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Outline

General Introduction, Key Concepts

Network Biology, Network Science, Complex Systemes, ...
Network Construction/Inference
Data sources, Distances/Similarities, Correlation, ...
Network Analysis
Measures
Degree, Centrality, Distances, ...
Algorithms
Diffusion, Clustering, Embedding, ...

Networks and Integration

Source: https://www3.nd.edu/~tmilenko/research.html

Multiplex Networks, Multilayer Networks, Knowledge Graphes, ...
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Key Concept 1. Systems Biology

>  Computational and mathematical analysis and modeling of complex biological systems.

o Complex Systems
Systems composed of many components
These components may interact with each others

Properties emerge from these interactions

The whole is greater than the sum of its parts
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Key Concept 1. Systems Biology

>  Computational and mathematical analysis and modeling of complex biological systems.

o Complex Systems
Systems composed of many components
These components may interact with each others
Properties emerge from these interactions

The whole is greater than the sum of its parts

Source: CatalyzeX. “DNN-Buddies: A Deep Neural
Network-Based Estimation Metric for the Jigsaw

Puzzle Problem: Paper and Code.” CatalyzeX.
Accessed September 1, 2023.
https://www.catalyzex.com/.
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Key Concept 1. Systems Biology

>  Computational and mathematical analysis and modeling of complex biological systems.

o Complex Systems o Systems Biology
Systems composed of many components Systems components: genes/proteins, ...
These components may interact with each others
Properties emerge from these interactions

The whole is greater than the sum of its parts



e
p /I F B 3 ° 3 ® Summer School Multi-omics Data Analysis and Integration
%. Eléﬁ: EIM Aussois, 03 - 08 September 2023

INSTITUT FRANGAIS DE ' BIOINFORMATIQUE

Key Concept 1. Systems Biology

>  Computational and mathematical analysis and modeling of complex biological systems.

o Complex Systems o Systems Biology
Systems composed of many components Systems components: genes/proteins, ...
These components may interact with each others Interactions: PPI, co-expression, ...

Properties emerge from these interactions

The whole is greater than the sum of its parts
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Key Concept 1. Systems Biology

>  Computational and mathematical analysis and modeling of complex biological systems.

o Complex Systems o Systems Biology
Systems composed of many components Systems components: genes/proteins, ...
These components may interact with each others Interactions: PPI, co-expression, ...
Properties emerge from these interactions Emerging properties: Phenotypes

The whole is greater than the sum of its parts
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Key Concept 1. Systems Biology

>  Computational and mathematical analysis and modeling of complex biological systems.

o Complex Systems o Systems Biology
Systems composed of many components Systems components: genes/proteins, ...
These components may interact with each others Interactions: PPI, co-expression, ...
Properties emerge from these interactions Emerging properties: Phenotypes
The whole is greater than the sum of its parts Phenotype does not emerge from isolated biological molecules but

from their interactions
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Key Concept 1. Systems Biology

>  Computational and mathematical analysis and modeling of complex biological systems.

o Complex Systems o Systems Biology
Systems composed of many components Systems components: genes/proteins, ...
These components may interact with each others Interactions: PPI, co-expression, ...
Properties emerge from these interactions Emerging properties: Phenotypes
The whole is greater than the sum of its parts Phenotype does not emerge from isolated biological molecules but

from their interactions

o Ecological Systems o Nervous System
Systems components: organisms, ... Systems components: neurons, axons, dendrites, ... o etc....
Interactions: prey, symbiosis, competition, ... Interactions: synaptic transmission, ...

Emerging properties: resilience, stability, ... Emerging properties: memory, cognition, ...
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Key Concept 2: Graph Theory/Network Science

> Networks are real-world systems modeled using graphs.

G =(V, E), where V is the set of verticesand E < (V*V)
is the set of edges

4 7
vertex edge node link

graph network

> Inpractice, the terms network and graph are often used interchangeably.
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Key Concept 2: Graph Theory/Network Science

> Various types of networks...

Undirected Directed Weighted
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Source: EMBL-EBI. “Graph Theory: Graph Types and Edge Properties | Network Analysis of Protein Interaction Data.” Accessed August 28, 2023.
https://www.ebi.ac.uk/training/online/courses/network-analysis-of-protein-interaction-data-an-introduction/introduction-to-graph-theory/graph-theory-graph-types-and-edge-properties/.
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https://www.ebi.ac.uk/training/online/courses/network-analysis-of-protein-interaction-data-an-introduction/introduction-to-graph-theory/graph-theory-graph-types-and-edge-properties/
https://www.ebi.ac.uk/training/online/courses/network-analysis-of-protein-interaction-data-an-introduction/introduction-to-graph-theory/graph-theory-graph-types-and-edge-properties/
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Network Science and Systems Biology

. G =(V, E), where V is the set of vertices and E S
o  Systems Biology (V*V) is the set of edges

Systems components: genes/proteins, ...
Interactions: PPI, co-expression, ...
Emerging properties: Phenotypes

Phenotype does not emerge from isolated biological molecules but
from their interactions

/

PPi

network

Protein

Graph theory/network science: a powerful toolbox for representing and studying complex systems.
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Adjacency matrix

Undirected graph G(V,E) Directed graph G(V,E) Weighted graph G(V,E)

Vi UV V3 Uy

vilof1]o]1 vilolofof vy | 0|04l o |os
vyl o] vyl ool v, |04 0 |03]01
valof1fof1 vzlo0|1]|ofo V3| 003|005
ve|lr |1 f1]o0 va|0|O[1]0 Uy (04 (02| 05| 0
Undirected -> Symmetric Directed -> Asymmetric
adjacency adjacency

