linear com-
binations of the identity matrix and the sample covariance
matrix, {51+ (1-1)(1/n)X/X;} [32]. Shrinkage parameters be-
tween 0 and 1 allow stepping closer to the correlation criterion,
even in the case of high multicollinearity or when the number of
individuals is smaller than the number of variables. For each
block, the determination of the shrinkage parameter is made
fully automatic by using one of the various formulas that have
been proposed for finding an optimal shrinkage parameter [32].
Depending on the context, the shrinkage parameters should also
be determined based on V-fold cross-validation.

Barker and Rayens [33] PLS for discrimination offer a good
opportunity to illustrate the impact of the shrinkage param-
eters. They consider a block X of explanatory variables and a
block Y of dummy variables describing a categorical variable.
They are looking for a block component Xa (with a normalized)
and a standardized component Yb maximizing the following
criterion:

max cor’(Xa, Yb) x var(Xa).
a,

The rationale of the Barker and Rayens’s criterion is based on
the following idea: we are not looking for a block component Yb
that explains its own block well (as Y is a group coding matrix) but
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one that correlates with Xa, hence removing from the covariance
criterion (cov?(Xa, Yb) = cor?(Xa, Yb) x var(Xa) x var(Xb)), the
var(Yb) part. Using the RGCCA formalism, the Barker and Rayens’s
optimization problem is recovered as follows:

max cov’(Xa, Yb) s.t

llall, =1 and var(Yb) =1,
a, b
thatis fortx = 1and ty = 0.

The choice to set tx = 1 and more generally to set 7; equals
to 1in the optimization problem in Equation (1) is to some ex-
tent surprising. Indeed, it yields a sample covariance matrix
equal to the identity for each block. It corresponds to the
highest level of regularization that can be applied to RGCCA.
The level of regularization can be relaxed by decreasing the
value of ;. However, in high-dimensional settings, the high-
est level of regularization has proven to be necessary or even
insufficient [34, 35]. Additional penalties that promote spars-
ity are often required. The sparsity parameter s;, j=1, ..., J
is usually set based on cross-validation procedures (see next
section for an illustration). Alternatively, values of s;, j=1,
..., J can simply be chosen to result in desired amounts of
sparsity.

Choice of the scheme function g

It is possible to choose any continuous convex function. In the
literature, classical scheme functions are g(x) =x (horst
scheme), g¢(x) = x| (centroid scheme), g(x)=x> (factorial
scheme) or, more generally, for any even integer m, g(x) = x™
(m-scheme). The horst scheme penalizes structural negative
correlation between block components, while both the centroid
scheme and the m-scheme enable two components to be nega-
tively correlated. ‘How the results of RGCCA/SGCCA depend on
the values of m?’ The answer to this question is related to the
notion of fairness. According to [22], a fair model is a model
where all blocks contribute equally to the solution in opposition
to a model dominated by only a few of the J sets. If fairness is a
major objective, the user must choose m=1. m>1 is preferable if
the user wants to discriminate between blocks [2]. In practice, m
is equal to 1, 2 or 4. The higher the value of m, the more the
method acts as block selector [2].

Determination of the number of block components

Cross-validation is usually used to determine the number of
block components to retain. Depend on the context (supervised
or unsupervised), two types of cross-validation can be con-
sidered in the framework of RGCCA/SGCCA:

a. When the analysis is oriented toward the prediction of a
specific phenotype, then the number of components per
block can be selected based on the cross-validated predic-
tion accuracy.

b. When no external information is available, then the number
of components per block can be estimated as follows. For
each block j, some percent of the elements of X; is removed
at random from the data matrix. The RGCCA block compo-
nents are estimated from this partially observed data set.
For each block, the missing values are imputed using the re-
construction formula. The number of components that re-
sults in the lowest sum of squared errors of the missing
values is retained.
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Besides, the average variance explained (AVE) by a block
component y; can also inform on the number of component to
retain. The AVE of Xj, denoted by AVE(X;), is defined as:

1 &
AVE(Xj) = v hZcotz(xﬂ,, Y;):
=

AVE(X;) varies between 0 and 1 and reflects the proportion
of variance captured by y;. The number of block components to
retain for X;j can be determined using the ‘elbow’ criterion or al-
ternatively, the number of components that explains a prede-
fined percentage of the total variance of X;.

Visualization of the results

As a component-based method, RGCCA/SGCCA provides the
users with graphical representations, including factor plot, cor-
relation circle and biplot. These graphical displays allow visual-
izing the sources of variability within blocks, the relationships
between variables within and between blocks and the amount
of correlation between blocks.