Source: Xu, Mengjia. “Understanding Graph Embedding Methods and Their Applications.” SIAM Review 63 (November 4,2021): 825-53. https://doi.org/10.1137/20M1386062.


https://doi.org/10.1137/20M1386062
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Incidence matrix

Undirected graph G(V,E)
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Source: Xu, Mengjia. “Understanding Graph Embedding Methods and Their Applications.” SIAM Review 63 (November 4, 2021): 825-53. https://doi.org/10.1137/20M1386062.
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Data sources

> Expert knowledge and literature
> High-throughput screening

> Inference from (omics) data

Source: https://www3.nd.edu/~tmilenko/research.html.


https://www3.nd.edu/~tmilenko/research.html
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Source 1. Expert knowledge and literature

Biological Pathways
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Source: Courtesy of Anais Baudot
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Source 2: High-throughput screening
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Source: Courtesy of Anais Baudot
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Source 3: Inference from (Omics) data

>  Basically, you need two things:

o Adataset with the values of features for various samples
o Analgorithm to relate your features (e.g. gene network) or samples (e.g. patient network)
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Source 3: Inference from (Omics) data

>  Basically, you need two things:

o Adataset with the values of features for various samples
o Analgorithm to relate your features (e.g. gene network) or samples (e.g. patient network)

>  The choice of the algorithm depends on your dataset and the type of interaction you want to model (similarity,
dependency,...). It can be:

o  Any type of similarity or distance
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Source 3: Inference from (Omics) data

>  Basically, you need two things:

o Adataset with the values of features for various samples
o Analgorithm to relate your features (e.g. gene network) or samples (e.g. patient network)

>  The choice of the algorithm depends on your dataset and the type of interaction you want to model (similarity,
dependency,...). It can be:

o  Any type of similarity or distance

o  Aregression model

relationship betweenjand i

Xj=po+P)Xi+e
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Source 3: Inference from (Omics) data

>  Basically, you need two things:

o Adataset with the values of features for various samples
o Analgorithm to relate your features (e.g. gene network) or samples (e.g. patient network)

>  The choice of the algorithm depends on your dataset and the type of interaction you want to model (similarity,
dependency,...). It can be:

o  Any type of similarity or distance o  ABayesian model
P (Xj/X))
o  Aregression model

relationship betweenjand i

Xj=po+P)Xi+e
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Source 3: Inference from (Omics) data

>  Basically, you need two things:

o Adataset with the values of features for various samples
o Analgorithm to relate your features (e.g. gene network) or samples (e.g. patient network)

>  The choice of the algorithm depends on your dataset and the type of interaction you want to model (similarity,
dependency,...). It can be:

o  Any type of similarity or distance o  ABayesian model
P (Xj/X))

o  Aregression model ) ) )
o  Acorrelation metric (more about this soon!)

relationship betweenjand i

o etc..
Xj=po+P)Xi+e
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Source 3: Inference from (Omics) data

>  Basically, you need two things:

o Adataset with the values of features for various samples
o Analgorithm to relate your features (e.g. gene network) or samples (e.g. patient network)

>  Often, the similarity/distances/correlations/... are thresholded:

Unthresholded Moderate thresholding Severe thresholding
o
~
\\‘ @ \./ : .7l o  Eliminating spurious (weak) associations
o  Emphasizing topological properties

\“/ \“ .\ o Easing computational and storage burden

T © w0 © m— 0 of large graphs

s Strong link

Moderate

Source: Zalesky, Andrew. “Network Statistics and Thresholding”
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Studying Network Topology

>  Topology is the way in which the nodes and the edges are arranged within a network.

o  Robustness of a network
o  Hubnodes

o  Essential nodes

o  Paths/accessibility

o  Communities

Nk

Ring Mesh Star Fully Connected
Line Tree Bus

Source: “Network Topology.” In Wikipedia, August 30, 2023.
https://en.wikipedia.org/w/index.php?title=Network_topology&oldid=1172927659.



e
p /l F B 3 ° 3 ® Summer School Multi-omics Data Analysis and Integration
é. EIM: Eléﬁ‘. Aussois, 03 - 08 September 2023

INSTITUT FRANGAIS DE ' BIOINFORMATIQUE

Metrics in network analysis: Node Degree

>  Thedegree of a node in a network is the number of edges that are incident to the node.

> Observing the degree distribution of a network can reveal interesting properties:
o  Overall connectivity

a. b. '
0.75
Py

0.5
0.25 I
. Al
0 1 2 k 3 4

Source: Courtesy of Anais Baudot
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Metrics in network analysis: Node Degree

>  Thedegree of a node in a network is the number of edges that are incident to the node.

> Observing the degree distribution of a network can reveal interesting properties:
o  Overall connectivity
o  Presence of hubs (i.e. nodes with #links >> avg(#links))

(c)

Source: Bentley, Barry. “Connectomics of Extrasynaptic Signalling: Applications to the Nervous System of

Caenorhabditis Elegans,” 2017. https://doi.org/10.17863/CAM.16873.


https://doi.org/10.17863/CAM.16873
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Metrics in network analysis: Node Degree

>  Thedegree of a node in a network is the number of edges that are incident to the node.

> Observing the degree distribution of a network can reveal interesting properties:
o  Overall connectivity
o  Presence of hubs (i.e. nodes with #links >> avg(#links))
o  Scale-free property
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Metrics in network analysis: Node Degree

(a)

>  The degree of a node in a network is the number of edges that

> Observing the degree distribution of a network can reveal int

Overall connectivity

@]
Presence of hubs (i.e. nodes with #links >> avg(#links))

O
o  Scale-free property

(b)

P(k)

k
Random Network

Source: Bentley, Barry. “Connectomics of Extrasynaptic Signalling: Applications to the Nervous System of

Caenorhabditis Elegans,” 2017. https://doi.org/10.17863/CAM.16873.
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Metrics in network analysis: Node Degree

(a) (c)
>  The degree of a node in a network is the number of edges that
> Observing the degree distribution of a network can reveal int
o  Overall connectivity
o  Presence of hubs (i.e. nodes with #links >> avg(#links))
o  Scale-free property
(b) (d)
E
0.14
’::‘ g 0014
0.0014
0.00014
K T e T
k
Random Network Scale-free Network

(plot in log-log scale)

Source: Bentley, Barry. “Connectomics of Extrasynaptic Signalling: Applications to the Nervous System of

Caenorhabditis Elegans,” 2017. https://doi.org/10.17863/CAM.16873.
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Metrics in network analysis: Node Degree

(a) (c)
>  The degree of a node in a network is the number of edges that
> Observing the degree distribution of a network can reveal int
o  Overall connectivity
o  Presence of hubs (i.e. nodes with #links >> avg(#links))
o  Scale-free property
2 |45 Manynodeswithonly afew (b) @
£ -«
= |+, links
£ o 1
: |73 Power-law distribution : 0.1
E Iy ;E ;:: 0014
% :{ i 00011
E | N A few nodes with many links 1 0.0001
4
4 , . :
* 4 ¥ kol . \ k 1 10 100 1,000
TUr A e Fh e :
Number of links (K] Random Network Scale-free Network
(plot in log-log scale)
Source: nesta. “The Rise of the Platform Economy.” Accessed August 28, 2023. Source: Bentley, Barry. “Connectomics of Extrasynaptic Signalling: Applications to the Nervous System of

https://www.nesta.org.uk/blog/rise-platform-economy/. Caenorhabditis Elegans,” 2017. https://doi.org/10.17863/CAM.16873.


https://www.nesta.org.uk/blog/rise-platform-economy/
https://www.nesta.org.uk/blog/rise-platform-economy/
https://doi.org/10.17863/CAM.16873
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Metrics in network analysis: Node Degree

>  Thedegree of a node in a network is the number of edges that are incident to the node.

> Observing the degree distribution of a network can reveal interesting properties:

Number of nodes with k links

o  Overall connectivity
o  Presence of hubs (i.e. nodes with #links >> avg(#links))
o  Scale-free property

>

[
-~

Many nodes with only a few

e
< links
e o

e . . .
: ; Power-law distribution
1ot

. o
S
iy

v A few nodes with many links
CETVS /N

& %

oA Y e g

Number of links (k)

Source: nesta. “The Rise of the Platform Economy.” Accessed August 28, 2023.

https://www.nesta.org.uk/blog/rise-platform-economy/.

Biological interpretation ?

o  Growth with preferential attachment (“rich get
richer”) -> hub nodes

o  Robust torandom attack, sensitive to targeted
attacks


https://www.nesta.org.uk/blog/rise-platform-economy/
https://www.nesta.org.uk/blog/rise-platform-economy/
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Are biological hetworks scale-free ?

Scale-Freeness and Biological Networks

Masanori Arita &

The Journal of Biochemistry, Volume 138, Issue 1, Jul. 2005, Pages 1-4, = P PI
https://doi.org/10.1093/jb/mvi094
Published: 01 July2005 Article history v

> Metabolic networks

COMMENTARY | 01 NOVEMBER 2005

Scale-free networks in cell biology @3
In collection: Metabolism

Réka Albert

>  Regulatory networks

=+ Author and article information
JCell Sci (2005) 118 (21): 4947-4957.
https://doi.org/10.1242/jcs.02714

> J Comput Biol. 2006 Apr;13(3):810-8. doi: 10.1089/cmb.2006.13.810.

How scale-free are biological networks

Raya Khanin ', Ernst Wit

Affiliations + expand
PMID: 16706727 DOI: 10.1089/cmb.2006.13.810
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Are biological hetworks scale-free ? A debatel!

Article | Open Access | Published: 04 March 2019

Scale-free networks arerare

Scale-Freeness and Biological Networks

Masanori Arita &

The Journal of Biochemistry, Volume 138, Issue 1, Jul. 2005, Pages 1-4,

https://doi.org/10.1093/jb/mvi094

Published: 01 July2005 Article history v

COMMENTARY | 01 NOVEMBER 2005

Scale-free networks in cell biology @3

In collection: Metabolism

Réka Albert

=+ Author and article information
JCell Sci(2005) 118 (21): 4947-4957.
https://doi.org/10.1242/jcs.02714

> J Comput Biol. 2006 Apr;13(3):810-8. doi: 10.1089/cmb.2006.13.810.

How scale-free are biological networks

Raya Khanin ', Ernst Wit

Affiliations + expand
PMID: 16706727 DOI: 10.1089/cmb.2006.13.810

Biological

Anna D. Broido & & Aaron Clauset

Nature Communications 10, Article number: 1017 (2019) | Cite this article

75k Accesses | 440 Citations | 577 Altmetric | Metrics

Not
Scale Free

Super-Weak

Weakest
Weak
Strong

Strongest

310 (0.63) A +0.13

L 163 (0.33) v-0.14
94 (0.19) v -0.10

48 (0.10) ¥ - 0.09

30 (0.06) v -0.04

30 (0.06) > +0.02
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Are biological hetworks scale-free ? A debatel!