Assessment of the reliability of parameter estimates

It is possible to use a bootstrap resampling method [36, 37] to
assess the reliability of parameter estimates obtained using
RGCCA/SGCCA. B bootstrap samples of the same size as the
original data are repeatedly sampled with replacement from
the original data. RGCCA/SGCCA is then applied to each boot-
strap sample to obtain the RGCCA/SGCCA estimates. For
RGCCA, we calculate the mean and variance of the estimates
across the bootstrap samples, from which we derived t-ratio
and P-value (under the assumption that the parameter esti-
mates exhibited asymptotic normality) to indicate how reliably
parameters were estimated. As several P-values are con-
structed simultaneously, Bonferroni or FDR corrections can be
applied for controlling the family-wise error rate or the false
discovery rate, respectively.

For SGCCA, the percentage of times a specific variable had a
non-null weight across bootstrap sample can be derived. In add-
ition, the stability of the selected variables can be measured ac-
cording to the Fleiss’k score [38] that estimates the agreement
among the B bootstrap samples. The Fleiss’x score is always
< 1, and the higher the value of « is, the more stable the meth-
ods are with respect to sampling. This resampling procedure,
intuitive and pragmatic, is classically used in the PLS commu-
nity. We may note that alternative resampling-based strategy
for variable and stability selection could be considered [39]. This
alternative approach has been tested for simultaneous compo-
nent analysis [40].

Table 2. Characteristics of the SCA cohort

Case study: the SCA data set
Description of the SCA data set

Neurodegenerative disorders have become the leading cause of
disability in Western societies, e.g. SCAs that are autosomal
dominant diseases responsible for severe movement disorders.
Heterogeneous and high-dimensional sources of information
such as omics data (transcriptomics, metabolomics, etc.) and
other modalities such as neuroimaging and/or electrophysiolo-
gical data are routinely acquired to study such complex dis-
eases. Disease mathematical models are thus critically needed
to identify biomarkers that are relevant to disease mechanisms
and can be used in therapeutic trials. As gene-based therapeutic
approaches are being developed in SCA [41], it becomes increas-
ingly important to identify readouts for trials with sufficient ef-
fect sizes. Clinical scores are useful, but insufficient, and a
single biomarker is likely to fail reflecting the complexity of the
neurodegenerative cascades leading to the onset and progres-
sion of SCA. An integrated multimodal biomarkers approach is
therefore needed to (i) better understand disease pathophysi-
ology and (ii) generate composite scores with greater effect sizes
than isolated biomarkers.

SCA belongs to the group of polyglutamine repeat disorders
and is characterized by a predominant atrophy of two brain re-
gions: the cerebellum and the pons. More than 40 genetically
different SCAs have been defined. The most common—SCA1,
SCA2 and SCA3, which together affect about half of the families
with a history of SCA—are caused by abnormal CAG repeat ex-
pansions, encoding elongated polyglutamine tracts within the
proteins associated with each type [42]. Progressive cerebellar
ataxia is the prominent symptom of all SCAs. In SCA7, patients
present with additional non-neurological signs commonly seen
in patients with mitochondrial dysfunction such as pigmentary
retinopathy and cardiomyopathy. Depending on the SCA geno-
type, CAG repeat length explains about 50-70% of the variability
in age at onset, i.e. individuals with longer repeats tend to have
an earlier onset [43].

The volume of the pons has been shown to be the most sensi-
tive to change in patients with SCA [44], including at the pre-
symptomatic phase of the disease in individuals carrying
abnormal CAG repeats but who have not yet developed symp-
toms [45]. Accordingly, the pons volume is likely to closely reflect
disease progression and can also be studied longitudinally in con-
trols, unlike motor scales evaluating cerebellar dysfunctions.
Therefore, following previous work that we conducted on meta-
bolic dysfunction in polyglutamine repeat disorders [46-48], we
chose to perform multiblock analyses to discover relevant
associations between the pons volume and various metabolic
modalities—calorimetry, metabolomics and lipidomics on
plasma, and metabolic imaging by magnetic resonance

Controls SCA1 SCA2 SCA3 SCA7 P-value

Number of subjects 35 18 14 22 13

Sex (M/F) 17/18 9/9 8/6 10/12 7/6

BMI (kg/m?) 25+4 24+6 27+5 24+5 23+3 0.104
Age at examination (years) 48+13 45+15 46+12 50+11 46+14 0.735
Age at disease onset (years) - 41*12 3511 42x11 38+13 0.397
SARA score (/40) 0.8+1 10+6 14+7 14+7 10+8

Disease CAG repeats - 48+7 40+3 70*6 43+5
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Table 3. Description of the SCA multiblock data set