Article | Open Access | Published: 04 March 2019

Scale-free networks arerare

Scale-Freeness and Biological Networks

Anna D. Broido & & Aaron Clauset
Masanori Arita % Nature Communications 10, Article number: 1017 (2019) | Cite this article
The Journal of Biochemistry, Volume 138, Issue 1, Jul. 2005, Pages 1-4, 75k Accesses | 440 Citations | 577 Altmetric | Metrics
https://doi.org/10.1093/jb/mvi094 a
Published: 01 July2005 Article history v
Not
COMMENTARY | 01 NOVEMBER 2005 Scale Free 310 (0'63) A+ 0'13
Scale-free networks in cell biology @3
In collection: Metabolism
Réka Albert Super-Weak |- 163 (0.33) v -0.14
=+ Author and article information §
J Cell Sci(2005) 118 (21): 4947-4957. Ee))
https://doi.org/10.1242/jcs.02714 % Weakest 94 (01 9) v - 01 0
> J Comput Biol. 2006 Apr;13(3):810-8. doi: 10.1089/cmb.2006.13.810. @
o Weak 48 (0.10) v -0.09
How scale-free are biological networks
Raya Khanin ', Ernst Wit Strong 30 (006) v -0.04
Affiliations + expand
PMID: 16706727 DOI: 10.1089/cmb.2006.13.810 b Strongest 30 (0.06) » +0.02

> Inpractice, when inferring molecular networks (especially co-expression networks), researchers often aim to obtain
scale-free networks! You'll do it yourself in the WGCNA hands-on!
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Metrics in network analysis: Density

>  Thedensity of a network is the ratio of the number of edges with respect to the maximum possible number of edges (i.e.
the number of edges if the network was complete).

Graphe complet Kn

D(G) N |E|Kn

DG=0<=>|E|=O
De=1%6=Kn

Source: Courtesy of Anais Baudot
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Metrics in network analysis: Density

>  Thedensity of a network is the ratio of the number of edges with respect to the maximum possible number of edges (i.e.
the number of edges if the network was complete).

< > Are biological networks dense or sparse?

Mol Syst Biol. 2008; 4: 213.
i3 Published online 2008 Aug 5. doi: 10.1038/msb.2008.52

Gra phe com p| et Kn Survival of the sparsest: robust gene networks are parsimonious

Robert D Leclerc'2

|E| “Robustness implies a parsimonious network structure that is sparsely
|E| kn connected and not unnecessarily complex”

D(G) =

DG=0<=>|E|=O
De=1%6=Kn

Source: Courtesy of Anais Baudot
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Metrics in network analysis: Density

>  Thedensity of a network is the ratio of the number of edges with respect to the maximum possible number of edges (i.e.
the number of edges if the network was complete).

< > Are biological networks dense or sparse?

Article | Open Access | Published: 26 September 2017

Explorability and the origin of network sparsity in living

Mol Syst Biol. 2008; 4: 213.

i3 B Published online 2008 Aug 5. doi: 10.1038/msb.2008.52 SyStems
b Daniel M. Busiello, Samir Suweis, Jorge Hidalgo & Amos Maritan &
Gra phe com pl et Kn Survival of the sparsest: robust gene networks are parsimonious Scientific Reports 7, Article number: 12323 (2017) | Cite this article
Robert D Leclerc!2 2428 Accesses | 23 Citations | 39 Altmetric | Metrics
D( G) |E| “Robustness implies a parsimonious network structure that is sparsely
o |E | kn connected and not unnecessarily complex”

“We show that sparsity is an emergent property resulting from
De=0+ |E| =4 optimising both explorability and dynamical robustness, i.e. the
Dg=1& G=Kn capacity of the system to remain stable after perturbations of the

Source: Courtesy of Anais Baudot underlying dynamics”
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Metrics in network analysis: Distances and paths

>  Apathisasequence of edges which join a sequence of nodes
>  Thedistance between two nodes in a network is the length (i.e. number of edges) of the shortest path connecting them.

>  Thediameter of a network is the greatest distance between any pair of nodes in the network.

Source: Courtesy of Anais Baudot



TUT FRANCAIS DE ' BIOINFORMATIQUE SWITZERLAND

e
p /l F B \ -® 3 ° Summer School Multi-omics Data Analysis and Integration
é. elixir EIM Aussois, 03 - 08 September 2023

Metrics in network analysis: Betweenness

>  The edge betweenness is the number of shortest path running through an edge
>  The node betweenness is the number of shortest path running through a node

>  High edge/node betweenness -> “bottleneck”

BC[8|=0 BC[5) =6 BC[3] =3

Source: Courtesy of Anais Baudot
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Metrics in network analysis: Betweenness

The Importance of Bottlenecks in Protein Networks:
Correlation with Gene Essentiality and Expression Dynamics

Haiyuan Yu &, Philip M Kim B3, Emmett Sprecher, Valery Trifonov, Mark Gerstein

_ . . . ‘ BCl8) =0 BCl5) =6 BCl) =3
Published: April 20, 2007 « https://doi.org/10.1371/journal.pcbi.0030059

>  Bottleneck proteins are more likely to be essential proteins.