Block X; Number of Modalities
variables
for X;

X : Arginine_Proline p1 =14 Metabolic

X, : BCAA_Threonine p2 =9 pathways

X3 : Carnitine_Lysine ps =7 including

X, : CE_sterols_bile_acids pa =47 754 metabolites

Xs : Essential_fatty_acids ps =15

X : Fatty_acids_Ketone_bodies ps =23
X7 : GABA_Glutamine_Histidine p; =18
Xs : Glucose_Alanine_Pyruvate pg =4

Xy : Glycerides po =177
Xy : Glycine_Serine P10 =16
X1 : Krebs_cycle P11 =5

X12 : Phenylalanine_Tyrosine p12 =12

X3 : Phospholipids P13 =292

Xi4 : Purines pua =14

Xis : Pynmldlnes Pis =9

X6 : Sphingolipids P16 =56

Xy7 : Tryptophan p17 =23

X8 : Urea_cycle p1s =5

X19 : Various P19 =8

X2 : MRS P20 =19 MRS of the cerebellum

X5, : CAL P2 =3 Calorimetry
information

Xzz 2 Superblock P22 =776 Xzz = [X17 Se— X21]

X3 : Pons p2s =1 The volume
of the pons

spectroscopy (MRS)—in patients with SCA compared with con-
trols, to gain insight into the pathophysiology of SCA. Our ultim-
ate goal—outside the scope of these analyses—is to study
prospectively these biomarkers in longitudinal studies and gener-
ate composite scores with greater effect sizes than the pons vol-
ume alone.

Patients and controls

The SCA study (NCT 01470729) was approved by the local ethical
committee (AOM10094, CPP Ile de France VI, Ref: 105-10) and per-
formed in a unique cohort of patients with SCA—SCA1 (n=18),
SCA2 (n=14), SCA3 (n=22) and SCA7 (n=13). Healthy controls
(n=35) with similar sex ratio, age and body mass index (BMI) than
patients were also recruited. All participants signed informed con-
sent to be included in the study. Their demographic characteristics
are summarized in Table 2. The scale for the assessment and rat-
ing of ataxia (SARA, score up to 40) was used to evaluate the sever-
ity of the disease [49]. The four SCA subtypes were comparable in
terms of duration of disease and SARA scores.

Application of SGCCA to the SCA data set

We collected standard clinical and brain volumetric metrics in
our cohort of SCA patients and healthy controls, and then
jointly analyzed modalities (or blocks) reflecting metabolic regu-
lations using calorimetry, metabolomics and lipidomics on
plasma, and metabolic imaging by MRS. A full description of the
methods used for the acquisition of each modality is available
as Supplemental Materials. The main objective of this integra-
tive analysis was to identify variables within each block that (i)
well explain their own block and (ii) influence the relationships
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between ‘connected’ blocks. The example of the SCA data set
was well suited to illustrate the versatility and relevance of
SGCCA, as the number of variables within each block made it
difficult to identify the most important variables, so that a vari-
able selection procedure was needed. In this section, we intend
to instantiate the eight-step guideline described in ‘Practical
guidelines for using RGCCA and SGCCA’ section. Moreover,
some additional advices to set up the extra parameters accord-
ing to the nature of the data and the scientific objectives are
given. We then illustrate how relationships between the most
relevant variables can be displayed and the results interpreted
by visualizing the observations and variables in a common
space.

Construction of the multiblock data set

The SCA data set was organized into 23 blocks. A detailed de-
scription of each block, including the number of variables per
block, is reported in Table 3. Annotated metabolites were classi-
fied into metabolite sets mapping various biochemical path-
ways. Nineteen sets were proposed including 754 metabolites
classified by the confidence level of annotation and detected
using our metabolomic and lipidomic methods. These blocks
X1,..., X19 were defined based on biological knowledge about
metabolic pathways from KEGG (Kyoto Encyclopedia of Genes
and Genomes), HMDB (Human Metabolome Database) and lit-
erature [50-56]. Blocks Xyo and X,; contained information on
brain MRS, denoted MRS, and calorimetry information,
denoted CAL. In the framework of CPCA and HPCA methods, a
superblock defined as the concatenation of all the blocks is
also used. In the SCA data set, the superblock was defined as
X292 = [X1,..., X21], and the corresponding global components
were derived. The space spanned by the global components
was viewed as a compromise space that integrated all the
modalities. This global space was useful for visualization and
eased the interpretation of the results. Finally, X,3 contained
the volume of the pons.

Preprocessing

Adjustments for confounding factors (age, gender and BMI)
were carried out by residualization (before preprocessing) for
each variable of the SCA data set. Residualization consists in re-
gressing each block by age, gender and BMI. To make blocks
more comparable, the residual variables were standardized
(zero mean and unit variance) and then divided by ,/p; within
each block.

Definition of the design matrix C

In the search of biomarkers associated with the four subtypes of
SCA—SCA1, SCA2, SCA3 and SCA7—we applied SGCCA to iden-
tify variables from the 21 blocks associated with the pons vol-
ume. The between-block connections associated with this
objective of analysis are presented in Figure 1. We chose a CPCA
structure oriented toward the explanation of the volume of the
pons by imposing an additional connection between the super-
block and the pons. The ‘divide and conquer’ strategy, by incor-
porating prior knowledge in the definition of the blocks, yielded
valuable improvements and more interpretable results.

Choice of the scheme function g

In this case, it was not expected that all the blocks, especially
the metabolic pathways, contributed equivalently to the pro-
cess. The block selector behavior of SGCCA was favored by using
the scheme function g(x) = x*.
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Figure 1. Between-block connections. Xi,..., Xp1 are connected to the superblock Xz, and X, is connected to the volume of the pons X,3. These between-block con-

nections are encoded through the design matrix C: ¢jz, =1, j=1, ...21,c23 = 1 and ¢, = 0 otherwise.

Determination of the sparsity parameter and the number

of block components

SGCCA requires determining the sparsity parameters. For each
block X;, the sparsity parametersj, j=1, ..., ] was set using a
leave-one-out cross-validation procedure. The value of the
parameter s; was chosen in a range defined by the following
formula 1+ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4} x P},
which allowed us to impose the same degree of sparsity for all
the blocks. To select the optimal value, linear models
predicting the volume of the pons with respect to the block
components were performed, and the optimal parameter
was selected with respect to the mean squared error of
these models. The optimal values were equal to
s=1+02x 5, j=1, ..., J.

Moreover, using a deflation strategy, four components per
block were built. We denote by y}h) (respectively, w](h)) the hth
block component (respectively, hth block weight vector) associ-
ated with X;.

Visualization

As the fourth global component was the most discriminant be-
tween patients and controls, the graphical display of the indi-
viduals obtained by crossing the global components yglz) and y(;z)
and marked with their status (SCA1, SCA2, SCA3, SCA7 and con-
trols) is shown in Figure 2. It is noteworthy that, despite some
overlap, the first global component exhibited a separation
among some SCA groups, especially patients with SCA7 who
were mainly grouped at the bottom. Moreover, the fourth global
component captured the discriminative information between

patients and healthy controls as controls concentrated on the
right and patients on the left.

Figure 3 shows the variables projected on the compromise
space. The sparsity-inducing penalty of SGCCA made the inter-
pretation of the variable space easier. Indeed, only the variables
associated with non-null elements in the block weight vector w}l)
and w}‘}), j=1, ..., J (ie. the ones that contribute to the con-
struction of the first and fourth dimensions) were projected on
the compromise space. A variable that is highly expressed for a
category of individuals will be projected with a high weight (far
from the origin) in the direction of that category. Likewise, the
most discriminant variables between patients and controls ap-
peared to be metabolites measured by MRS in the vermis such as
total creatine, a marker of energy metabolism and myoinositol
(myolns), a putative glial marker (Figure 3). Interestingly, we pre-
viously identified these variables as significantly different be-
tween patients and controls [52]. We also showed that these
metabolites were associated with SARA scores, which reflect
higher disease severity [52]. Moreover, the separation among pa-
tients with SCA, and especially patients with SCA7, seemed to be
driven by certain lipid species detected in plasma by lipidomic
analyses such as sphingolipids and phospholipids (Figure 3).

Figure 3 allows visualizing relationships between variables be-
longing to the different blocks. This figure suggests relationships
between blocks that can be confirmed by a block clustering. As
the fourth dimension was the most informative axis for the ex-
planation of the pons, we considered the variables that contribute
to the construction of y}‘l), j=1, ..., 21. Let X; be the block that
contains the variables associated with non-null elements in the
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Figure 2. Sample space associated with the dimensions 1 and 4 of the superblock. Individuals are marked according to the status (CTRL, SCA1, SCA2, SCA3 and SCA7).