Bottleneck-ness (betweenness) is a much more significant indicator of essentiality than hub-ness (degree).

Bottleneck proteins are significantly less well coexpressed with their neighbors -> the network's topology is intricately
linked with the dynamics of gene expression.
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Outline

General Introduction, Key Concepts

Network Biology, Network Science, Complex Systemes, ...
Network Construction/Inference
Data sources, Distances/Similarities, Correlation, ...
Network Analysis
Measures
Degree, Centrality, Distances, ...
Algorithms

Diffusion, Clustering, Embedding, ...

Networks and Integration

Source: https://www3.nd.edu/~tmilenko/research.html

Multiplex Networks, Multilayer Networks, Knowledge Graphes, ...


https://www3.nd.edu/~tmilenko/research.html
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Algorithms for network analysis: Random Walk with Restart

>  State of the art “guilt-by-association” approach

Random walker - Step 0

> Similarity between a seed node and all other nodes in the network

> Used for node prioritisation, network clustering, network embedding, etc...

Node 4
Node 1 0.13
Node 2 0.10
0.13 Node 3 0.13
Node 4 0.22
Node 5 0.13
Node 6 0.05
Node 7 0.05
Node 8 0.08
Source: “Script to Animate the Path of a Random ;’Zjﬁ ?0 83‘:
Walk across a Graph - A Walker Starts at a Node and Node 11 0.04
de 12 .02
Takes Random Steps through the Graph, Tending to Nodett 20
Get ‘Stuck’ in Dense Subgraphs.” Gist. Accessed Nearby nodes, h|gher scores Ranking vector
Aueust 2 2028 More red, more relevant r
https://gist.github.com/clairemcwhite/7fb348acca2 2 }"4

84c464d751ba38ce72el. Source: Fast Random Walk with Restart and Its Applications. Hanghang

Tong, Christos Faloutsos and Jia-Yu (Tim) Pan. ICDM 2006 Dec. 18-22,
HongKong
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Algorithms for network analysis: Community detection

Binary interaction Functional modules Interaction Networks

Comprehensiveness

Inspired from P. Aloy, ECCB 2014
Courtesy of Anais Baudot
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Algorithms for network analysis: Community detection

>  Community detection = clustering for networks!

> Find groups of nodes (communities/modules/clusters) that are more similar to each other than to the other nodes

Dense internal connections,
sparse connection between
groups

Source: “Community Structure.” In Wikipedia, August 26, 2023.
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Algorithms for network analysis: Community detection

>  Community detection = clustering for networks!

> Find groups of nodes (communities/modules/clusters) that are more similar to each other than to the other nodes

Dense internal connections,
sparse connection between
groups

Source: “Community Structure.” In Wikipedia, August 26, 2023.

Why performing Community detection in biological networks ?

Human Gene Coexpression Network
mitochondrial metabolism

nuclear related o, and redox homeostasis

immune metabolism

response

CD antigens

and plasma

membrane
signals *

metalion 4

e homeostasis_/

- o o %

- ®  extracellular matrix

e |, andadhesion e J T Tl
A 4 - E » .
. .
- — 2 . .
—e T\ N . <l o
® € -
. .

cytoskeleton ®

Source: “Human Gene Coexpression.” Accessed August 29, 2023.
http://bioinfow.dep.usal.es/pages/coexpression/index.html.
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Algorithms for network analysis: Community detection

>  Community detection = clustering for networks!
> Find groups of nodes (communities/modules/clusters) that are more similar to each other than to the other nodes

Why performing Community detection in biological networks ?
Dense internal connections,
sparse connection between
groups

Protein complexes in a PPl network

Source: Ngom, Dr Alioune. “NETWORK CLUSTERING METHODS;" n.d.

Source: “Community Structure.” In Wikipedia, August 26, 2023.
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Algorithms for network analysis: Community detection

>  Community detection = clustering for networks!
> Find groups of nodes (communities/modules/clusters) that are more similar to each other than to the other nodes

Why performing Community detection in biological networks ?
Dense internal connections,
sparse connection between
groups

- Basal
]
- Her2

Threshold: 0.011

Source: “Community Structure.” In Wikipedia, August 26, 2023. Source: Morgane Térézol - SNF tutorial
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Algorithms for network analysis: Community detection

>  Clique-based methods (e.g. CliquePercolation)

Cliques are complete subgraphs.

Clique Strong community Weak community
b. ; c. ;

Source: Network Science by Albert-LaszI6 Barabasi. Accessed August 29, 2023.

http://networksciencebook.com/.
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Algorithms for network analysis: Community detection

>  Clique-based methods (e.g. CliquePercolation)

Cliques are complete subgraphs.

Clique Strong community Weak community
b. ; c. ;

Source: Network Science by Albert-LaszI6 Barabasi. Accessed August 29, 2023.

http://networksciencebook.com/.

Modularity optimisation (e.g. Louvain Algorithm)

How much more densely connected the nodes within a community are,
compared to how connected they would be in a random network.

a OPTIMAL PARTITION b. SUBOPTIMAL PARTITION

M=0.41 ; M=0.22 ;
c. SINGLE COMMUNITY d. NEGATIVE MODULARITY
M=0

Source: Network Science by Albert-LaszI6 Barabasi. Accessed August 29, 2023.
http://networksciencebook.com/.
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Algorithms for network analysis: Community detection

> Random-Walk based methods (e.g. Walktrap)

Random walks on a graph tend to get “trapped” into densely
connected parts corresponding to communities.

Random walker - Step 0

> and many other...

Source: “Script to Animate the Path of a Random Walk across a Graph - A Walker Starts at a
Node and Takes Random Steps through the Graph, Tending to Get ‘Stuck’ in Dense Subgraphs.”
Gist. Accessed August 29,2023
https://gist.github.com/clairemcwhite/7fb348acca2c84c464d751ba38ce72el.
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Algorithms for network analysis: Community detection

Network

Modularity
optimization
F
c
2 3
. 3
(]
— 10} =
Random walk or
Transform network Optimization algorithm diffusion process

Local

methods

Agglomerative
process

Merge set of
diverse predictions

Analysis | Open Access | Published: 30 August 2019

Assessment of network module identification across
complex diseases

Sarvenaz Choobdar, Mehmet E. Ahsen, Jake Crawford, Mattia Tomasoni, Tao Fang, David Lamparter,

Junyuan Lin, Benjamin Hescott, Xiaozhe Hu, Johnathan Mercer, Ted Natoli, Rajiv Narayan, The DREAM

Module Identification Challenge Consortium, Aravind Subramanian, Jitao D. Zhang, Gustavo Stolovitzky,

Zoltan Kutalik, Kasper Lage, Donna K. Slonim, Julio Saez-Rodriguez, Lenore J. Cowen, Sven Bergmann &

& Daniel Marbach &

Nature Methods 16, 843-852 (2019) | Cite this article
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Algorithms for network analysis: Active Modules

Biological Network

+

RNA-seq transcriptomics data

~log10(PValueAdjusted or FOR)
o 2 4 6 8 1

Find subnetworks of interest
aka “active modules”

Source: Courtesy of Anais Baudot
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Algorithms for network analysis: Network Embedding

A " B
. . . . e ® T
>  Find alow-dimensional representation of the nodes e . o g .o
. . P Embed ° N
of a network, while preserving the structural and e — o i i — ”~ o« 0
relational information present in the original hp i Fg T o€ ®
network. a b )
o Matrix factorisation, random-walk based @ T uet
| s °*
methods, auto-encoders, ... 2o Embedding
.
o  Avariety of downstream analysis " C'as:C: .
e.qg.
o  Easier analysis (low-dimensional, vector o ®
space) oo e« ®
. ®. oK : & ® | without
’ : ."" Embedding
. _® { ( ©
@ &9 o ) —
@ ‘ e I 8. \_", ) diffusion @
C Community detection D Alignment E  Function prediction

Source: Nelson, Walter, et al. "To embed or not: network embedding as a paradigm in
computational biology." Frontiers in genetics 10 (2019): 381.




e
p /I F B \ ° 3 ° Summer School Multi-omics Data Analysis and Integration
%. EIM EIM Aussois, 03 - 08 September 2023
SWITZERLAND FRANCE

INSTITUT FRANCAIS DE ' BIOINFORMATIQUE

Outline

General Introduction, Key Concepts

Network Biology, Network Science, Complex Systemes, ...
Network Construction/Inference
Data sources, Distances/Similarities, Correlation, ...
Network Analysis
Measures
Degree, Centrality, Distances, ...
Algorithms
Diffusion, Clustering, Embedding, ...

Networks and Integration

Source: https://www3.nd.edu/~tmilenko/research.html

Multiplex Networks, Multilayer Networks, Knowledge Graphs, ...


https://www3.nd.edu/~tmilenko/research.html
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Many Biological Networks

Correlation of
expression

PPI Complexes Pathways

~60 000 edges ~40 000 edges ~250 000 edges ~1 400 000 edges
Experimental Curated Inferred
networks networks networks

Source: Courtesy of Anais Baudot
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Many Biological Networks

THISISTRUE  THIS IS TRUE

R
e

~60 000 eq /I\

THIS ISTRUTH

Source: Courtesy of Anais Baudot
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Networks can easily be combined

ﬁfﬁﬁ

>  Temporal networks
o  Same nodes
o  Same type of interactions
o  Various time-points

Source: Courtesy of Anais Baudot
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Networks can easily be combined

multiplex 1

1 2 >  Multiplex networks

.;I :35\_‘: ‘ o Same nodes
‘éjﬂg — o Different types of interactions

>  Temporal networks
o  Same nodes
o  Same type of interactions
o  Various time-points

Source: Courtesy of Anais Baudot
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Networks can easily be combined

24

multiplex 1

>  Multiplex networks
o  Same nodes

Age < o Different types of interactions

>  Temporal networks
o  Same nodes
o  Same type of interactions
o  Various time-points

multiplex 1

>  Multilayer networks

o  Various node types

o Different types of interactions

o  Bipartite edges (across node types)

Source: Courtesy of Anais Baudot multiplex 3 multiplex 2
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Networks can easily be combined: Knowledge Graphs

>  Knowledge graphs ... are basically networks, but with different semantics
o  Represent real-world information as a set of entities and relationships

assoCiates. ha§
B I -, e b
i Pathways __~Cells
as W, g Sl
L\ TN
Compartments 5.5, wexress \@0; & %
e \@s’ﬁ%%’ regulates ﬁ@é"

66{?"