CTRL: healthy controls.

block weight vector w}“). This subsection presents the block clus-
tering of X}, ..., Xy, X3 based on the McKeon’s measure [57].
The McKeon’s measure quantifies the homogeneity of a set of
block components and is defined by the following equation:

1
=02 Zj<k COV(Xj“’ﬁ X wy)
1 (X1W1, o svury X}W}) =] (3)
737, var(X;wy)

Equation (3) allows evaluating the homogeneity of the solu-
tion of any multiblock component methods. The computation
of the McKeon’s measure was carried out using RGCCA (full
between-block connections, 7; =1 for all blocks, and g(x) = x
for a fair analysis). Figure 4 represents the resulting block clus-
tering of Xj,..., X5,,Xo3. Blocks that were the most closely
related (e.g. GABA-glutamine-histidine and Krebs cycle) con-
tained variables that were partially redundant, as they be-
longed to more than one pathway and could thus serve as an
internal validation. As previously discussed, the volume of the
pons, the most distinctive feature in this model between pa-
tients and controls, clustered with the vermis MRS profile.
Lipid species, including sphingolipids and phospholipids, also
clustered with one another providing further validation to our
model.

Assessment of the reliability of parameter estimates
To assess the reliability of parameter estimates obtained using
SGCCA, 1000 bootstrap samples were derived. SGCCA was then
applied to each bootstrap sample (with the sparsity parameters
determined at the previous step) to obtain estimates w?, where
j denotes the block index and b the bootstrap sample index. The
percentage of times a specific variable had a non-null weight
was therefore derived. Figure 5 reports those percentages for
the blocks that contributed mostly to the construction of the
first global component.

Among the lipid species that tended to separate patients
with SCA7 from other patients, certain ceramides (Cer) were
especially represented in the sphingolipids group, as well as

certain phosphatidylcholines (PCs) in the phospholipids
group (Figure 5A and B, respectively). To our knowledge, to
date, there has been no metabolomic or lipidomic studies
conducted in SCA patients. However, one lipidomic analysis
was performed in the cerebellum of a preclinical model of
SCA2 and found significant changes in some sphingolipids
and cholesterol by-products [58]. Likewise, although conclu-
sions cannot be made without further biological validation, it
is noteworthy that both lipid classes, Cer and PC, are highly
expressed in the retina [59]. Furthermore, defects in their syn-
thesis are associated with pigmentosa retinopathy [60, 61],
which is a distinctive feature of SCA7 compared with SCA1,
SCA2 and SCA3.

Discussion and conclusion

R/SGCCA stands as a unique, general and original way for ana-
lyzing high-dimensional multiblock data sets. It allows the se-
lection of a few meaningful variables that underline the
between-block connections encoded by the design matrix C.
This design matrix is highly modular to fit any prior knowledge
the user has on the links between blocks. The variable selection
property results in models more easily interpretable than a
model based on all the variables. Being able to select variables
means that one can also study the stability of the variable selec-
tion process and possibly deduce patterns in the way the vari-
ables are selected under sampling. Moreover, the selection of a
few meaningful variables from longitudinal studies will enable
their combination into a composite score. Such a composite
score can be used as a proxy for disease severity and acts as a
basis for future therapeutic studies. Indeed, composite scores
are likely to provide both a better reflection of the disease pro-
cess pathology and a larger effect size than any biomarker
alone. This is crucial for the assessment of experimental treat-
ments in many neurodegenerative conditions, and especially in
rare diseases like SCA where patient’s recruitment is challeng-
ing. Finally, we showed that having blocks of heterogeneous
sizes and nature is taken into account routinely by SGCCA.
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Figure 4. Dendrogram for block clustering based on McKeon measure derived using RGCCA with a full between-block connections, 7; = 1 for all blocks, and g(x) = x.
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Likewise, the application of SGCCA on our SCA data set pin-
points at a possible role of some lipid species in the pathophysi-
ology of SCA7 compared with other SCA, which merits further

metabolic explorations.

Of note, RGCCA can also be applied to longitudinal data
using the multiway formalism, which accounts for multiple
measurements (either in time or in type of acquisition) of a
given feature [62]. Multigroup structure (i.e. same sets of
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variables observed on different groups of individuals) can also
be tackled with RGCCA: the aim is to uncover similar relation-
ships between variables across the various groups [63]. Beyond
the example data set used in this study, this framework proves
equally efficient to manage and interpret a large variety of bio-
logical data types, typically information produced by next-
generation sequencing approaches (e.g. DNA-seq, RNA-seq,
Methyl-seq, etc.) that are increasingly used to further investi-
gate normal or pathological biological processes.

Key Points

* The RGCCA-based integrative procedure requires the
setting of extra parameters that need to be carefully ad-
justed. We provide practical guidelines for the use of
RGCCA/SGCCA.

* The flexibility and usefulness of RGCCA/SGCCA was
illustrated on a unique cohort of patients with four gen-
etic subtypes of SCA, in which we obtained multiple
data sets from brain volumetry, MRS and metabolomic
and lipidomic data sets.

* We show how to graph RGCCA output.
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