Functions "3

Compounds
f igerac{s Q%'\
Chémical Pharrr"l'a"(?ologic 12 entities 67 associations
entities class 450k nodes > 30M edges
has/ has/

Source: Fernandez-Torras, Adria, Miquel Duran-Frigola, Martino Bertoni, Martina Locatelli, and Patrick Aloy. “Integrating and Formatting Biomedical Data as Pre-Calculated
Knowledge Graph Embeddings in the Bioteque.” Nature Communications 13, no. 1 (September 9, 2022): 5304. https://doi.org/10.1038/s41467-022-33026-0.
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Random Walk with Restart for multilayer network

AN /AN

A12 /21 A2N [AN2

o1

m 72

Source: Baptista, Anthony, Aitor Gonzalez, and Anais Baudot. “Universal Multilayer Network Exploration by Random Walk with Restart.” Communications Physics 5, no. 1 (July 1,
2022): 1-9. https://doi.org/10.1038/s42005-022-00937-9.
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Multiplex Community Detection

All methods

Flattening Layer by layer Multilayer Multilayer
Non- % Pattern - Random e Label Random | | Within-group
weighted Weighted mining Consensus Spectral Density Walks Optimization propagation Walks connectivity
NWF WFec ABACUS EMCD PMM CLECC Infomap Glouvain MDLPA ACLcut ML-LCD
WFy SCML ML-CPM LART FCDMNN
WFoi MLink
MLMaOP
MMCD

Figure 4: A taxonomy of multiplex community detection algorithms

Source: Magnani, Matteo, Obaida Hanteer, Roberto Interdonato, Luca Rossi, and Andrea Tagarelli. “Community Detection in Multiplex Networks.” ACM Computing Surveys 54,

no. 3 (April 30,2022): 1-35. https://doi.org/10.1145/3444688.
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Embedding for Knowledge Graphs

a Path Count
(DWPC)
S o0 o /I\

Pathways ~Celis

Compartments 8%

3. Connect _— — 4.Builda
= e datasets network

Functions

e TR, <o ST
CPD-int-GEN-ass-DIS

perll
- " 5. Random walk
2. Metapath Charaterization Evaliation;;;; trajectories
design H“ o-0
Drug Target
2 o-® & Path length
|~ Treatment = 7]
®-® g
CPD GEN DIS IS bidi =
FPR v 4 FPR 3
oy A 5
En_\beddmg @ g
Interacts  Associates Distances 2
1.ldentify and define a &
biological relationship ®
nnotate

Legend with abbreviations

CLL: Cell DIS: Disease  PGN: Perturbagen
CHE:Chem. Entity DOM: Domain  PHC: Pharmaco. Class
CPD: Compound GEN: Gene PWY: Pathway

CMP: Compartment  MFN: Function  T15: Tissue

Source: Fernandez-Torras, Adria, Miquel Duran-Frigola, Martino Bertoni, Martina Locatelli, and Patrick Aloy. “Integrating and Formatting Biomedical Data as Pre-Calculated
Knowledge Graph Embeddings in the Bioteque.” Nature Communications 13, no. 1 (September 9, 2022): 5304. https://doi.org/10.1038/s41467-022-33026-0.
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Outline

General Introduction, Key Concepts

Network Biology, Network Science, Complex Systems, ...
Network Construction/Inference
Data sources, Distances/Similarities, Correlation, ...
Network Analysis
Measures
Degree, Centrality, Distances, ...
Algorithms

Diffusion, Clustering, Embedding, ...

Networks and Integration

Multiplex Networks, Multilayer Networks, Knowledge Graphs, ...

Source: https://www3.nd.edu/~tmilenko/research.html.

Conclusion


https://www3.nd.edu/~tmilenko/research.html

®
p /l F B N _® N -® Summer School Multi-omics Data Analysis and Integration
é. elixir EIM Aussois, 03 - 08 September 2023

SWITZERLAND

Networks are great

e Relationships
e Interpretable/Intuitive

e Scaffold for integration
- heterogeneous data
- previous knowledge

e Toolbox of graph theory

Source: Courtesy of Anais Baudot
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ands-on : WGCNA

It's your turn now! Have fun!
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Weighted Gene Correlation Network Analysis (WGCNA)

Software | Open Access | Published: 29 December 2008

WGCNA: an R package for weighted correlation
network analysis

Peter Langfelder & Steve Horvath

BMC Bioinformatics 9, Article number: 559 (2008) | Cite this article

385k Accesses | 11547 Citations | 88 Altmetric | Metrics

1,887 1,234 016 1,008

Genetics Heredity Multidisciplinary Sciences

Biotechnology Applied
Microbiology

26007
2400

2200+
1,126 2000
Plant Sciences

1800 —
1600

1,394 703 572 1400 |

3 & . Medicine Research Experimental Neurosciences
Biochemistry Molecular Biology 1200

1000
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Source: www.webofscience.com
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Weighted Gene Correlation Network Analysis (WGCNA)

>  Gene co-expression

o | o
<
— 3
()
[en
UV o
O &7
e
L o ]
n o
0
()
bt
()
o
o |
®Q |s

3.0 3.2 3.4 3.6 3.8 4.0
expression Gene2



DE ' BIOINFORMATIQUE SWITZERLAND FRANCE

[ ]
p /l F B 3 ® N -® Summer School Multi-omics Data Analysis and Integration
(3 elixir EI?«;' Aussois, 03 - 08 September 2023

Weighted Gene Correlation Network Analysis (WGCNA)

>  Gene co-expression
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Weighted Gene Correlation Network Analysis (WGCNA)

>  Gene co-expression

A. Signed correlations

Gene1815
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Source: Horvath, S., and P. Langfelder. “Tutorial for the WGCNA Package for R”
2011.
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Weighted Gene Correlation Network Analysis (WGCNA)

>  Co-expressed gene modules

Co-expression Network construction

Module definition

Gene 15 expression

Gene 13 expression
[o)
g
3
&

- Co-expressed //’

gene module ;

Gene 4 expression

R=0.40
Gena 9 oxprossion D>
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7
P

R=079 . R=0.96

Gene 11expression

Gene 6 expression

Gene 3 expression Gene 3 expression

~

Guilt-by-association
predictions

Gene of

E Finding hub
E genes

Potential disease Disease-associated
gene module

/

@@@ .

Regulatory network
‘ \ identification

Differential co-expression
Enrichment ana|yses
analyses

Source: Dam, Sipko van, Urmo Vésa, Adriaan van der Graaf, Lude Franke, and Jodo Pedro de Magalhaes. “Gene Co-Expression Analysis for

Functional Classification and Gene-Disease Predictions.” Briefings in Bioinformatics 19, no. 4 (July 20, 2018): 575-92.

https://doi.org/10.1093/bib/bbw139.
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Hands-on

https://github.com/sib-swiss/summer-school-
multiomics-data-analysis-and-integration

Weighted Gene
Co-expression
Network Analysis

(WGCNA) 1 Libraries and environment
>  Tutorial and data are available in the Github
1.1 Environment .
This report was generated using: re pOS ItO ry
1 Libraries and environment SVGR(:,:Ierli_TZ _:3‘1 (emza seiis)
¥ ol >  Rand Rstudio (or your favorite IDE)

You might also need the compositions library for data normalization
2 General principle of
WGCNA

1.2 Load libraries

3 Choose your dataset and DIY: Load the WGCNA and pheatmap libraries

your modality

4 Biological context (Breast
cancer dataset)

5 Input data

6 Construction of the
correlation network
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Galadriel Briére, Morgane Térézol, Anais Baudot

Summer School Multi-omics Data Analysis and Integration
Aussois, 03 - 08 September 2023
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Similarity Network Fusion (SNF)

>  BoWangetal., Nature Methods. 2014
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Similarity Network Fusion (SNF)

B. Mixed
>  BoWangetal., Nature Methods. 2014
block 1 block 2
>  Mixed integration method: PE——
o  Sample network creation of each data type %52
o  Fusion of each data type networks %

\ -’
T

Picard M. et al., Comput Struct Biotechnol J. 2021
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Similarity Network Fusion (SNF)

>  BoWangetal., Nature Methods. 2014

> Mixed integration method:

- Basal
I wms
- Her2

Threshold: 0.011

o  Sample network creation of each data type
o  Fusion of each data type networks

>  Sample network
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Similarity Network Fusion (SNF)

>  BoWangetal., Nature Methods. 2014
>  Mixed integration method:
o  Sample network creation of each data type
o  Fusion of each data type networks
>  Sample network
>  Canmanage:
o  small number of samples
o  noise
o dataheterogeneity

o large number of features
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Similarity Network Fusion (SNF)

>  BoWangetal., Nature Methods. 2014
>  Mixed integration method:
o  Sample network creation of each data type
o  Fusion of each data type networks
>  Sample network
>  Canmanage:
o  small number of samples
o  noise
o dataheterogeneity
o large number of features

> Apply measures and algorithms for network on the fused network
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Similarity Network Fusion (SNF): Data preparation

>  The most important step
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Similarity Network Fusion (SNF): Data preparation

>  The most important step

>  Pay attention on your data shape

n samples

p features
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Similarity Network Fusion (SNF): Data preparation

>  The most important step

>  Pay attention on your data shape

n samples p features

p features
N
n samples
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Similarity Network Fusion (SNF): Data preparation

>  The most important step

>  Pay attention on your data shape

n samples p features

p features
N
n samples

> Normalization: data should be normalized according their type
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Similarity Network Fusion (SNF): Network creation

Datatype 1

|1 |
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Similarity Network Fusion (SNF): Network creation

Datatype 1

[
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o
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Distance matrix
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Similarity Network Fusion (SNF): Network creation

Datatype 1

‘ L
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Distance matrix Similarity matrix
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Similarity Network Fusion (SNF): Network creation

Datatype 1

weight

Samples
ENEETEeN

Distance matrix Similarity matrix
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Similarity Network Fusion (SNF): Network creation

Datatype 1
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Similarity Network Fusion (SNF): Network creation

samples

weight
Data type 1 Samples \ /
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Similarity Network Fusion (SNF): Fusion

Samples
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Similarity Network Fusion (SNF): Fusion

Samples Samples
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Similarity Network Fusion (SNF): Fusion
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Similarity Network Fusion (SNF): Fusion
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Similarity Network Fusion (SNF): Fusion
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Hands-on

https://github.com/sib-swiss/summer-school-
multiomics-data-analysis-and-integration

Hands-on in SIB_SummerSchool SNF.html

Similarity
etk Rdian >  Dataare available in the Github repository

1 Libraries and environment

>  Rand Rstudio (or your favorite IDE)

1.1 Load environment

Libraries used to create and generate this report:

1 Libraries and environment . 5 H .
« R T > Visualization using Cytoscape
o rmarkdown: 2.21
o knitr: 1.42
2 General principle of the o rmdformats: 1.0.4
SNF method
* bookdown: 0.34

o kableExtra: 1.3.4

3 Choose your datasets

1.2 Load libraries

Libraries used to analyse data
4 Input data

igraph")

5 Similarity network
* SNFtool: 2.3.1
« pheatmap: 1.0.12

6 Fusion e igraph: 1.4.2

Libraries used to load data
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